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Abstract 

Four versions of a k-nearest neighbor algorithm with locally adap­
tive k are introduced and compared to the basic k-nearest neigh­
bor algorithm (kNN). Locally adaptive kNN algorithms choose the 
value of k that should be used to classify a query by consulting the 
results of cross-validation computations in the local neighborhood 
of the query. Local kNN methods are shown to perform similar to 
kNN in experiments with twelve commonly used data sets. Encour­
aging results in three constructed tasks show that local methods 
can significantly outperform kNN in specific applications. Local 
methods can be recommended for on-line learning and for appli­
cations where different regions of the input space are covered by 
patterns solving different sub-tasks. 

1 Introduction 

The k-nearest neighbor algorithm (kNN, Dasarathy, 1991) is one of the most ven­
erable algorithms in machine learning. The entire training set is stored in memory. 
A new example is classified with the class of the majority of the k nearest neighbors 
among all stored training examples. The (global) value of k is generally determined 
via cross-validation. 

For certain applications, it might be desirable to vary the value of k locally within 
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different parts of the input space to account for varying characteristics of the data 
such as noise or irrelevant features . However, for lack of an algorithm, researchers 
have assumed a global value for k in all work concerning nearest neighbor algorithms 
to date (see, for example, Bottou, 1992, p. 895, last two paragraphs of Section 4.1). 
In this paper, we propose and evaluate four new algorithms that determine different 
values for k in different parts of the input space and apply these varying values to 
classify novel examples. These four algorithms use different methods to compute 
the k-values that are used for classification. 

We determined two basic approaches to compute locally varying values for k. One 
could compute a single k or a set of k values for each training pattern, or training 
patterns could be combined into groups and k value(s) computed for these groups. A 
procedure to determine the k to be used at classification time must be given in both 
approaches. Representatives of these two approaches are evaluated in this paper 
and compared to the global kNN algorithm. While it was possible to construct 
data sets where local algorithms outperformed kNN, experiments with commonly 
used data sets showed, in most cases, no significant differences in performance. A 
possible explanation for this behavior is that data sets which are commonly used 
to evaluate machine learning algorithms may all be similar in that attributes such 
as distribution of noise or irrelevant features are uniformly distributed across all 
patterns. In other words, patterns from data sets describing a certain task generally 
exhibit similar properties. 

Local nearest neighbor methods are comparable in computational complexity and 
accuracy to the (global) k-nearest neighbor algorithm and are easy to implement. In 
specific applications they can significantly outperform kNN. These applications may 
be combinations of significantly different subsets of data or may be obtained from 
physical measurements where the accuracy of measurements depends on the value 
measured. Furthermore, local kNN classifiers can be constructed at classification 
time (on-line learning) thereby eliminating the need for a global cross-validation 
run to determine the proper value of k . 

1.1 Methods compared 

The following nearest neighbor methods were chosen as representatives of the pos­
sible nearest neighbor methods discussed above and compared in the subsequent 
experiments: 

• k-nearest neighbor (kNN) 
This algorithm stores all of the training examples. A single value for k is 
determined from the training data. Queries are classified according to the 
class of the majority of their k nearest neighbors in the training data. 

• localKNN 1:11 unrelltricted 

This is the basic local kNN algorithm. The three subsequent algorithms 
are modifications of this method. This algorithm also stores all of the 
training examples. Along with each training example, it stores a list of 
those values of k that correctly classify that example under leave-one-out 
cross-validation. To classify a query q, the M nearest neighbors of the 
query are computed, and that k which classifies correctly most of these M 
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neighbors is determined. Call this value kM,q. The query q is then classified 
with the class of the majority of its kM,q nearest neighbors. Note that kM,q 
can be larger or smaller than M. The parameter M is the only parameter 
of the algorithm, and it can be determined by cross-validation. 

• localKNN kI pruned 

The list of k values for each training example generally contains many val­
ues. A global histogram of k values is computed, and k values that appear 
fewer than L times are pruned from all lists (at least one k value must, 
however, remain in each list). The parameter L can be estimated via cross­
validation. Classification of queries is identical to localKNN kI unrestricted. 

