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Abstract

The Mifare Classic is the most widely used contactless
smartcard on the market. The stream cipher CRYPTO1
used by the Classic has recently been reverse engi-
neered and serious attacks have been proposed. The
most serious of them retrieves a secret key in under a
second. In order to clone a card, previously proposed
attacks require that the adversary either has access
to an eavesdropped communication session or exe-
cutes a message-by-message man-in-the-middle attack
between the victim and a legitimate reader. Although
this is already disastrous from a cryptographic point
of view, system integrators maintain that these attacks
cannot be performed undetected.

This paper proposes four attacks that can be ex-
ecuted by an adversary having only wireless access
to just a card (and not to a legitimate reader). The
most serious of them recovers a secret key in less than
a second on ordinary hardware. Besides the crypto-
graphic weaknesses, we exploit other weaknesses in
the protocol stack. A vulnerability in the computation
of parity bits allows an adversary to establish a
side channel. Another vulnerability regarding nested
authentications provides enough plaintext for a speedy
known-plaintext attack.

1. Introduction

With more than one billion cards sold, the Mi-
fare Classic covers more than70% of the contactless
smartcard market1. Such cards contain a slightly more
powerful IC than classical RFID chips (developed
for identification only), equipping them with modest
computational power and making them suitable for ap-
plications beyond identification, such as access control
and ticketing systems.

The Mifare Classic is widely used in public transport
payment systems such as the Oyster card2 in London,

1. http://www.nxp.com
2. http://oyster.tfl.gov.uk

the Charlie Card in Boston3, the SmartRider in Aus-
tralia4, EasyCard in Taiwan5, and the OV-chipkaart6 in
The Netherlands. It is also widely used for access con-
trol in office and governmental buildings and military
objects.

According to [MFS08] the Mifare Classic complies
with parts 1 to 3 of the ISO standard 14443-A [ISO01],
specifying the physical characteristics, the radio fre-
quency interface, and the anti-collision protocol. The
Mifare Classic does not implement part 4 of the
standard, describing the transmission protocol, but in-
stead uses its own secure communication layer. In this
layer, the Mifare Classic uses the proprietary stream
cipher CRYPTO1 to provide data confidentiality and
mutual authentication between card and reader. This ci-
pher has recently been reversed engineered [NESP08],
[GKM+08].

In this paper, we show serious vulnerabilities of the
Mifare Classic that enable an attacker to retrieve all
cryptographic keys of a card, just by wirelessly com-
municating with it. Thus, the potential impact is much
larger than that of the problems previously reported
in [GKM+08], [CNO08], [KHG08], [Noh08], where
the attacker either needs to have access to a legitimate
reader or an eavesdropped communication session. The
attacks described in this paper are fast enough to allow
an attacker to wirelessly ‘pickpocket’ a victim’s Mifare
Classic card, i.e., to clone it immediately.

Vulnerabilities. The vulnerabilities we discovered
concern the handling of parity bits and nested authen-
tications.

• The Mifare Classic sends a parity bit for each
byte that is transmitted. Violating the standard,
the Mifare Classic mixes the data link layer
and secure communication layer: parity bits are
computed over the plaintext instead of over the

3. http://www.mbta.com/faresand passes/charlie
4. http://www.transperth.wa.gov.au
5. http://www.easycard.com.tw
6. http://www.ov-chipkaart.nl
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bits that are actually sent, i.e., the ciphertext.
This is, in fact, authenticate-then-encrypt which
is generically insecure [Kra01].
Furthermore, parity bits are encrypted with the
same bit of keystream that encrypts the first bit
of the next byte of plaintext. During the authenti-
cation protocol, if the reader sends wrong parity
bits, the card stops communicating. However, if
the reader sends correct parity bits, but wrong
authentication data, the card responds with an
(encrypted) error code. This breaks the confi-
dentiality of the cipher, enabling an attacker to
establish a side channel.

• The memory of the Mifare Classic is divided
into sectors, each of them having its own48-bit
secret key. To perform an operation on a specific
sector, the reader must first authenticate using
the corresponding key. When an attacker has
already authenticated for one sector (knowing the
key for that sector) and subsequently attempts to
authenticate for another sector (without knowing
the key for this sector), that attempt leaks32 bits
of information about the secret key of that sector.

Attacks. We describe four attacks exploiting these
vulnerabilities to recover the cryptographic keys from
a Mifare Classic card having only contactless com-
munication with it (and not with a legitimate reader).
These attacks make different trade-offs between online
communication time (the time an attacker needs to
communicate with a card), offline computation time
(the time it takes to compute the cryptographic key
using the data gathered from the card), precomputation
time (one-time generation time of static tables), disk
space usage (of the static tables) and special assump-
tions (whether the attacker has already one sector key
or not).

• The first attack exploits the weakness of the parity
bits to mount an offline brute-force attack on the
48-bit key space. The attacker only needs to try
to authenticate approximately1500 times (which
takes under a second).

• The second attack also exploits the weakness of
the parity bits but this time the attacker mounts
an adaptive chosen ciphertext attack. The at-
tacker needs approximately28500 authentication
attempts. In this attack, she needs to make sure
that the challenge nonce of the card is constant,
which is why this takes approximately fifteen
minutes. During these authentication attempts,
the attacker adaptively chooses her challenge to
the card, ultimately obtaining a challenge that
guarantees that there are only436 possibilities

for the odd-numbered bits of the internal state of
the cipher. This reduces the offline search space
to approximately33 bits. On a standard desktop
computer this search takes about one minute.

• In the third attack the attacker keeps her own
challenge constant, but varies the challenge of the
tag, again ultimately obtaining a special internal
state of the cipher. These special states have to be
precomputed and stored in a384 GB table. This
attack requires on average212 = 4096 authenti-
cation attempts, which could in principle be done
in about two minutes. A few extra authentication
attempts allow efficient lookup in the table.

• The fourth attack assumes that the attacker has
already recovered at least one sector key. When
the attacker first authenticates for this sector and
then for another sector, the authentication protocol
is slightly different, viz., the challenge nonce of
the tag is not sent in the clear, but encrypted with
the key of the new sector. Because the random
number generator has only a16-bit state, because
parity bits leak three bits of information, and be-
cause the tag’s random number generator runs in
sync with the communication timing, this allows
an attacker to guess the plaintext tag nonce and
hence32 bits of keystream. Due to weaknesses
in the cipher [GKM+08], we can use these32
bits of keystream to compute approximately216

candidate keys. These can then be checked offline
using another authentication attempt. Since this
attack only requires three authentication attempts,
the online time is negligible. The offline search
takes under a second on ordinary hardware.

