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Abstract

Transformers-based models, such as BERT, have been one of the most successful
deep learning models for NLP. Unfortunately, one of their core limitations is the
quadratic dependency (mainly in terms of memory) on the sequence length due to
their full attention mechanism. To remedy this, we propose, BIGBIRD, a sparse
attention mechanism that reduces this quadratic dependency to linear. We show
that BIGBIRD is a universal approximator of sequence functions and is Turing
complete, thereby preserving these properties of the quadratic, full attention model.
Along the way, our theoretical analysis reveals some of the benefits of having
O(1) global tokens (such as CLS), that attend to the entire sequence as part of the
sparse attention mechanism. The proposed sparse attention can handle sequences
of length up to 8x of what was previously possible using similar hardware. As
a consequence of the capability to handle longer context, BIGBIRD drastically
improves performance on various NLP tasks such as question answering and
summarization. We also propose novel applications to genomics data.

1 Introduction
Models based on Transformers [92], such as BERT [22, 63], are wildly successful for a wide
variety of Natural Language Processing (NLP) tasks and consequently are mainstay of modern NLP
research. Their versatility and robustness are the primary drivers behind the wide-scale adoption of
Transformers. The model is easily adapted for a diverse range of sequence based tasks – as a seq2seq
model for translation [92], summarization [66], generation [15], etc. or as a standalone encoders
for sentiment analysis [84], POS tagging [65], machine reading comprehension [94], etc. – and it
is known to vastly outperform previous sequence models like LSTM [37]. The key innovation in
Transformers is the introduction of a self-attention mechanism, which can be evaluated in parallel
for each token of the input sequence, eliminating the sequential dependency in recurrent neural
networks, like LSTM. This parallelism enables Transformers to leverage the full power of modern
SIMD hardware accelerators like GPUs/TPUs, thereby facilitating training of NLP models on datasets
of unprecedented size. This ability to train on large scale data has led to surfacing of models like
BERT [22] and T5 [75], which pretrain transformers on large general purpose corpora and transfer
the knowledge to down-stream task. The pretraining has led to significant improvement in low data
regime downstream tasks [51] as well as tasks with sufficient data [102] and thus have been a major
force behind the ubiquity of transformers in contemporary NLP.

The self-attention mechanism overcomes constraints of RNNs (namely the sequential nature of RNN)
by allowing each token in the input sequence to attend independently to every other token in the
sequence. This design choice has several interesting repercussions. In particular, the full self-attention
have computational and memory requirement that is quadratic in the sequence length. We note that
while the corpus can be large, the sequence length, which provides the context in many applications
is very limited. Using commonly available current hardware and model sizes, this requirement
translates to roughly being able to handle input sequences of length 512 tokens. This reduces its
direct applicability to tasks that require larger context, like QA [60], document classification, etc.
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However, while we know that self-attention and Transformers are useful, our theoretical understanding
is rudimentary. What aspects of the self-attention model are necessary for its performance? What
can we say about the expressivity of Transformers and similar models? Apriori, it was not even clear
from the design if the proposed self-attention mechanism was as effective as RNNs. For example, the
self-attention does not even obey sequence order as it is permutation equivariant. This concern has
been partially resolved, as Yun et al. [105] showed that transformers are expressive enough to capture
all continuous sequence to sequence functions with a compact domain. Meanwhile, Pérez et al. [72]
showed that the full transformer is Turing Complete (i.e. can simulate a full Turing machine). Two
natural questions arise: Can we achieve the empirical benefits of a fully quadratic self-attention
scheme using fewer inner-products? Do these sparse attention mechanisms preserve the expressivity
and flexibility of the original network?

In this paper, we address both the above questions and produce a sparse attention mechanism that
improves performance on a multitude of tasks that require long contexts. We systematically develop
BIGBIRD, an attention mechanism whose complexity is linear in the number of tokens (Sec. 2). We
take inspiration from graph sparsification methods and understand where the proof for expressiveness
of Transformers breaks down when full-attention is relaxed to form the proposed attention pattern.
This understanding helped us develop BIGBIRD, which is theoretically as expressive and also
empirically useful. In particular, our BIGBIRD consists of three main part:
• A set of g global tokens attending on all parts of the sequence.
• All tokens attending to a set of w local neighboring tokens.
• All tokens attending to a set of r random tokens.

This leads to a high performing attention mechanism scaling to much longer sequence lengths (8x).
To summarize, our main contributions are:
1. BIGBIRD satisfies all the known theoretical properties of full transformer (Sec. 3). In particular,

we show that adding extra tokens allows one to express all continuous sequence to sequence
functions with only O(n)-inner products. Furthermore, we show that under standard assumptions
regarding precision, BIGBIRD is Turing complete.

2. Empirically, we show that the extended context modelled by BIGBIRD benefits variety of NLP
tasks. We achieve state of the art results for question answering and document summarization on
a number of different datasets. Summary of these results are presented in Sec. 4.

3. Lastly, we introduce a novel application of attention based models where long contexts are
beneficial: extracting contextual representations of genomics sequences like DNA. With longer
masked LM pretraining, BIGBIRD improves performance on downstream tasks such as promoter-
region and chromatin profile prediction (Sec. 5).

1.1 Related Work
There have been a number of interesting attempts, that were aimed at alleviating the quadratic
dependency of Transformers, which can broadly categorized into two directions. First line of work
embraces the length limitation and develops method around it. Simplest methods in this category
just employ sliding window [94], but in general most work fits in the following general paradigm:
using some other mechanism select a smaller subset of relevant contexts to feed in the transformer
and optionally iterate, i.e. call transformer block multiple time with different contexts each time.
Most prominently, SpanBERT [42], ORQA [54], REALM [34], RAG [57] have achieved strong
performance for different tasks. However, it is worth noting that these methods often require significant
engineering efforts (like back prop through large scale nearest neighbor search) and are hard to train.