• localKNN one 1: per clau 

For each output class, the value of k that would result in the correct (leave­
one-out) classification of the maximum number of training patterns from 
that class is determined. A query q is classified as follows: Assume there 
are two output classes, C1 and C2 • Let kl and k2 be the k value computed 
for classes Cl and C2, respectively. The query is assigned to class C1 if the 
percentage of the kl nearest neighbors of q that belong to class C1 is larger 
than the percentage of the k2 nearest neighbors of q that belong to class 
C2. Otherwise, q is assigned to class C2. Generalization of that procedure 
to any number of output classes is straightforward. 

• localKNN one 1: per cluster 

An unsupervised cluster algorithm (RPCL, l Xu et al., 1993) is used to 
determine clusters of input data. A single k value is determined for each 
cluster. Each query is classified according to the k value of the cluster it is 
assigned to. 

2 Experimental Methods and Data sets used 

To measure the performance of the different nearest neighbor algorithms, we em­
ployed the training set/test set methodology. Each data set was randomly par­
titioned into a training set containing approximately 70% of the patterns and a 
test set containing the remaining patterns. After training on the training set, the 
percentage of correct classifications on the test set was measured. The procedure 
was repeated a total of 25 times to reduce statistical variation. In each experi­
ment, the algorithms being compared were trained (and tested) on identical data 
sets to ensure that differences in performance were due entirely to the algorithms. 
Leave-one-out cross-validation (Weiss & Kulikowski, 1991) was employed in all ex­
periments to estimate optimal settings for free parameters such as k in kNN and 
M in localKNN. 

1 Rival Penalized Competitive Learning is a straightforward modification of the well 
known k-means clustering algorithm. RPCL's main advantage over k-means clustering is 
that one can simply initialize it with a sufficiently large number of clusters. Cluster centers 
are initialized outside of the input range covered by the training examples. The algorithm 
then moves only those cluster centers which are needed into the range of input values and 
therefore effectively eliminates the need for cross-validation on the number of clusters in 
k-means. This paper employed a simple version with the number of initial clusters always 
set to 25, O'c set to 0.05 and O'r to 0.002. 
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We report the average percentage of correct classifications and its standard error. 
Two-tailed paired t-tests were conducted to determine at what level of significance 
one algorithm outperforms the other. We state that one algorithm significantly 
outperforms another when the p-value is smaller than 0.05. 

3 Results 

3.1 Experiments with Constructed Data Sets 

Three experiments with constructed data sets were conducted to determine the 
ability of local nearest neighbor methods to determine proper values of k . The data 
sets were constructed such that it was known before experimentation that varying 
k values should lead to superior performance. Two data sets which were presumed 
to require significantly different values of k were combined into a single data set 
for each of the first two experiments. For the third experiment, a data set was 
constructed to display some characteristics of data sets for which we assume local 
kNN methods would work best. The data set was constructed such that patterns 
from two classes were stretched out along two parallel lines in one part of the 
input space. The parallel lines were spaced such that the nearest neighbor for most 
patterns belongs to the same class as the pattern itself, while two out of the three 
nearest neighbors belong to the other class. In other parts of the input space, classes 
were well separated, but class labels were flipped such that the nearest neighbor of a 
query may indicate the wrong pattern while the majority of the k nearest neighbors 
(k > 3) would indicate the correct class (see also Figure 4). 

Figure 1 shows that in selected applications, local nearest neighbor methods can 
lead to significant improvements over kNN in predictive accuracy. 

Letter 
Experiment 2 

Sine-21 Wave-21 Combined 
Experiment 3 

Constructed 

70 .0±O.6 

-4~~~~~~~~~~~~~~~~~ I. ks pruned • ks unrestricted Q one k per class 0 one k per cluster 1 

Figure 1: Percent accuracy of local kNN methods relative to kNN on separate test sets. 
These differences (*) were statistically significant (p < 0.05). Results are based on 25 
repetitions. Shown at the bottom of each graph are sizes of training sets/sizes of test 
sets/number of input features. The percentage at top of each graph indicates average 
accuracy of kN N ± standard error. 