Related work. De Koning Gans et al. [KHG08] have
proposed an attack on a Mifare Classic tag that exploits
the malleability of the CRYPTO1 stream cipher to read
partial information from a tag, without even knowing
the encryption algorithm. By slicing a Mifare Classic
chip and taking pictures with a microscope, the cipher
was reverse engineered by Nohl et al. [NESP08].
Courtois et al. claim in [CNO08] that the CRYPTO1
cipher is susceptible to algebraic attacks and Nohl
shows a statistical weakness of the cipher in [Noh08].
A full description of the cipher was given by Garcia et
al. in [GKM+08], together with a reverse engineered
authentication protocol. They also describe an attack
with which an attacker can recover a sector key by
communicating with a genuine reader or by eavesdrop-
ping a successful authentication.

All attacks described in these papers have in com-
mon that they need access to a legitimate reader or
intercepted communication. In contrast, the attacks
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described in our paper only need access to a card.

Impact. The implications of the attacks described in
this paper are vast.

Many ticketing and payment systems using the
Mifare Classic sequentially authenticate for several
sectors verifying the data in the card. In case of
invalid data, the protocol aborts. With previous attacks,
this means that an attacker has to either eavesdrop a
full trace or walk from the reader to the card holder
several times, executing a message-by-message man-
in-the-middle attack. In practice, both options are hard
to accomplish undetected. Furthermore, there is no
guarantee that this allows an attacker to recover all
useful data in the card, since some sectors might not
be read in this particular instance. Our attacks always
enable an attacker to retrieve all data from the card.

Our fourth attack, where the attacker already knows
a single key, is extremely fast (less than one second
per key on ordinary hardware). The first key can be re-
trieved using one of our first three attacks, but in many
situations this is not even necessary. Most deployed
systems leave default keys for unused sectors or do
not diversify keys at all. Nearly all deployed systems
that do diversify have at least one sector key that is
not diversified, namely for storing the diversification
information. This is even specified in NXP’s guideline
for system integrators [MAD07]. This means that it is
possible for an adversary to recover all keys necessary
to read and write the sixteen sectors of a Mifare Classic
1k tag in less than sixteen seconds.

Overview. We start by gathering the relevant informa-
tion that is already known about the Mifare Classic
in Section 2: its logical structure, the encryption algo-
rithm, the authentication protocol and the initialization
of the stream cipher, how to undo the initialization
of the stream cipher, and information about how the
tag generates its random numbers. In Section 3, we
continue with a precise description of the discovered
weaknesses in the handling of the parity bits and
nested authentications. In Section 4, we show how
these weaknesses can be exploited to recover a sector
key by communication with just a card. Section 5 gives
some concluding remarks.

2. Background

2.1. Communication

The physical layer and data link layer of the Mifare
family of cards are described in the ISO standard

Figure 2.1. Memory layout of the Mifare Classic

14443-A. We have used the Proxmark III7 for commu-
nication; this device implements, among others, these
two layers of this standard and can emulate both a card
and a reader.

Using information from [KHG08] about the
command codes of the Mifare Classic and
from [GKM+08], [NESP08] about the cryptographic
aspects of the Mifare Classic, we implemented
the functionality of a Mifare Classic reader on
the Proxmark. Note that we can observe a tag’s
communication at the data link level, implying that
we can observe the parity bits as well. Furthermore,
we have the freedom to send arbitrary parity bits,
which is not possible using stock commercial Mifare
Classic readers. However, many newer NFC readers
can be used to communicate with a Mifare Classic
card as well and are capable of sending and receiving
arbitrary parity bits.8 We have also executed the
attacks described in this paper using an inexpensive
(30 USD) stock commercial NFC reader. However,
these readers are typically connected to a host
PC using USB and it is harder to obtain accurate
communication timing.

2.2. Memory structure of the Mifare Classic

The Mifare Classic tag is essentially a memory chip
with secure wireless communication capabilities. The
memory of the tag is divided into sectors, each of
which is further divided into blocks of sixteen bytes
each. The last block of each sector is the sector trailer
and stores two secret keys and the access conditions
for that sector.

To perform an operation on a specific block, the
reader must first authenticate for the sector containing

7. http://www.proxmark.org/
8. http://www.libnfc.org/
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that block. The access conditions determine which of
the two keys must be used. See Figure 2.1 for an
overview of the memory of a Mifare Classic tag.

2.3. CRYPTO1

After authentication, the communication between
tag and reader is encrypted with the CRYPTO1 stream
cipher. This cipher consists of a48-bit linear feed-
back shift register (LFSR) with generating polynomial
x48+x43+x39+x38+x36+x34+x33+x31+x29+x24+
x23 + x21 + x19 + x13 + x9 + x7 + x6 + x5 + 1 and
a non-linear filter functionf [NESP08]. Each clock
tick, twenty bits of the LFSR are put through the filter
function, generating one bit of keystream. Then the
LFSR shifts one bit to the left, using the generating
polynomial to generate a new bit on the right. See
Figure 2.2 for a schematic representation.

We let F2 = {0,1} the field of two elements (or
the set of Booleans). The symbol⊕ denotes addition
(XOR).

Definition 2.1. The feedback functionL : F
48
2 → F2

is defined byL(x0x1 . . . x47) := x0⊕x5⊕x9⊕x10⊕
x12⊕x14⊕x15⊕x17⊕x19⊕x24⊕x25⊕x27⊕x29⊕
x35 ⊕ x39 ⊕ x41 ⊕ x42 ⊕ x43.

The specifics of the filter function are taken
from [GKM+08].

Definition 2.2. The filter functionf : F
48
2 → F2 is

defined by

f(x0x1 . . . x47) := fc(fa(x9, x11, x13, x15),

fb(x17, x19, x21, x23), fb(x25, x27, x29, x31),

fa(x33, x35, x37, x39), fb(x41, x43, x45, x47)).

Here fa, fb : F
4
2 → F2 and fc : F

5
2 → F2 are defined

by fa(y0, y1, y2, y3) := ((y0 ∨ y1)⊕ (y0 ∧ y3))⊕ (y2 ∧
((y0 ⊕ y1) ∨ y3)), fb(y0, y1, y2, y3) := ((y0 ∧ y1) ∨
y2)⊕((y0⊕y1)∧(y2∨y3)), andfc(y0, y1, y2, y3, y4) :=
(y0∨((y1∨y4)∧(y3⊕y4)))⊕((y0⊕(y1∧y3))∧((y2⊕
y3)∨(y1∧y4))). Becausef(x0x1 . . . x47) only depends
onx9, x11, . . . , x47, we shall overload notation and see
f as a functionF20

2 → F2, writing f(x0x1 . . . x47) as
f(x9, x11, . . . , x47).

Note thatfa andfb here are negated when compared
to [GKM+08] and fc is changed accordingly. The
expressions forfa, fb, andfc given here have the min-
imal number of logical operators in{∧,∨,⊕,¬}; in
practice, this allows for a fast bitsliced implementation
of f [Bih97].

For future reference, note that each of the building
blocks off (and hencef itself) have the property that

it gives zero for half of the possible inputs (respectively
one).