Second line of work questions if full attention is essential and have tried to come up with approaches
that do not require full attention, thereby reducing the memory and computation requirements.
Prominently, Dai et al. [21], Sukhbaatar et al. [83], Rae et al. [74] have proposed auto-regresive models
that work well for left-to-right language modeling but suffer in tasks which require bidirectional
context. Child et al. [16] proposed a sparse model that reduces the complexity to O(n

p
n), Kitaev

et al. [49] further reduced the complexity to O(n log(n)) by using LSH to compute nearest neighbors.
Ye et al. [104] proposed binary partitions of the data where as Qiu et al. [73] reduced complexity by
using block sparsity. Recently, Longformer [8] introduced a localized sliding window based mask with
few global mask to reduce computation and extended BERT to longer sequence based tasks. Finally,
our work is closely related to and built on the work of Extended Transformers Construction [4].
This work was designed to encode structure in text for transformers. The idea of global tokens was
used extensively by them to achieve their goals. Our theoretical work can be seen as providing
a justification for the success of these models as well. It is important to note that most of the
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(a) Random attention (b) Window attention (c) Global Attention (d) BIGBIRD

Figure 1: Building blocks of the attention mechanism used in BIGBIRD. White color indicates absence
of attention. (a) random attention with r = 2, (b) sliding window attention with w = 3 (c) global
attention with g = 2. (d) the combined BIGBIRD model.

aforementioned methods are heuristic based and empirically are not as versatile and robust as the
original transformer, i.e. the same architecture do not attain SoTA on multiple standard benchmarks.
(There is one exception of Longformer which we include in all our comparisons, see App. E.3 for a
more detailed comparison). Moreover, these approximations do not come with theoretical guarantees.

2 BIGBIRD Architecture

In this section, we describe the BIGBIRD model using the generalised attention mechanism that
is used in each layer of transformer operating on an input sequence X = (x1, ...,xn) 2 Rn⇥d.
The generalized attention mechanism is described by a directed graph D whose vertex set is [n] =
{1, . . . , n}. The set of arcs (directed edges) represent the set of inner products that the attention
mechanism will consider. Let N(i) denote the out-neighbors set of node i in D, then the ith output
vector of the generalized attention mechanism is defined as

ATTND(X)i = xi +
HX

h=1

�
⇣
Qh(xi)Kh(XN(i))

T

⌘
· Vh(XN(i)) (AT)

where Qh,Kh : Rd ! Rm are query and key functions respectively, Vh : Rd ! Rd is a value
function, � is a scoring function (e.g. softmax or hardmax) and H denotes the number of heads. Also
note XN(i) corresponds to the matrix formed by only stacking {xj : j 2 N(i)} and not all the inputs.

If D is the complete digraph, we recover the full quadratic attention mechanism of Vaswani et al.
[92]. To simplify our exposition, we will operate on the adjacency matrix A of the graph D even
though the underlying graph maybe sparse. To elaborate, A 2 [0, 1]n⇥n with A(i, j) = 1 if query
i attends to key j and is zero otherwise. For example, when A is the ones matrix (as in BERT), it
leads to quadratic complexity, since all tokens attend on every other token. This view of self-attention
as a fully connected graph allows us to exploit existing graph theory to help reduce its complexity.
The problem of reducing the quadratic complexity of self-attention can now be seen as a graph
sparsification problem. It is well-known that random graphs are expanders and can approximate
complete graphs in a number of different contexts including in their spectral properties [80, 38]. We
believe sparse random graph for attention mechanism should have two desiderata: small average path
length between nodes and a notion of locality, each of which we discuss below.

Let us consider the simplest random graph construction, known as Erdős-Rényi model, where each
edge is independently chosen with a fixed probability. In such a random graph with just ⇥̃(n)
edges, the shortest path between any two nodes is logarithmic in the number of nodes [17, 43]. As
a consequence, such a random graph approximates the complete graph spectrally and its second
eigenvalue (of the adjacency matrix) is quite far from the first eigenvalue [9, 10, 6]. This property
leads to a rapid mixing time for random walks in the grpah, which informally suggests that information
can flow fast between any pair of nodes. Thus, we propose a sparse attention where each query attends
over r random number of keys i.e. A(i, ·) = 1 for r randomly chosen keys (see Fig. 1a).

The second viewpoint which inspired the creation of BIGBIRD is that most contexts within NLP
and computational biology have data which displays a great deal of locality of reference. In this
phenomenon, a great deal of information about a token can be derived from its neighboring tokens.
Most pertinently, Clark et al. [19] investigated self-attention models in NLP tasks and concluded that
that neighboring inner-products are extremely important. The concept of locality, proximity of tokens
in linguistic structure, also forms the basis of various linguistic theories such as transformational-
generative grammar. In the terminology of graph theory, clustering coefficient is a measure of locality
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of connectivity, and is high when the graph contains many cliques or near-cliques (subgraphs that
are almost fully interconnected). Simple Erdős-Rényi random graphs do not have a high clustering
coefficient [85], but a class of random graphs, known as small world graphs, exhibit high clustering
coefficient [95]. A particular model introduced by Watts and Strogatz [95] is of high relevance to us
as it achieves a good balance between average shortest path and the notion of locality. The generative
process of their model is as follows: Construct a regular ring lattice, a graph with n nodes each
connected to w neighbors, w/2 on each side.