The best performing lqcal methods are locaIKNNl;, pruned, localKNNl;8 unre,tricted, 
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and 10calKNNone k per cluster. These methods were outperformed by kNN in two 
of the original data sets. However, the performance of these methods was clearly 
superior to kNN in all domains where data were collections of significantly distinct 
subsets. 

3.2 Experiments with Commonly Used Data Sets 

Twelve domains of varying sizes and complexities were used to compare the perfor­
mance of the various nearest neighbor algorithms. Data sets for these domains were 
obtained from the UC-Irvine repository of machine learning databases (Murphy & 
Aha, 1991, Aha, 1990, Detrano et al., 1989). Results displayed in Figure 2 indicate 
that in most data sets which are commonly used to evaluate machine learning algo­
rithms, local nearest neighbor methods have only minor impact on the performance 
of kNN. The best local methods are either indistinguishable in performance from 
kNN (localKNN one k per cluster) or inferior in only one domain (localKNN k, pruned). 

105150/4 150/64/9 16 

~"""T'"-f&C:NN 

* -2 

I. ks pruned • ks unrestricted Iilll one k per class 0 one k per cluster 1 

Figure 2: Percent accuracy of local kNN methods relative to kNN on separate test sets. 
These differences (*) were statistically significant (p < 0.05). Results are based on 25 
repetitions. Shown at the bottom of each graph are sizes of training sets/sizes of test 
sets/number of input features. The percentage at top of each graph indicates average 
accuracy of kNN ± standard error. 

The number of actual k values used varies significantly for the different local meth­
ods (Table 1). Not surprisingly, 10calKNNks unrestricted uses the largest number of 
distinct k values in all domains. Pruning of ks significantly reduced the number of 
values used in all domains. However, the method using the fewest distinct k values 
is 10calKNN one k per cluster, which also explains the similar performance of kNN and 
10calKNNone k per cluster in most domains. Note that several clusters computed by 
10calKNN one k per cluster may use the same k. 
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Table 1: Average number of distinct values for k used by local kNN methods. 
Task kNN local kNN methods 

k! k! one k per one k per 
J2runed unredricted cia!! clu!ter 

Letter recos. 1 7.6±1.1 10.8±1.5 6 .4. ±O.3 1.8±O.2 
Led-16 1 I6.4.±2.5 4.3.3±O.9 9.2±O.1 9 .2±O .5 

CombinedLL 1 52.0±3.8 71.4.±1.2 H .7±O.4. 3.0±O.2 
Sine-21 1 6.6±l.O 27.5±1.1 2.0±O.O l.O±O.O 
Waveform-21 1 9.1±1.4. 28.0±1.5 2 .9±O.1 4. .2±O.2 

Combined SW 1 13 .5±1.5 30.8±1.6 3.0±O.O 4. .8±O.2 
Constructed 1 1l .8±O.9 15.7±O.5 2.0±O.O 5.4.±O.2 
Iris 1 1.6±O.2 2.0±O.2 2 .4.±O.1 2 .3 ±O.1 
Glasd 1 7.7±O.8 1l .2±O.7 3.3±O.2 1.9±O.2 
Wine 1 2 .2±O.4. 3.8±O. 4. 2.0±O.1 2 .6±O.1 
Hunsarian 1 4..I±O.6 12.6±O.6 2 .0±O.O l.O±O.O 
Cleveland 1 8.0±l.O 17.2±1.1 1.8±O.1 4. .6±O.2 
Votins 1 4..I±O .4. 6.4.±O.3 2.0±O.O 1.3±O.1 
Led-7 Display 1 5.6±O.4. 7.6±O.4. 6.1±O.2 1.0±O.O 
Led-24. Display 1 16.0±2.9 37.4.±1.6 9 .0±O.2 1 .6±O.2 
Waveform-2I 1 9.7±1.3 27 .8±1.2 3 .0±O.O 4..3±O.1 
Waveform-4.0 1 8.4.±2.0 29.9±1.5 3.0±O.O 4..8±O.1 
Iaolet Letter 1 1l.5±2.1 4.3.9±O.6 16.5±O.5 7.1±O.3 
Letter reco6' 1 9.4.±1.9 I7.0±2.3 6.0±O.3 2 .4.±O.2 