Theorem 2.3. Let Y0, Y1, . . . , Y4 be independent uni-
formly distributed variables overF2. Then

P [fa(Y0, Y1, Y2, Y3) = 0] = 1/2

P [fb(Y0, Y1, Y2, Y3) = 0] = 1/2

P [fc(Y0, Y1, Y2, Y3, Y4) = 0] = 1/2.

Proof. By inspection.

2.4. Tag nonces

For use in the authentication protocol, described
in Section 2.5 below, Mifare Classic tags possess a
pseudo-random generator. In [NP07] it was revealed
that the32-bit tag nonces are generated by a16-bit
LFSR with generating polynomialx16 + x14 + x13 +
x11 + 1. Every clock tick the LFSR shifts to the left
and the feedback bit is computed usingL16.

Definition 2.4. The feedback functionL16 : F
16
2 → F2

of the pseudo-random generator is defined by

L16(x0x1 . . . x15) := x0 ⊕ x2 ⊕ x3 ⊕ x5.

Let us define the functionsuc that computes the next
32-bit LFSR sequence of the16-bit LFSR. This func-
tion is used later on in Section 2.5 in the authentication
protocol.

Definition 2.5. The successor functionsuc: F
32
2 →

F
32
2 is defined by

suc(x0x1 . . . x31) := x1x2 . . . x31L16(x16x17 . . . x31) .

Because the period of the pseudo-random generator
is only 65535 and because it shifts every9.44µs, it
cycles in618ms.

Under similar physical conditions (i.e., do not move
the tag or the reader), the challenge nonce that the tag
generates only depends on the time between the mo-
ment the reader switches on the electromagnetic field
and the moment it sends the authentication request. In
practice, this means that an attacker who has physical
control of the tag, can get the tag to send the same
nonce every time. To do so, the attacker just has to
drop the field (for approximately30µs) to discharge all
capacitors in the tag, switch the field back on, and wait
for a constant amount of time before authenticating.

Alternatively, by waiting exactly the right amount
of time before authenticating again, the attacker can
control the challenge nonce that the tag will send. This
works whenever the tag does not leave the electromag-
netic field in the mean time. On average, this takes
618ms/2 = 309ms.
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Figure 2.2. Structure of the CRYPTO1 stream cipher

2.5. Authentication protocol and initialization

The authentication protocol was reverse engineered
in [GKM+08]. During the anti-collision phase, the tag
sends its uidu to the reader. The reader then asks
to authenticate for a specific sector. The tag sends
a challengenT . From this point on, communication
is encrypted, i.e., XOR-ed with the keystream. The
reader responds with its own challengenR and the
answeraR := suc64(nT ) to the challenge of the tag;
the tag finishes with its answeraT := suc96(nT ) to
the challenge of the reader. See Figure 2.3. Note that
later on we will send messagesaR that deviate from
this protocol; this will be explained in Section 4.

u
−−−−−−−−−−−−−−−−−−−−−−−−→

nT
−−−−−−−−−−−−−−−−−−−−−−−−→

Tag {nR}{aR}
←−−−−−−−−−−−−−−−−−−−−−−−−

Reader

{aT }
−−−−−−−−−−−−−−−−−−−−−−−−→

Figure 2.3. Authentication protocol

During the authentication protocol, the internal state
of the stream cipher is initialized. It starts out as the
sector keyk, then nT ⊕ u is shifted in, thennR is
shifted in. Because communication is encrypted from
nR onwards, the encryption of the later bits ofnR

is influenced by the earlier bits ofnR. Authentication
is achieved by reaching the same internal state of the
cipher after shifting innR.

The following precisely defines the initialization of
the cipher and the generation of the LFSR-stream
a0a1 . . . and the keystreamb0b1 . . . .

Definition 2.6. Given a keyk = k0k1 . . . k47 ∈ F
48
2 ,

a tag noncenT = nT,0nT,1 . . . nT,31 ∈ F
32
2 , a

uid u = u0u1 . . . u31 ∈ F
32
2 , and a reader nonce

nR = nR,0nR,1 . . . nR,31 ∈ F
32
2 , the internal state of

the cipher at timei is αi := aiai+1 . . . ai+47 ∈ F
48
2 .

Here theai ∈ F2 are given by

ai := ki ∀i ∈ [0, 47]

a48+i := L(ai, . . . , a47+i)⊕ nT,i ⊕ ui ∀i ∈ [0, 31]

a80+i := L(a32+i, . . . , a79+i)⊕ nR,i ∀i ∈ [0, 31]

a112+i := L(a64+i, . . . , a111+i) ∀i ∈ N.

Furthermore, we define the keystream bitbi ∈ F2 at
time i by

bi := f(aia1+i . . . a47+i) ∀i ∈ N.

We denote encryptions by{−} and define
{nR,i}, {aR,i} ∈ F2 by

{nR,i} := nR,i ⊕ b32+i ∀i ∈ [0, 31]

{aR,i} := aR,i ⊕ b64+i ∀i ∈ [0, 31].

Note that theai, αi, bi, {nR,i}, and {aR,i} are
formally functions ofk, nT , u, and nR. Instead of
making this explicit by writing, e.g.,ai(k, nT , u, nR),
we just writeai wherek, nT , u, andnR are clear from
the context.

2.6. Rollback

For our attacks it is important to realize that to
recover the key, it is sufficient to learn the internal state
of the cipherαi at any pointi in time. Since an attacker
knowsu, nT , and{nR}, the LFSR can then be rolled
back to time zero. This is explained in Section 6.2 of
[GKM+08]; below we show their method translated
into our notation.

Definition 2.7. The rollback functionR : F
48
2 → F2 is

defined byR(x1x2 . . . x48) := x5 ⊕ x9 ⊕ x10 ⊕ x12 ⊕
x14⊕x15⊕x17⊕x19⊕x24⊕x25⊕x27⊕x29⊕x35⊕
x39 ⊕ x41 ⊕ x42 ⊕ x43 ⊕ x48.

If one first shifts the LFSR left usingL to generate
a new bit on the right, thenR recovers the bit that
dropped out on the left, i.e.,

R(x1x2 . . . x47 L(x0x1 . . . x47)) = x0. (1)
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Theorem 2.8. In the situation from Definition 2.6, we
have

a64+i = R(a65+i . . . a112+i) ∀i ∈ N

a32+i = R(a33+i . . . a80+i)⊕ {nR,i} ⊕

f(0 a33+i . . . a79+i) ∀i ∈ [0, 31]

ai = R(a1+i . . . a48+i)⊕ nT,i ⊕ ui ∀i ∈ [0, 31].

Proof. Straightforward, using Definition 2.6 and Equa-
tion (1). For the second equation, note thatf
does not depend on its leftmost input. Therefore
f(0 a33+i . . . a79+i) = f(a32+i . . . a79+i) = b32+i and
hence{nR,i} ⊕ f(0 a33+i . . . a79+i) = nR,i.