Table 1: Building block comparison @512
Model MLM SQuAD MNLI

BERT-base 64.2 88.5 83.4
Random (R) 60.1 83.0 80.2
Window (W) 58.3 76.4 73.1
R + W 62.7 85.1 80.5

In other words we begin with a sliding window
on the nodes. Then a random subset (k%) of all
connections is replaced with a random connection.
The other (100 - k)% local connections are retained.
However, deleting such random edges might be in-
efficient on modern hardware, so we retain it, which
will not affect its properties. In summary, to capture
these local structures in the context, in BIGBIRD, we define a sliding window attention, so that during
self attention of width w, query at location i attends from i� w/2 to i+ w/2 keys. In our notation,
A(i, i�w/2 : i+w/2) = 1 (see Fig. 1b). As an initial sanity check, we performed basic experiments
to test whether these intuitions are sufficient in getting performance close to BERT like models, while
keeping attention linear in the number of tokens. We found that random blocks and local window
were insufficient in capturing all the context necessary to compete with the performance of BERT.

The final piece of BIGBIRD is inspired from our theoretical analysis (Sec. 3), which is critical
for empirical performance. More specifically, our theory utilizes the importance of “global tokens”
(tokens that attend to all tokens in the sequence and to whom all tokens attend to (see Fig. 1c). These
global tokens can be defined in two ways:
• BIGBIRD-ITC: In internal transformer construction (ITC), we make some existing tokens “global”,

which attend over the entire sequence. Concretely, we choose a subset G of indices (with
g := |G|), such that A(i, :) = 1 and A(:, i) = 1 for all i 2 G.

• BIGBIRD-ETC: In extended transformer construction (ETC), we include additional “global”
tokens such as CLS. Concretely, we add g global tokens that attend to all existing tokens. In
our notation, this corresponds to creating a new matrix B 2 [0, 1](N+g)⇥(N+g) by adding
g rows to matrix A, such that B(i, :) = 1, and B(:, i) = 1 for all i 2 {1, 2, . . . g}, and
B(g + i, g + j) = A(i, j)8 i, j 2 {1, . . . , N}. This adds extra location to store context and as
we will see in the experiments improves performance.

The final attention mechanism for BIGBIRD (Fig. 1d) has all three of these properties: queries attend
to r random keys, each query attends to w/2 tokens to the left of its location and w/2 to the right of
its location and they contain g global tokens (The global tokens can be from existing tokens or extra
added tokens). We provide implementation details in App. D.

3 Theoretical Results about Sparse Attention Mechanism

In this section, we will show that that sparse attention mechanisms are as powerful and expressive as
full-attention mechanisms in two respects. First, we show that when sparse attention mechanisms
are used in a standalone encoder (such as BERT), they are Universal Approximators of sequence
to sequence functions in the style of Yun et al. [105]. We note that this property was also explored
theoretically in contemporary work Yun et al. [106]. Second, unlike [106], we further show that
sparse encoder-decoder transformers are Turing Complete (assuming the same conditions defined
in [72]). Complementing the above positive results, we also show that moving to a sparse-attention
mechanism incurs a cost, i.e. there is no free lunch. In Sec. 3.4, we show lower bounds by exhibiting
a natural task where any sufficiently sparse mechanism will require polynomially more layers.

3.1 Notation

The complete Transformer encoder stack is nothing but the repeated application of a single-layer
encoder (with independent parameters). We denote class of such Transformer encoders stack, defined
using generalized encoder (Sec. 2), by T H,m,q

D which consists of H-heads with head size m and q is
the hidden layer size of the output network, and the attention layer is defined by the directed graph D.

The key difference between our proposed attention mechanism to that of Vaswani et al. [92], Yun et al.
[105] is that we add a special token at the beginning of each sequence and assign it a special vector.
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We will refer to this as x0. Therefore our graph D will have vertex set {0} [ [n] = {0, 1, 2, . . . , n}.
We will assume that this extra node and its respective vector will be dropped at the final output layer
of transformer. To avoid cumbersome notation, we will still treat transformer as mapping sequences
X 2 Rn⇥d to Rn⇥d. We will also allow the transformer to append position embeddings E 2 Rd⇥n

to matrix X in the input layer.

Finally, we need to define the function class and distance measure for proving universal approximation
property. Let FCD denote the set of continuous functions f : [0, 1]n⇥d ! Rn⇥d which are continuous
with respect to the topology defined by `p norm. Recall for any p � 1, the `p distance is dp(f1, f2) =�R

kf1(X)� f2(X)kppdX
�1/p.

3.2 Universal Approximators

Definition 1. The star-graph S centered at 0 is the graph defined on {0, . . . , n}. The neighborhood
of all vertices i is N(i) = {0, i} for i 2 {1 . . . n} and N(0) = {1, . . . n}.

Our main theorem is that the sparse attention mechanism defined by any graph containing S is a
universal approximator:
Theorem 1. Given 1 < p < 1 and ✏ > 0, for any f 2 FCD, there exists a transformer with
sparse-attention, g 2 T H,m,q

D such that dp(f, g)  ✏ where D is any graph containing star graph S.

To prove the theorem, we will follow the standard proof structure outlined in [105].

Step 1: Approximate FCD by piece-wise constant functions. Since f is a continuous function
with bounded domain [0, 1)n⇥d, we will approximate it with a suitable piece-wise constant function.
This is accomplished by a suitable partition of the region [0, 1) into a grid of granularity � to get
a discrete set G�. Therefore, we can assume that we are dealing with a function f̄ : G� ! Rn⇥d,
where dp(f, f̄)  ✏

3 .