Figure 3 shows, for one single run of Experiment 2 (data sets were combined as 
described in Figure 1), which k values were actually used by the different local 
methods. Three clusters of k values can be seen in this graph, one cluster at k = 1, 
one at k = 7,9,11,12 and the third at k = 19,20,21. It is interesting to note that 
the second and the third cluster correspond to the k values used by kNN in the 
separate experiments. Furthermore, kNN did not use k = 1 in any of the separate 
runs. This gives insight into why kNN's performance was inferior to that of the 
local methods in this experiment: Patterns in the combined data set belong to 
one of three categories as indicated by the k values used to classify them (k = 1, 
k ~ 10, k ~ 20). Hence, the performance difference is due to the fact that kNN 
must estimate at training time which single category will give the best performance 
while the local methods make that decision at classification time for each query 
depending on its local neighborhood. 

• 13 kvalues (bars) 

• 30 k values (bars) 

El 3 k values (bars) 

o S k values (bars) 

one k per class 0 one k per cluster I 
Figure 3: Bars show number of times local kNN methods used certain k values to classify 
test examples in Experiment 2 (Figure 1 (Combined), numbers based on single run). KNN 
used k = 1 in this experiment. 
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4 Discussion 

Four versions of the k-nearest neighbor algorithm which use different values of k 
for patterns which belong to different regions of the input space were presented and 
evaluated in this paper. Experiments with constructed and commonly used data 
sets indicate that local nearest neighbor methods may have superior classification 
accuracy than kNN in specific domains. 

Two methods can be recommended for domains where attributes such as noise or 
relevance of attributes vary significantly within different parts of the input space. 
The first method, called localKNN 1:" pruned, computes a list of "good" k values for 
each training pattern, prunes less frequent values from these lists and classifies a 
query according to the list of k values of a pre-specified number of neighbors of 
the query. Leave-one-out cross-validation is used to estimate the proper amount of 
pruning and the size of the neighborhood that should be used. 

The other method, localKNNone k per du,ter, uses a cluster algorithm to determine 
clusters of input patterns. One k is then computed for each cluster and used to 
classify queries which fall into this cluster. LocalKNNone k per du,ter performs in­
distinguishable from kNN in all commonly used data sets and outperforms kNN 
on the constructed data sets. This method compared with all other local methods 
discussed in this paper introduces a lower computational overhead at classification 
time and is the only method which could be modified to eliminate the need for 
leave-one-ou t cross-validation. 

The only purely local method, localKNN k. unre,tricted, performs well on constructed 
data sets and is comparable to kNN on non-constructed data sets. Sensitivity stud­
ies (results not shown) showed that a constant value of 25 for the parameter M 
gave results comparable to those where cross-validation was used to determine the 
value of M. The advantage of localKNNk, unrestricted over the other local meth­
ods and kNN is that this method does not require any global information what­
soever (if a constant value for M is used). It is therefore possible to construct a 
localKNN k6 unre,tricted classifier for each query which makes this method an attrac­
tive alternative for on-line learning or extremely large data sets. 

If the researcher has reason to believe that the data set used is a collection of 
subsets with significantly varying attributes such as noise or number of irrelevant 
features, we recommend the construction of a classifier from the training data using 
localKNN on e k per du,ter and comparison of its performance to kNN. If the classifier 
must be constructed on-line then localKNNk, unre,tricted should be used instead of 
kNN. 

We conclude that there is considerable evidence that local nearest neighbor meth­
ods may significantly outperform the k-nearest neighbor method on specific data 
sets. We hypothesize that local methods will become relevant in the future when 
classifiers are constructed that simultaneously solve a variety of tasks. 
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Figure 4: Data points for the Constructed data set were drawn from either of the two 
displayed curves (i.e. all data points lie on either of the two curves). Class labels were 
flipped with increasing probabilities to a maximum noise level of approximately 45% at 
the respective ends of the two lines. Listed at the bottom is performance of kNN and 
10calKNN unre.stricted within different regions of the input space and for the entire input 
space. 