Consequently, if an attacker somehow recovers the
internal state of the LFSRαi = aiai+1 . . . ai+47 at
some time i, then she can repeatedly apply Theo-
rem 2.8 to recoverα0 = a0a1 . . . a47, which is the
sector key.

3. Weaknesses

This section describes weaknesses in the design of
the Mifare Classic. We first treat weaknesses in the way
the Mifare Classic handles parity bits and then the ones
concerning nested authentications. These weaknesses
will be exploited in Section 4.

3.1. Parity weaknesses

The ISO standard 14443-A [ISO01] specifies that
every byte sent is followed by a parity bit. The
Mifare Classic computes parity bits over the plaintext
instead of over the ciphertext. Additionally, the bit of
keystream used to encrypt the parity bits is reused to
encrypt the next bit of plaintext.

This already breaks the confidentiality of the encryp-
tion scheme. In this paper we shall only be concerned
with the four parity bits ofnT , nR, andaR. The ISO
standard specifies odd parity, hence the “⊕1” in the
definition below.

Definition 3.1. In the situation from Definition 2.6, we
define the parity bitspj ∈ F2 by

pj := nT,8j ⊕ nT,8j+1 ⊕ · · · ⊕ nT,8j+7 ⊕ 1

pj+4 := nR,8j ⊕ nR,8j+1 ⊕ · · · ⊕ nR,8j+7 ⊕ 1

pj+8 := aR,8j ⊕ aR,8j+1 ⊕ · · · ⊕ aR,8j+7 ⊕ 1

∀j ∈ [0, 3]

and the encryptions{pj} of these by

{pj} := pj ⊕ b8+8j ∀j ∈ [0, 11].

There is a further weakness concerning the parity
bits. During the authentication protocol, when the

reader sends{nR} and{aR}, the tag checks the parity
bits before the answer of the reader. If at least one of
the eight parity bits is wrong, the tag does not respond.
If all eight parity bits are correct, but the answeraR is
wrong, the tag responds with the4-bit error code0x5
signifying failed authentication, called ‘transmission
error’ in [KHG08]. If all eight parity bits are correct
and the answeraR is also correct, the tag responds,
of course, with its answeraT . Furthermore, in case
the reader sends the correct parity, but the wrong
answer, the4-bit error code0x5 is sent encrypted. This
happens even though the reader has not authenticated
itself and hence cannot be assumed to be able to
decrypt.

Figure 3.1 shows an authentication trace where the
attacker sends incorrect authentication data but correct
parity bits. The exclamation marks represent parity bits
that deviate from what is specified in the standard.
The final message of this trace is the encrypted error
message0x5.

3.2. Nested authentications

Once an attacker knows a single sector key of a
Mifare Classic, there is a vulnerability that allows
an adversary to recover more keys. When a reader
is already communicating (encrypted) with a tag, a
subsequent authentication command for a new sector
also has to be sent encrypted. After this authentication
command, the internal state of the cipher is set to the
key for the new sector and the authentication protocol
from Section 2.5 starts again. This time, however, the
challenge of the tag is also sent encrypted. Because
there are only216 possible nonces, an attacker can
simply try to guess a nonce to recover32 bits of
keystream.

Also here, the information that leaks through the
parity bits can be used to speed up the attack. Although
there are216 tag nonces, we show below that the parity
bits sent with the encrypted tag nonce leak three bits
of information, so that there are only213 tag nonces
possible.

Definition 3.2. In the situation from Definition 2.6, we
define{nT,i} ∈ F2 by

{nT,i} := nT,i ⊕ bi ∀i ∈ [0, 31].

Theorem 3.3. For everyj ∈ {0, 1, 2} we have

nT,8j ⊕ nT,8j+1 ⊕ · · · ⊕ nT,8j+7 ⊕ nT,8j+8

= {pj} ⊕ {nT,8j+8} ⊕ 1
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Reader 26 req type A
Tag 02 00 answer req
Reader 93 20 select
Tag c1 08 41 6a e2 uid, bcc
Reader 93 70 c1 08 41 6a e2 e4 7c select(uid)
Tag 18 37 cd Mifare Classic 4k
Reader 60 00 f5 7b auth(block 0)
Tag ab cd 19 49 nT

Reader 59! d5 92 0f! 15 b9 d5! 53! {nR}{aR}
Tag a {5}

Figure 3.1. Trace of a failed authentication attempt

Proof. We compute as follows.

nT,8j ⊕ nT,8j+1 ⊕ · · · ⊕ nT,8j+7 ⊕ nT,8j+8

= pj ⊕ 1⊕ nT,8j+8 (by Dfn. 3.1)

= pj ⊕ b8+8j ⊕ nT,8j+8 ⊕ b8+8j ⊕ 1

= {pj} ⊕ {nT,8j+8} ⊕ 1 (by Dfns. 3.1 and 3.2)

Since the attacker can observe{pj} and{nT,8j+8},
this theorem gives an attacker three bits of information
aboutnT .

In practice, timing information between the first and
second authentication attempt leaks so much additional
information that the attacker can accurately predict
what the challenge nonce will be.

It turns out that the distance between the tag nonces
used in consecutive authentication attempts strongly
depends on the time between those attempts. Here
distance is defined as follows.

Definition 3.4. Let nT andn′

T be two tag nonces. We
define the distance betweennT andn′

T as

d(nT , n
′

T ) := min
i∈N

suci(nT ) = n′

T .

4. Attacks

This section shows how the weaknesses described
in the previous section can be exploited.

4.1. Brute-force attack

The attacker plays the role of a reader and tries to
authenticate for a sector of her choice. She answers
the challenge of the tag with eight random bytes (and
eight random parity bits) for{nR} and {aR}. With
probability 1/256, the parity bits are correct and the
tag responds with the encrypted4-bit error code. A
success leaks12 bits of entropy (out of48).

Repeating the above procedure sufficiently many
times (in practice six is enough) uniquely determines
the key. Since the key length is only48 bits, the
attacker can now brute force the key: she can just
check which of the248 keys produces all six times the
correct parity bits and received response. In practice,
gathering those six authentication sessions with correct
parity bits only takes on average6 · 256 = 1536
authentication attempts which can be done in less than
one second. The time it takes to perform the offline
brute-force attack of course is strongly dependent on
the resources the attacker has at her disposal. We
give an estimate based on the performance of COPA-
COBANA [KPP+06]; this is a code-cracker built from
off-the-shelf hardware costing approximately10000
USD. Based on the fact that COPACOBANA finds a
56-bit DES key in on average6.4 days, pessimisti-
cally assuming that one can fit the same number of
CRYPTO1 checks on an FPGA as DES-decryptions,
and realizing that the search space is a factor of
256 smaller, we estimate that this takes on average
6.4 days/256 = 36 min.