Step 2: Approximate piece-wise constant functions by modified transformers. This is the key
step of the proof where the self-attention mechanism is used to generate a contextual-mapping of the
input. Informally, a contextual mapping is a unique code for the pair consisting of a matrix (X,xi)
and a column. Its uniqueness allows the Feed forward layers to use each code to map it to a unique
output column.

The main technical challenge is computing the contextual mapping using only sparse attention
mechanism. This was done in [105] using a “selective” shift operator which shift up entries that are
in a specific interval. Key to their proof was the fact that the shift, was exactly the range of the largest
entry to the smallest entry.

Creating a contextual mapping with a sparse attention mechanism is quite a challenge. In particular,
because each query only attends to a few keys, it is not at all clear that sufficient information can
be corralled to make a contextual embedding of the entire matrix. To get around this, we develop a
sparse shift operator which shifts the entries of the matrices if they lie in a certain range. The exact
amount of the shift is controlled by the directed sparse attention graphg D. The second key ingredient
is the use of additional global token. By carefully applying the operator to a set of chosen ranges, we
will show that each column will contain a unique mapping of the full mapping. Therefore, we can
augment the loss of inner-products in the self attention mechanism by using multiple layers and an
auxiliary global token.

Step 3: Approximate modified transformers by original Transformers: The final step is to ap-
proximate the modified transformers by the original transformer which uses ReLU and softmax.

We provide the full details in App. A.

3.3 Turing Completeness

Transformers are a very general class. In the original paper of Vaswani et al. [92], they were used in
both an encoder and a decoder. While the previous section outlined how powerful just the encoders
were, another natural question is to ask what the additional power of both a decoder along with
an encoder is? Pérez et al. [72] showed that the full transformer based on a quadratic attention
mechanism is Turing Complete. This result makes one unrealistic assumption, which is that the
model works on arbitrary precision model. Of course, this is necessary as otherwise, Transformers
are bounded finite state machines and cannot be Turing Complete.

5



It is natural to ask if the full attention mechanism is necessary. Or can a sparse attention mechanism
also be used to simulate any Turing Machine? We show that this is indeed the case: we can use a
sparse encoder and sparse decoder to simulate any Turing Machine.

To use the sparse attention mechanism in the transformer architecture, we need to define a suitable
modification where each token only reacts to previous tokens. Unlike the case for BERT, where the
entire attention mechanism is applied once, in full transformers, the sparse attention mechanism at
decoder side is used token by token. Secondly the work of Pérez et al. [72], uses each token as a
representation of the tape history and uses the full attention to move and retrieve the correct tape
symbol. Most of the construction of Pérez et al. [72] goes through for sparse attentions, except for
their addressing scheme to point back in history (Lemma B.4 in [72]). We show how to simulate this
using a sparse attention mechanism and defer the details to App. B.

3.4 Limitations

We demonstrate a natural task which can be solved by the full attention mechanism in O(1)-layers.
However, under standard complexity theoretic assumptions, this problem requires ⌦̃(n)-layers for
any sparse attention layers with Õ(n) edges (not just BIGBIRD). (Here Õ hides poly-logarthmic
factors). Consider the simple problem of finding the corresponding furthest vector for each vector in
the given sequence of length n. Formally,

Task 1. Given n unit vectors {u1, . . . , un}, find f(u1, . . . , un) ! (u1⇤ , . . . , un⇤) where for a fixed
j 2 [n], we define j⇤ = argmaxk kuk � ujk22.

Finding vectors that are furthest apart boils down to minimize inner product search in case of unit
vectors. For a full-attention mechanism with appropriate query and keys, this task is very easy as we
can evaluate all pair-wise inner products.

The impossibility for sparse-attention follows from hardness results stemming from Orthogonal Vector
Conjecture(OVC) [1, 2, 7, 97]. The OVC is a widely used assumption in fine-grained complexity.
Informally, it states that one cannot determine if the minimum inner product among n boolean vectors
is 0 in subquadratic time. In App. C, we show a reduction using OVC to show that if a transformer
g 2 T H=1,m=2d,q=0

D for any sparse directed graph D can evaluate the Task 1, it can solve the
orthogonal vector problem.
Proposition 1. There exists a single layer full self-attention g 2 T H=1,m=2d,q=0 that can evaluate
Task 1, i.e. g(u1, ..., un) = [u1⇤ , . . . , un⇤ ], but for any sparse-attention graph D with Õ(n) edges
(i.e. inner product evaluations), would require ⌦̃(n1�o(1)) layers.
We give a formal proof of this fact in App. C.

4 Experiments: Natural Language Processing
In this section our goal is to showcase benefits of modeling longer input sequence for NLP tasks,
for which we select three representative tasks. We begin with basic masked language modeling
(MLM; Devlin et al. 22) to check if better contextual representations can be learnt by utilizing longer
contiguous sequences. Next, we consider QA with supporting evidence, for which capability to handle
longer sequence would allow us to retrieve more evidence using crude systems like TF-IDF/BM25.
Finally, we tackle long document classification where discriminating information may not be located
in first 512 tokens. Below we summarize the results for BIGBIRD using sequence length 40961, while
we defer all other setup details including computational resources, batch size, step size, to App. E.

Pretraining and MLM We follow [22, 63] to create base and large versions of BIGBIRD and
pretrain it using MLM objective. This task involves predicting a random subset of tokens which
have been masked out. We use four standard data-sets for pretraining (listed in App. E.1, Tab. 9),
warm-starting from the public RoBERTa checkpoint2. We compare performance in predicting the
masked out tokens in terms of bits per character, following [8]. As seen in App. E.1, Tab. 10,
both BIGBIRD and Longformer perform better than limited length RoBERTa, with BIGBIRD-ETC
performing the best. We note that we trained our models on a reasonable 16GB memory/chip with
batch size of 32-64. Our memory efficiency is due to efficient blocking and sparsity structure of the
sparse attention mechanism described in Sec. 2.