In Sections 4.2 and 4.3 the same idea is exploited
in a different way, trading online communication for
computation time.

4.2. Varying the reader nonce

This section shows how an attacker can mount a
chosen ciphertext attack by adaptively varying the
encryption ofnR. We assume that the attacker can
control the power up timing of the tag, thereby causing
the tag to produce the samenT every time.

We first give the idea of the attack. The attacker runs
authentication sessions until she guesses the correct
parity bits. The internal state of the stream cipher just
after feeding innR is α64. She then runs another
authentication session, keeping the first31 bits of{nR}
(and the three parity bits) the same, flipping the last
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bit of {nR} (and randomly picking the rest until the
parity is ok). Now the state of the stream cipher just
after feeding in the reader nonce isα64 ⊕ 1, i.e.,α64

with the last bit flipped. Since the parity of the last
byte ofnR changed (since the attacker flipped just the
last bit), and since its parity in the first run is encrypted
with f(α64) and in the second run withf(α64⊕1), she
can deduce whether or not the last bit ofnR influences
the encryption of the next bit, i.e., whether or not
f(α64) = f(α64 ⊕ 1). Approx. 9.4% of the possible
α64’s hasf(α64) 6= f(α64)⊕ 1 and they can easily be
generated since only the twenty bits that are input tof
are relevant. By repeating this, the attacker eventually
(on average after10.6 tries) finds an instance in which
α64 is in those9.4% and then she only has to search,
offline, 9.4% of all possible states.

We now make this idea precise and at the same time
generalize it to the last bit of each of the four bytes in
the reader nonce. The following definition says that a
reader nonce has propertyFj (for j ∈ {0, 1, 2, 3}) if
flipping the last bit of the(j + 1)th byte of the reader
nonce changes the encryption of the next bit.

Definition 4.1. Let j ∈ {0, 1, 2, 3} and let nR and
n′

R be reader nonces with the property thatn′

R,8j+7 =
nR,8j+7 andn′

R,i = nR,i for all i < 8j + 7 (and no
restrictions onnR,i andn′

R,i for i > 8j + 7). We say
that nR has propertyFj if b8j+40 6= b′8j+40.

Formally this is not just a property ofnR, but also
of k, nT , andu. Now k andu of course do not vary,
so we ignore that here. Furthermore, when deciding
whether or notnR has propertyFj in Protocol 4.2
below, the attacker also keepsnT constant.

The attacker does change the reader nonce. We use
a′i to refer to the bits of the LFSR-stream where the
reader noncen′

R is used and similarly forα′

i, b
′

i, etc.
I.e., a′i denotesai(k, nT , n

′

R).
Note that α8j+40 (resp. α′

8j+40) is the internal
state of the cipher just after feeding in(j + 1)th
byte of nR (resp. n′

R) and b8j+40 = f(α8j+40)
(resp.b′8j+40 = f(α′

8j+40), so thatFj does not depend
on nR,i and n′

R,i for i > 8j + 7. Also observe that
α′

8j+40 = a8j+40 . . . a8j+86a
′

8j+87, i.e., α8j+40 and
α′

8j+40 only differ in the last position.

The crucial idea is that an attacker can decide
whether or notnR has propertyFj , only knowing
{nR}. (In practice, the attacker of coursechooses
{nR}.)

Protocol 4.2. Given {nR}, an attacker can decide
as follows whether or notnR has propertyFj . She
first chooses{aR} arbitrary. She then starts, consec-
utively, several authentication sessions with the tag.

After the tags sends its challengenT , the attacker
answers{nR}, {aR}. Inside this answer, the attacker
also has to send the (encryptions of) the parity bits:
{p4}, . . . , {p11}. For these, she tries all256 possibili-
ties. After on average128 authentication sessions, and
after at most256, with different choices for the{pi},
the parity bits are correct and the attacker recognizes
this because the tag responds with an error code.

Now the attacker defines{n′

R,8j+7} := {nR,8j+7},
i.e., she changes the last bit of thejth byte of{nR}.
The earlier bits of{n′

R} she chooses the same as
those of {nR}; the later bits of {n′

R} and {a′R}
the attacker chooses arbitrarily. Again, the attacker
repeatedly tries to authenticate to find the correct parity
bits {p′i} to send. Note that necessarily{p′i} = {pi}
for i ∈ {4, . . . , j + 3}, so this takes on average27−j

authentication attempts and at most28−j.
Now nR has propertyFj if and only if {pj+4} 6=

{p′j+4}.

Proof. Because the attacker modified the cipher-
text of the last bit of thejth byte of nR, the
last bit of the plaintext of this byte also changes:
n′

R,8j+7 = {n′

R,8j+7} ⊕ b′8j+39 = {n′

R,8j+7} ⊕

b′8j+39 = {nR,8j+7} ⊕ b8j+39 = nR,8j+7 ⊕ b8j+39 ⊕
b8j+39 = nR,8j+7. Hence, the parity of this byte
changes:p′j+4 = n′

R,8j⊕· · ·⊕n
′

R,8j+6⊕n
′

R,8j+7⊕1 =
nR,8j ⊕ . . . nR,8j+6 ⊕ nR,8j+7 ⊕ 1 = pj+4.

Now {pj+4} ⊕ {p
′

j+4} = pj+4 ⊕ b8j+40 ⊕ p
′

j+4 ⊕
b′8j+40 = pj+4 ⊕ b8j+40 ⊕ pj+4 ⊕ b

′

8j+40 = b8j+40 ⊕
b′8j+40. Hence {pj+4} = {p′j+4} if and only if
b8j+40 = b′8j+40, i.e., {pj+4} 6= {p

′

j+4} if and only
if nR has propertyFj .

The theorem below shows that the probability that
nR has the propertyFj is approximately9.4%.

Lemma 4.3. Let Y0, . . . , Y4 be independent uniformly
distributed random variables overF2. Then

P [fb(Y0, Y1, Y2, Y3) 6= fb(Y0, Y1, Y2, Y3)] = 1
4

P [fc(Y0, Y1, Y2, Y3, Y4) 6= fc(Y0, Y1, Y2, Y3, Y4)] = 3
8 .

Proof. By inspection.

Theorem 4.4. Let Y0, Y1, . . . , Y18, Y19 be independent
uniformly distributed random variables overF2. Then

P [f(Y0, . . . , Y18, Y19) 6= f(Y0, . . . , Y18, Y19)] = 3
32 .

Proof. Write Z0 := fa(Y0, . . . , Y3), Z1 :=
fb(Y4, . . . , Y7), Z2 := fb(Y8, . . . , Y11), Z3 :=
fa(Y12, . . . , Y15), and Z4 := fb(Y16, . . . , Y19). Fur-
thermore, writeZ ′

4 := fb(Y16, . . . , Y18, Y19). Note
thatZ0, . . . , Z4 are independent and, by Theorem 2.3,
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uniformly distributed overF2. Then

P [f(Y0, Y1, . . . , Y18, Y19) 6= f(Y0, Y1, . . . , Y18, Y19)]

= P [fc(Z0, . . . , Z4) 6= fc(Z0, . . . , Z3, Z
′

4)]

= P [fc(Z0, . . . , Z4) 6= fc(Z0, . . . , Z
′

4)|Z4 6= Z ′

4]

· P [Z4 6= Z ′

4]

= P [fc(Z0, . . . , Z3, 0) 6= fc(Z0, . . . , Z3, 1)]

· P [fa(Y16, . . . , Y18, 0) 6= fa(Y16, . . . , Y18, 1)]

= 3
8 ·

1
4 (by Lemma 4.3)

= 3
32 .

Alternatively, one can also obtain this result by simply
checking all220 possibilities.

We now describe how an attacker can find an{nR}
such thatnR has all four propertiesFj . Recall that
these properties also depend onnT and it is possible
that for a fixednT nonR has all four properties. In that
case, as is explained in the protocol below, the attacker
makes the tag generate a differentnT and starts the
search again.

Protocol 4.5. An attacker can find{nR} such thatnR

has propertiesF0, F1, F2, F3 in a backtracking fashion.
She first loops over all possibilities for the first byte of
{nR} (taking the other bytes of{nR} arbitrary). Using
Protocol 4.2, the attacker decides ifnR has property
F0 (which only depends on the first byte). If it has,
she continues with the second byte of{nR}, looping
over all possibilities for the second byte of{nR} while
keeping the first byte fixed, trying to find{nR} such
that nR also has propertyF1. She repeats this for the
third and fourth byte of{nR}. If at some stage no
possible byte has propertyFj , the search backtracks to
the previous stage. It fails at the first stage, the attacker
has to try a different tag nonce.

By simulating this protocol (for a random key and
random uid, and a random tag nonce in every outer
loop of the search), we can estimate the number of
authentication attempts needed to find a reader nonce
having all four propertiesFj .

Observation 4.6. The expected number of authentica-
tion attempts needed to find annR which has all four
propertiesFj is approximately28500.

Once the attacker has found annR having all four
propertiesFj , the number of possibilities for the inter-
nal state of the cipher after feeding in this particular
nR is seriously restricted. The following theorem states
how many possibilities there still are.

Theorem 4.7. Suppose thatnR has propertiesF0,
F1, F2, andF3. Then there are only436 possibilities

0x000041414110 0x000041414140 0x000141414110 0x000141414140 0x000441414110
0x000441414140 0x001441414110 0x001441414140 0x001541414110 0x001541414140
0x004141414110 0x004141414140 0x004441414110 0x004441414140 0x005141414110
0x005141414140 0x010041414110 0x010041414140 0x010141414110 0x010141414140
0x010441414110 0x010441414140 0x011441414110 0x011441414140 0x011541414110
0x011541414140 0x014141414110 0x014141414140 0x014441414110 0x014441414140
0x015141414110 0x015141414140 0x040010414110 0x040010414140 0x040011414110
0x040011414140 0x040040414110 0x040040414140 0x040041414110 0x040041414140
0x040110414110 0x040110414140 0x040111414110 0x040111414140 0x040140414110
0x040140414140 0x040141414110 0x040141414140 0x040441414110 0x040441414140
0x041410414110 0x041410414140 0x041411414110 0x041411414140 0x041440414110
0x041440414140 0x041441414110 0x041441414140 0x041510414110 0x041510414140
0x041511414110 0x041511414140 0x041540414110 0x041540414140 0x041541414110
0x041541414140 0x044141414110 0x044141414140 0x044410414110 0x044410414140
0x044411414110 0x044411414140 0x044440414110 0x044440414140 0x044441414110
0x044441414140 0x045141414110 0x045141414140 0x140041414110 0x140041414140
0x140141414110 0x140141414140 0x140441414110 0x140441414140 0x141441414110
0x141441414140 0x141541414110 0x141541414140 0x144141414110 0x144141414140
0x144441414110 0x144441414140 0x145141414110 0x145141414140 0x150041414110
0x150041414140 0x150141414110 0x150141414140 0x150441414110 0x150441414140
0x151441414110 0x151441414140 0x151541414110 0x151541414140 0x154141414110
0x154141414140 0x154441414110 0x154441414140 0x155141414110 0x155141414140
0x410010414110 0x410010414140 0x410011414110 0x410011414140 0x410040414110
0x410040414140 0x410041414110 0x410041414140 0x410110414110 0x410110414140
0x410111414110 0x410111414140 0x410140414110 0x410140414140 0x410141414110
0x410141414140 0x410441414110 0x410441414140 0x411410414110 0x411410414140
0x411411414110 0x411411414140 0x411440414110 0x411440414140 0x411441414110
0x411441414140 0x411510414110 0x411510414140 0x411511414110 0x411511414140
0x411540414110 0x411540414140 0x411541414110 0x411541414140 0x414141414110
0x414141414140 0x414410414110 0x414410414140 0x414411414110 0x414411414140
0x414440414110 0x414440414140 0x414441414110 0x414441414140 0x415141414110
0x415141414140 0x440041414110 0x440041414140 0x440141414110 0x440141414140
0x440441414110 0x440441414140 0x441441414110 0x441441414140 0x441541414110
0x441541414140 0x444141414110 0x444141414140 0x444441414110 0x444441414140
0x445141414110 0x445141414140 0x510010414110 0x510010414140 0x510011414110
0x510011414140 0x510040414110 0x510040414140 0x510041414110 0x510041414140
0x510110414110 0x510110414140 0x510111414110 0x510111414140 0x510140414110
0x510140414140 0x510141414110 0x510141414140 0x510441414110 0x510441414140
0x511410414110 0x511410414140 0x511411414110 0x511411414140 0x511440414110
0x511440414140 0x511441414110 0x511441414140 0x511510414110 0x511510414140
0x511511414110 0x511511414140 0x511540414110 0x511540414140 0x511541414110
0x511541414140 0x514141414110 0x514141414140 0x514410414110 0x514410414140
0x514411414110 0x514411414140 0x514440414110 0x514440414140 0x514441414110
0x514441414140 0x515141414110 0x515141414140

Table 4.1. Odd bits of α64 ending in 0 when nR

has all properties Fj

for the odd-numbered bits ofα64. Table 4.1 lists (in
hexadecimal, with zeros on the places of the even-
numbered bits) the218 of those possibilities that have
the last bita111 equal to0; the other218 are the same
except that they havea111 equal to1.

Proof. By explicit computation. For each of the
224 elements y0y1 . . . y23 of F

24
2 , one checks

if f(y4, y5, . . . , y23) 6= f(y4, y5, . . . , y23),
f(y0, y1, . . . , y19) 6= f(y0, y1, . . . , y19), and
there exist y−8, y−7, . . . , y−1 ∈ F2 such that
f(y−4, y−3, . . . , y15) 6= f(y−4, f−3, . . . , y15) and
f(y−8, y−7, . . . , y11) 6= f(y−8, f−7, . . . , y11).