1code available at http://goo.gle/bigbird-transformer
2https://github.com/pytorch/fairseq/tree/master/examples/roberta
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Table 2: QA Dev results using Base size models. We report accuracy for WikiHop and F1 for
HotpotQA, Natural Questions, and TriviaQA.

Model HotpotQA NaturalQ TriviaQA WikiHop

Ans Sup Joint LA SA Full MCQ

RoBERTa 73.5 83.4 63.5 - - 74.3 72.4
Longformer 74.3 84.4 64.4 - - 75.2 75.0
BIGBIRD-ITC 75.7 86.8 67.7 70.8 53.3 79.5 75.9
BIGBIRD-ETC 75.5 87.1 67.8 73.9 54.9 78.7 75.9

Question Answering (QA) We considered following four challenging datasets:
1. Natural Questions [52]: For the given question, find a short span of answer (SA) from the given

evidences as well highlight the paragraph from the given evidences containing information about
the correct answer (LA).

2. HotpotQA-distractor [101]: Similar to natural questions, it requires finding the answer (Ans) as
well as the supporting facts (Sup) over different documents needed for multi-hop reasoning from
the given evidences.

3. TriviaQA-wiki [41]: We need to provide an answer for the given question using provided
Wikipedia evidence, however, the answer might not be present in the given evidence. On a
smaller verified subset of question, the given evidence is guaranteed to contain the answer.
Nevertheless, we model the answer as span selection problem in this case as well.

4. WikiHop [96]: Chose correct option from multiple-choice questions (MCQ), by aggregating
information spread across multiple documents given in the evidences.

As these tasks are very competitive, multiple highly engineered systems have been designed specific
each dataset confirming to respective output formats. For a fair comparison, we had to use some
additional regularization for training BIGBIRD, details of which are provided in App. E.2 along
with exact architecture description. We experiment using the base sized model and select the best
configuration on the development set for each dataset (as reported in Tab. 2). We can see that
BIGBIRD-ETC, with expanded global tokens consistently outperforms all other models. Thus, we
chose this configuration to train a large sized model to be used for evaluation on the hidden test set.

In Tab. 3, we compare BIGBIRD-ETC model to top-3 entries from the leaderboard excluding BIGBIRD.
One can clearly see the importance of using longer context as both Longformer and BIGBIRD
outperform models with smaller contexts. Also, it is worth noting that BIGBIRD submission is a
single model, whereas the other top-3 entries for Natural Questions are ensembles, which might
explain the slightly lower accuracy in exact answer phrase selection.
Classification We experiment on datasets of different lengths and contents, specifically various
document classification and GLUE tasks. Following BERT, we used one layer with cross entropy
loss on top of the first [CLS] token. We see that gains of using BIGBIRD are more significant
when we have longer documents and fewer training examples. For instance, using base sized model,

Table 3: Fine-tuning results on Test set for QA tasks. The Test results (F1 for HotpotQA, Natural
Questions, TriviaQA, and Accuracy for WikiHop) have been picked from their respective leaderboard.
For each task the top-3 leaders were picked not including BIGBIRD-etc. For Natural Questions
Long Answer (LA), TriviaQA, and WikiHop, BIGBIRD-ETC is the new state-of-the-art. On
HotpotQA we are third in the leaderboard by F1 and second by Exact Match (EM).

Model HotpotQA NaturalQ TriviaQA WikiHop

Ans Sup Joint LA SA Full Verified MCQ

HGN [26] 82.2 88.5 74.2 - - - - -
GSAN 81.6 88.7 73.9 - - - - -
ReflectionNet [32] - - - 77.1 64.1 - - -
RikiNet-v2 [61] - - - 76.1 61.3 - - -
Fusion-in-Decoder [39] - - - - - 84.4 90.3 -
SpanBERT [42] - - - - - 79.1 86.6 -
MRC-GCN [88] - - - - - - - 78.3
MultiHop [14] - - - - - - - 76.5
Longformer [8] 81.2 88.3 73.2 - - 77.3 85.3 81.9

BIGBIRD-ETC 81.2 89.1 73.6 77.8 57.9 84.5 92.4 82.3
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Table 4: Summarization ROUGE score for long documents.

Model
Arxiv PubMed BigPatent

R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L
Pr

io
rA

rt

SumBasic [68] 29.47 6.95 26.30 37.15 11.36 33.43 27.44 7.08 23.66
LexRank [25] 33.85 10.73 28.99 39.19 13.89 34.59 35.57 10.47 29.03
LSA [98] 29.91 7.42 25.67 33.89 9.93 29.70 - - -
Attn-Seq2Seq [86] 29.30 6.00 25.56 31.55 8.52 27.38 28.74 7.87 24.66
Pntr-Gen-Seq2Seq [77] 32.06 9.04 25.16 35.86 10.22 29.69 33.14 11.63 28.55
Long-Doc-Seq2Seq [20] 35.80 11.05 31.80 38.93 15.37 35.21 - - -
Sent-CLF [82] 34.01 8.71 30.41 45.01 19.91 41.16 36.20 10.99 31.83
Sent-PTR [82] 42.32 15.63 38.06 43.30 17.92 39.47 34.21 10.78 30.07
Extr-Abst-TLM [82] 41.62 14.69 38.03 42.13 16.27 39.21 38.65 12.31 34.09
Dancer [31] 42.70 16.54 38.44 44.09 17.69 40.27 - - -

B
as

e

Transformer 28.52 6.70 25.58 31.71 8.32 29.42 39.66 20.94 31.20
+ RoBERTa [76] 31.98 8.13 29.53 35.77 13.85 33.32 41.11 22.10 32.58
+ Pegasus [108] 34.81 10.16 30.14 39.98 15.15 35.89 43.55 20.43 31.80

BIGBIRD-RoBERTa 41.22 16.43 36.96 43.70 19.32 39.99 55.69 37.27 45.56

La
rg

e Pegasus (Reported) [108] 44.21 16.95 38.83 45.97 20.15 41.34 52.29 33.08 41.75
Pegasus (Re-eval) 43.85 16.83 39.17 44.53 19.30 40.70 52.25 33.04 41.80
BIGBIRD-Pegasus 46.63 19.02 41.77 46.32 20.65 42.33 60.64 42.46 50.01

BIGBIRD improves state-of-the-art for Arxiv dataset by about 5% points. On Patents dataset, there
is improvement over using simple BERT/RoBERTa, but given the large size of training data the
improvement over SoTA (which is not BERT based) is not significant. Note that this performance
gain is not seen for much smaller IMDb dataset. Along with experimental setup detail, we present
detailed results in App. E.4 which show competitive performance.

4.1 Encoder-Decoder Tasks
For an encoder-decoder setup, one can easily see that both suffer from quadratic complexity due to
the full self attention. We focus on introducing the sparse attention mechanism of BIGBIRD only at
the encoder side. This is because, in practical generative applications, the length of output sequence
is typically small as compared to the input. For example for text summarization, we see in realistic
scenarios (c.f. App. E.5 Tab. 18) that the median output sequence length is ⇠ 200 where as the input
sequence’s median length is > 3000. For such applications, it is more efficient to use sparse attention
mechanism for the encoder and full self-attention for the decoder.

Summarization Document summarization is a task of creating a short and accurate summary of
a text document. We used three long document datasets for testing our model details of which are
mention in Tab. 18. In this paper we focus on abstractive summarization of long documents where
using a longer contextual encoder should improve performance. The reasons are two fold: First, the
salient content can be evenly distributed in the long document, not just in first 512 tokens, and this
is by design in the BigPatents dataset [78]. Second, longer documents exhibit a richer discourse
structure and summaries are considerably more abstractive, thereby observing more context helps.
As has been pointed out recently [76, 108], pretraining helps in generative tasks, we warm start
from our general purpose MLM pretraining on base-sized models as well as utilizing state-of-the-art
summarization specific pretraining from Pegasus [108] on large-sized models. The results of training
BIGBIRD sparse encoder along with full decoder on these long document datasets are presented
in Tab. 4. We can clearly see modeling longer context brings significant improvement. Along with
hyperparameters, we also present results on shorter but more widespread datasets in App. E.5, which
show that using sparse attention does not hamper performance either.

5 Experiments: Genomics
There has been a recent upsurge in using deep learning for genomics data [87, 107, 13], which has
resulted in improved performance on several biologically-significant tasks such as promoter site
prediction [71], methylation analysis [55], predicting functional effects of non-coding variant [110],
etc. These approaches consume DNA sequence fragments as inputs, and therefore we believe longer
input sequence handling capability of BIGBIRD would be beneficial as many functional effects
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in DNA are highly non-local [12]. Furthermore, taking inspiration from NLP, we learn powerful
contextual representations for DNA fragments utilizing abundant unlabeled data (e.g. human reference
genome, Saccharomyces Genome Database) via MLM pretraining. Next, we showcase that our long
input BIGBIRD along with the proposed pretraining significantly improves performances in two
downstream tasks. Detailed experimental setup for the two tasks are provided in App. F.

Table 5: MLM BPC
Model BPC

SRILM [58] 1.57
BERT (sqln. 512) 1.23

BIGBIRD (sqln. 4096) 1.12

Pre-training and MLM As explored in Liang [58], instead of oper-
ating on base pairs, we propose to first segment DNA into tokens so
as to further increase the context length (App. F, Fig. 7). In particular,
we build a byte-pair encoding [50] table for the DNA sequence of size
32K, with each token representing 8.78 base pairs on average. We
learn contextual representation of these token on the human reference
genome (GRCh37)3 using MLM objective. We then report the bits per
character (BPC) on a held-out set in Tab. 5. We find that attention based contextual representation of
DNA does improve BPC, which is further improved by using longer context.

Table 6: Comparison.
Model F1

CNNProm [91] 69.7
DeePromoter [71] 95.6

BIGBIRD 99.9

Promoter Region Prediction Promoter is a DNA region typically lo-
cated upstream of the gene, which is the site of transcription initiation.
Multiple methods have been proposed to identify the promoter regions in
a given DNA sequence [100, 59, 11, 99, 71], as it is an important first step
in understanding gene regulation. The corresponding machine learning
task is to classify a given DNA fragment as promoter or non-promoter
sequence. We use the dataset compiled by Oubounyt et al. [71] which was
built from Eukaryotic Promoter Database (EPDnew) [24] 4. We finetuned the pretrained BIGBIRD
model from above, using the training data and report F1 on test dataset. We compare our results to
the previously reported best method in Tab. 6. We see that BIGBIRD achieve nearly perfect accuracy
with a 5% jump from the previous best reported accuracy.