Consequently, when the attacker has found a reader
noncenR that has propertiesF0, F1, F2, andF3, there
are only436·224 ≈ 232.8 ≈ 7.3·109 possibilities for the
internal stateα64 of the cipher just after shifting in the
reader nonce. Using Theorem 2.8, these can be used
to compute7.3 · 109 candidate keys. The attacker can
then check these candidate keys by trying to decrypt
the received4-bit error messages.

4.3. Varying the tag nonce

In the previous approach, the attacker keptnT

constant and tried to find a special{nR} such that
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0x0000004d4d1f 0x0000012d7b8b 0x000001513ca3 0x0000049e0e78 0x000004cafec1
0x000006f945be 0x000007089ea5 0x0000072b67df 0x000008e79d8e 0x00000a137cd9
0x00000aed7467 0x00000b92342b 0x00000c6db6a0 0x00000cbd2daa 0x00000cda7817
0x00000d0cbd27 0x00000e98af03 0x00001089393d 0x0000129d78db 0x000012f4cde6
0x000015382c19 0x000016a7a95c 0x0000172bebc6 0x0000173f2299 0x00001821aa0a
0x000018769666 0x00001a6d513e 0x00001b1c2ff7 0x00001c259261 0x00001c46edf7
0x00001c5a3fde 0x00001c97ee44 0x00001f19da5e 0x00001fef9ec2 0x000022ce6797
0x000023a396ce 0x000023a92baa 0x000026bc6e18 0x0000278a7954 ...

Table 4.2. Excerpt from table T0xa04 of internal
cipher states α32 at index 0xa04

she gained knowledge about the internal cipher state.
Now the attacker does the opposite: she keeps{nR}
(and {aR} and the{pi} as well) constant, but varies
nT instead. As before, the attacker waits for the tag
to respond; when this happens, she gains knowledge
about the internal state of the cipher.

Protocol 4.8. The attacker repeatedly tries to authen-
ticate to the tag, every time with a different tag nonce
nT and sending all zeros as its response (including
the encrypted parity bits), i.e.,{nR} = 0, {aR} = 0,
{p4} = · · · = {p11} = 0. She waits for annT such
that the tag actually responds (i.e., the parity bits are
the correct parity bits) and where the encrypted error
code is0x5 (i.e., b96 = b97 = b98 = b99 = 0).

Note that twelve bits have to be ‘correct’ (the eight
parity bits and the four keystream bits), so this will
take on average212 = 4096 authentication attempts.

The following defines a large table that needs to be
precomputed.

Definition 4.9.

T := {α32 ∈ F
48
2 | {nR} = {aR} = 0 ⇒

{p4} = · · · = {p11} = b96 = · · · = b99 = 0}.

So the attacker knows that after the tag sends the
challengenT found in Protocol 4.8, the current state of
the cipher,α32, appears inT . Now T can be precom-
puted; one would expect it to contain248/212 = 236

elements; in fact, it contains0.82% fewer elements
due to a small bias in the cipher. In principle, the
attacker could now use Theorem 2.8 to roll back each
of the LFSRs in the table to find candidate keys and
check each of these keys against a few other attempted
authentication sessions.

In practice, searching throughT takes about one
day, which is undesirable. The attacker can shrink the
search space by splittingT as follows.

Protocol 4.10. After finding nT in Protocol 4.8, the
attacker again repeatedly tries to authenticate to the
tag, every time with the tag noncenT she just found.
Instead of zeros, she now sends ones for the response
and this time she tries all possibilities for the encrypted

parity bits until the tag responds with an encrypted
error code. I.e.,{nR} = 0xffffffff and {aR} =
0xffffffff and successively tries all possibilities
for {p4}, . . . , {p11} until one is correct.

This time, because eight bits have to be ‘correct’,
on average128 authentication attempts are needed.

The tableT can be split in212 = 4096 parts indexed
by the eight encrypted parity bits and four keystream
bits that encrypt the error code.

Definition 4.11. For everyγ = γ0 . . . γ11 ∈ F
12
2 we

define

Tγ := {α32 ∈ T | {nR} = {aR} = 0xffffffff ⇒

{p4} = γ0 ∧ · · · ∧ {p11} = γ7 ∧

b96 = γ8 ∧ · · · ∧ b99 = γ11}.

So instead of storingT as one big table, during
precomputation the attacker creates the4096 tables
Tγ . Takingγ := {p4} . . . {p11}b96 . . . b99 at the end of
Protocol 4.10, the attacker knows thatα32 must be an
element ofTγ . Now Tγ contains only approximately
224 entries, so this can easily be read from disk to
generate224 candidate keys and check them against
a few other authentication sessions. Table 4.2 shows,
as an example, the first part ofTγ for γ = 0xa04 =
1010 0000 0100.

4.4. Nested authentication attack

We now assume that the attacker already knows at
least one sector key; let us call this sector the exploit
sector.

The time between two consecutive authentication
attempts might vary from card to card, although it is
quite constant for a specific card. Therefore, an attacker
can first estimate this time by authenticating two times
for the exploit sector. In this way the attacker can
estimate the distanceδ between the first and the second
tag nonce.

As explained in Section 3.2, the attacker can now
authenticate for the exploit sector and subsequently
for another sector. In the authentication for the exploit
sector the tag noncen0

T is sent in the clear; during
the second authentication the tag noncenT is sent
encrypted as{nT }. By computingsuci(n0

T ) for i close
to δ, the adversary has a small number of guesses for
nT . The adversary can further narrow the possibilities
for nT using the three bits of information from the
parity bits (Theorem 3.3). In this way the adversary
can accurately guessnT and hence recover the first32
bits of keystream,b0b1 . . . b31.

We shall show how a variant of the attack of
Section 6.3 of [GKM+08] can be used to recover
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approximately216 possible candidate keys. By doing
this procedure two or three times, the attacker can
recover the key for the second sector as well by taking
the intersection of the two or three sets of candidate
keys.

The crucial ingredient in the attack is the fact that the
inputs to the filter function are only on odd-numbered
places of the LFSR. This makes it possible to compute
separately all possibilities for the odd-numbered bits
of the LFSR-stream and the even-numbered bits of the
LFSR-stream that are compatible with the keystream.

Definition 4.12. We define the odd tablesTO
i by

TO
0 := {x9x11 . . . x45x47 ∈ F

20
2 |

f(x9x11 . . . x45x47) = b0}

and for i ∈ {1, . . . , 15}

TO
i := {x9x11 . . . x45+2ix47+2i ∈ F

20+i
2 |

x9x11 . . . x45+2i ∈ T
O
i−1 ∧

f(x9+2ix11+2i . . . x45+2ix47+2i) = b2i}.

Symmetrically, we define the even tablesTE
i by

TE
0 := {x10x12 . . . x46x48 ∈ F

20
2 |

f(x10x12 . . . x46x48) = b1}

and for i ∈ {1, . . . , 15}

TE
i := {x10x12 . . . x46+2ix48+2i ∈ F

20+i
2 |

x10x12 . . . x46+2i ∈ T
E
i−1 ∧

f(x10+2ix12+2i . . . x46+2ix48+2i) = b2i+1}.

We writeTO := TO
15 andTE := TE

15.

Because of the structure of the filter functionf , TO
0

and TE
0 are exactly of size219 (Theorem 2.3). The

other tables are approximately of this size as well. An
entry x9x11 . . . x45+2i of TO

i−1 leads to four different
possibilities inTO

i : it can appear inTO
i extended with

0 and with1; it can appear extended only with0; it
can appear extended only with1; or it can not appear
at all. Overall, these possibilities are equally likely, and
henceTO

i has, on average, the same size asTO
i−1 (and

similarly for TE).
The feedback functionL can also be split in an even

and an odd part.

Definition 4.13. We define the odd part of
the feedback function,LO : F

24
2 → F2, by

LO(x1x3 . . . x47) := x5 ⊕ x9 ⊕ x15 ⊕ x17 ⊕ x19 ⊕
x25 ⊕ x27 ⊕ x29 ⊕ x35 ⊕ x39 ⊕ x41 ⊕ x43 and the
even part of the feedback function,LE : F

24
2 → F2, by

LE(x0x2 . . . x46) := x0⊕x10⊕x12⊕x14⊕x24⊕x42.

Note thatLE and LO combine to giveL, in the
sense that

L(x0x1x2 . . . x47) = LE(x0x2 . . . x46)

⊕ LO(x1x2 . . . x47).
(2)

As the a9a10 . . . a77a78 are being shifted through
the LFSR, the uidu and the tag noncenT are shifted
in as well. In the following definition we compute the
22 bits of feedback from the LFSR from time9 to
time 31, taking care of the shifting in ofu⊕ nT , and
also splitting the contribution from the odd- and even-
numbered bits of the LFSR. At this point, the situation
in [GKM+08] is slightly simpler. There, the attacker
tries to find the state of the LFSR after initialization,
so nothing is being shifted in.

Definition 4.14. We define the contribution of the en-
tries of the odd table to the feedback,ψO : TO → F

22
2 ,

by

ψO(x9x11 . . . x77) :=

(LE(x9+2ix11+2i . . . x55+2i)⊕ nT,9+2i ⊕ u9+2i,

LO(x11+2ix13+2i . . . x57+2i)⊕ nT,10+2i

⊕ u10+2i)i∈[0,10]

and we define the contribution of the entries of the
even table to the feedback,ψE : TE → F

22
2 , by

ψE(x10x12 . . . x78) :=

(LO(x10+2ix12+2i . . . x56+2i)⊕ x57+2i,

LE(x10+2ix12+2i . . . x56+2i)⊕ x58+2i)i∈[0,10].

Definition 4.15. We define the combined tableTC as
follows.

TC := {x9x10x11 . . . x78 ∈ F
70
2 |

x9x11 . . . x77 ∈ T
O ∧ x10x12 . . . x78 ∈ T

E

∧ ψO(x9x11 . . . x77) = ψE(x10x12 . . . x78)}.

Note thatTC can easily be computed by first sorting
TO by ψO andTE by ψE .

The crucial point is the following theorem; it shows
that the actual LFSR-stream of the tag under attack is
in the tableTC .

Theorem 4.16.a9a10a11 . . . a78 ∈ T
C .

Proof. By definition of TO and TE, a9a11 . . . a77 ∈
TO anda10a12 . . . a78 ∈ T

E . We only have to check
that the sequencea9a10a11 . . . a78 satisfies the con-
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straint definingTC . For this, we have

ψO(a9a11 . . . a77)⊕ ψ
E(a10a12 . . . a78)

= (LE(x9+2ix11+2i . . . x55+2i)⊕ nT,9+2i ⊕ u9+2i

⊕ LO(x10+2ix12+2i . . . x56+2i)⊕ x57+2i),

LO(x11+2ix13+2i . . . x57+2i)⊕ nT,10+2i ⊕ u10+2i

⊕ LE(x10+2ix12+2i . . . x56+2i)⊕ x58+2i)i∈[0,10]

(by Dfn. 4.14)

= (L(x9+2ix10+2i . . . x56+2i)

⊕ nT,9+2i ⊕ u9+2i ⊕ x57+2i,

L(x10+2ix11+2i . . . x57+2i)

⊕ nT,10+2i ⊕ u10+2i ⊕ x58+2i)i∈[0,10]

(by Eqn. (2))

=(0,0)i∈[0,10], (by Dfn. 2.6)

as required.

Taking the first48 bits of every entry ofTC , the
attacker can apply Theorem 2.8 nine times for every
entry, obtaining one candidate key for every entry
of TC . Because we have used32 bits of keystream
and the key is48 bits, on average there will be216

candidate keys. Doing this procedure once more gives
another set of approximately216 candidate keys; the
actual key must be in the intersection. In practice, most
of the time the intersection only contains a single key;
occasionally it contains two keys and then a third run
of this whole procedure can be used to determine the
key (or both candidate keys can just be tested online,
of course).

5. Conclusions

We have found serious ‘textbook’ vulnerabilities
in the Mifare Classic tag. In particular, the Mifare
Classic mixes two layers of the protocol stack and
reuses a one-time pad for the encryption of the parity
bits. It also sends encrypted error messages before
a successful authentication. These weaknesses allow
an adversary to recover a secret key within seconds.
Moreover, tag nonces are predictable which, besides
allowing replays, provides known plaintext for our
nested authentication attack. We have executed these
attacks in practice and retrieved all secret keys from a
number of cards, including cards used in large access
control and public transport ticketing systems.

To slightly hamper an adversary, system integrators
could consider the following countermeasures:

• diversify all keys in the card;
• cryptographically bind the contents of the card to

the uid, for instance by including a MAC;

• perform regular integrity checks in the back of-
fice.

For the time being, the second countermeasure pre-
vents an attacker from cloning a card onto a blank one.
However, this does not stop an attacker from emulating
that card with an emulator like the Proxmark.

Early on we have notified the manufacturer NXP of
these vulnerabilities. Since the protocol is implemented
in hardware, we do not foresee any definitive counter-
measure to these attacks that does not require replacing
the entire infrastructure. However, NXP is currently
developing a backwards compatible successor to the
Mifare Classic, the Mifare Plus. We are collaborating
with NXP, providing feedback to help them improving
the security of their new prototypes, given the limita-
tions of the backwards compatibility mode.
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