Table 7: Chromatin-Profile Prediction
Model TF HM DHS

gkm-SVM [30] 89.6 - -
DeepSea [110] 95.8 85.6 92.3
BIGBIRD 96.1 88.7 92.1

Chromatin-Profile Prediction Non-coding regions of
DNA do not code for proteins. Majority of diseases and
other trait associated single-nucleotide polymorphism are
correlated to non-coding genomic variations [110, 46].
Thus, understanding the functional effects of non-coding
regions of DNA is a very important task. An important
step in this process, as defined by Zhou and Troyanskaya
[110], is to predict large-scale chromatin-profiling from non-coding genomic sequence. To this effect,
DeepSea [110], compiled 919 chromatin-profile of 2.4M non-coding variants from Encyclopedia
of DNA Elements (ENCODE)5 and Roadmap Epigenomics projects6. The corresponding ML task
is to predict, for a given non-coding region of DNA, these 919 chromatin-profile including 690
transcription factors (TF) binding profiles for 160 different TFs, 125 DNase I sensitivity (DHS)
profiles and 104 histone-mark (HM) profiles. We jointly learn 919 binary classifiers to predict these
functional effects from sequence of DNA fragments. On held-out chromosomes, we compare AUC
with the baselines in Tab. 7 and see that we significantly improve on performance on the harder task
HM, which is known to have longer-range correlations [27] than others.

6 Conclusion
We propose BIGBIRD: a sparse attention mechanism that is linear in the number of tokens. BIGBIRD
satisfies a number of theoretical results: it is a universal approximator of sequence to sequence
functions and is also Turing complete. Theoretically, we use the power of extra global tokens preserve
the expressive powers of the model. We complement these results by showing that moving to sparse
attention mechanism do incur a cost. Empirically, BIGBIRD gives state-of-the-art performance on
a number of NLP tasks such as question answering and long document classification. We further
introduce attention based contextual language model for DNA and fine-tune it for down stream tasks
such as promoter region prediction and predicting effects of non-coding variants.

3https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.13/
4https://epd.epfl.ch/human/human_database.php?db=human
5https://www.encodeproject.org/
6http://www.roadmapepigenomics.org/
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Broader Impacts
Inference Efficiency: Quadratic attention mechanisms cannot capture long range dependencies
which exist in natural text and other datasets. Moreover, there is a growing concern in the ML
community about the resource and energy requirement training large scale systems [81]. Moreover,
that sparse, computationally efficient systems, like BIGBIRD, can capture long range dependencies in
an energy efficient way without losing expressive power.

Wide Applicability: Beyond the impact of our model on NLP tasks that require longer context, our
proposed contextualized representations of DNA using attention based models, should help in better
modeling effects of longer sequences of DNA. Our effort continues a long line of research that bridges
the gap between computational models designed for NLP and those for computational biology.
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[72] J. Pérez, J. Marinković, and P. Barceló. On the turing completeness of modern neural network
architectures. arXiv preprint arXiv:1901.03429, 2019.

[73] J. Qiu, H. Ma, O. Levy, S. W.-t. Yih, S. Wang, and J. Tang. Blockwise self-attention for long
document understanding. arXiv preprint arXiv:1911.02972, 2019.

[74] J. W. Rae, A. Potapenko, S. M. Jayakumar, and T. P. Lillicrap. Compressive transformers for
long-range sequence modelling. arXiv preprint arXiv:1911.05507, 2019.

[75] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu.
Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint
arXiv:1910.10683, 2019.

[76] S. Rothe, S. Narayan, and A. Severyn. Leveraging pre-trained checkpoints for sequence
generation tasks. arXiv preprint arXiv:1907.12461, 2019.

[77] A. See, P. J. Liu, and C. D. Manning. Get to the point: Summarization with pointer-generator
networks. arXiv preprint arXiv:1704.04368, 2017.

[78] E. Sharma, C. Li, and L. Wang. Bigpatent: A large-scale dataset for abstractive and coherent
summarization. arXiv preprint arXiv:1906.03741, 2019.

[79] P. Shaw, J. Uszkoreit, and A. Vaswani. Self-attention with relative position representations.
arXiv preprint arXiv:1803.02155, 2018.

[80] D. A. Spielman and S.-H. Teng. Spectral sparsification of graphs. SIAM Journal on Computing,
40(4):981–1025, 2011.

[81] E. Strubell, A. Ganesh, and A. McCallum. Energy and policy considerations for deep learning
in nlp. arXiv preprint arXiv:1906.02243, 2019.

[82] S. Subramanian, R. Li, J. Pilault, and C. Pal. On extractive and abstractive neural document
summarization with transformer language models. arXiv preprint arXiv:1909.03186, 2019.

[83] S. Sukhbaatar, E. Grave, P. Bojanowski, and A. Joulin. Adaptive attention span in transformers.
arXiv preprint arXiv:1905.07799, 2019.

[84] C. Sun, L. Huang, and X. Qiu. Utilizing bert for aspect-based sentiment analysis via construct-
ing auxiliary sentence. arXiv preprint arXiv:1903.09588, 2019.

[85] D. Sussman. Lecture Notes for Boston University MA 882 Spring 2017, 2017 (accessed
June 3, 2020). URL http://math.bu.edu/people/sussman/MA882_2017/
2017-01-26-Lecture-2.html.

[86] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks.
In Advances in neural information processing systems, pages 3104–3112, 2014.

[87] A. Tampuu, Z. Bzhalava, J. Dillner, and R. Vicente. Viraminer: Deep learning on raw dna
sequences for identifying viral genomes in human samples. PloS one, 14(9), 2019.

[88] Z. Tang, Y. Shen, X. Ma, W. Xu, J. Yu, and W. Lu. Multi-hop reading comprehension across
documents with path-based graph convolutional network. arXiv:2006.06478, 2020.

[89] T. Thongtan and T. Phienthrakul. Sentiment classification using document embeddings trained
with cosine similarity. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics: Student Research Workshop, pages 407–414, 2019.

[90] T. H. Trinh and Q. V. Le. A simple method for commonsense reasoning. arXiv preprint
arXiv:1806.02847, 2018.

[91] R. K. Umarov and V. V. Solovyev. Recognition of prokaryotic and eukaryotic promoters using
convolutional deep learning neural networks. PloS one, 12(2), 2017.

[92] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin. Attention is all you need. In Advances in neural information processing systems,
pages 5998–6008, 2017.

14

http://math.bu.edu/people/sussman/MA882_2017/2017-01-26-Lecture-2.html
http://math.bu.edu/people/sussman/MA882_2017/2017-01-26-Lecture-2.html


[93] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman. Glue: A multi-
task benchmark and analysis platform for natural language understanding. arXiv preprint
arXiv:1804.07461, 2018.

[94] Z. Wang, P. Ng, X. Ma, R. Nallapati, and B. Xiang. Multi-passage bert: A globally normalized
bert model for open-domain question answering. arXiv preprint arXiv:1908.08167, 2019.

[95] D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small-world’networks. nature, 393
(6684):440–442, 1998.

[96] J. Welbl, P. Stenetorp, and S. Riedel. Constructing datasets for multi-hop reading compre-
hension across documents. Transactions of the Association for Computational Linguistics, 6:
287–302, 2018.

[97] R. Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.
Theoretical Computer Science, 348(2-3):357–365, 2005.

[98] S. Wiseman, S. M. Shieber, and A. M. Rush. Challenges in data-to-document generation.
arXiv preprint arXiv:1707.08052, 2017.

[99] X. Xiao, Z.-C. Xu, W.-R. Qiu, P. Wang, H.-T. Ge, and K.-C. Chou. ipsw (2l)-pseknc: A
two-layer predictor for identifying promoters and their strength by hybrid features via pseudo
k-tuple nucleotide composition. Genomics, 111(6):1785–1793, 2019.

[100] Y. Yang, R. Zhang, S. Singh, and J. Ma. Exploiting sequence-based features for predicting
enhancer–promoter interactions. Bioinformatics, 33(14):i252–i260, 2017.

[101] Z. Yang, P. Qi, S. Zhang, Y. Bengio, W. W. Cohen, R. Salakhutdinov, and C. D. Manning.
Hotpotqa: A dataset for diverse, explainable multi-hop question answering. arXiv preprint
arXiv:1809.09600, 2018.

[102] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, and Q. V. Le. Xlnet: Generalized
autoregressive pretraining for language understanding. In Advances in neural information
processing systems, pages 5754–5764, 2019.

[103] Z. Yao, S. Cao, W. Xiao, C. Zhang, and L. Nie. Balanced sparsity for efficient dnn inference
on gpu. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages
5676–5683, 2019.

[104] Z. Ye, Q. Guo, Q. Gan, X. Qiu, and Z. Zhang. Bp-transformer: Modelling long-range context
via binary partitioning. arXiv preprint arXiv:1911.04070, 2019.

[105] C. Yun, S. Bhojanapalli, A. S. Rawat, S. J. Reddi, and S. Kumar. Are transformers universal
approximators of sequence-to-sequence functions? arXiv preprint arXiv:1912.10077, 2019.

[106] C. Yun, Y.-W. Chang, S. Bhojanapalli, A. S. Rawat, S. J. Reddi, and S. Kumar. o(n) connections
are expressive enough: Universal approximability of sparse transformers. In Advances in
Neural Information Processing Systems, 2020.

[107] H. Zhang, C.-L. Hung, M. Liu, X. Hu, and Y.-Y. Lin. Ncnet: Deep learning network models
for predicting function of non-coding dna. Frontiers in genetics, 10, 2019.

[108] J. Zhang, Y. Zhao, M. Saleh, and P. J. Liu. Pegasus: Pre-training with extracted gap-sentences
for abstractive summarization. arXiv preprint arXiv:1912.08777, 2019.

[109] X. Zhang, J. Zhao, and Y. LeCun. Character-level convolutional networks for text classification.
In Advances in neural information processing systems, pages 649–657, 2015.

[110] J. Zhou and O. G. Troyanskaya. Predicting effects of noncoding variants with deep learning–
based sequence model. Nature methods, 12(10):931–934, 2015.

[111] Y. Zhu, R. Kiros, R. Zemel, R. Salakhutdinov, R. Urtasun, A. Torralba, and S. Fidler. Aligning
books and movies: Towards story-like visual explanations by watching movies and reading
books. In IEEE international conference on computer vision, pages 19–27, 2015.

15


	Introduction
	Related Work

	BigBird Architecture
	Theoretical Results about Sparse Attention Mechanism
	Notation
	Universal Approximators
	Turing Completeness
	Limitations

	Experiments: Natural Language Processing
	Encoder-Decoder Tasks

	Experiments: Genomics
	Conclusion
	Universal Approximators
	Notation
	Proof
	Approximate Fcd by piece-wise constant functions
	Contextual Mappings and Sparse Attention Mechanisms
	Approximating modified Transformers by Transformers


	Turing Completeness
	Notation
	Details of the Simulation
	Layer 1: Simulate Transition Function
	Layer 2: Finding Head Node
	Layer 3: Distinguishing Node Type
	Layer 4: Finding next symbol on tape
	Final transformation


	Limitations
	Implementation details
	NLP experiments details
	MLM Pretraining
	Question Answering
	Relationship to Contemporary Work
	Classification
	Summarization

	Genomics experiments details
	Pretraining
	Promoter Region Prediction
	Chromatin-Profile Prediction


