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ABSTRACT
Traditional information retrieval research has mostly focussed
on satisfying clearly specified information needs. However,
in reality, queries are often ambiguous and/or underspeci-
fied. In light of this, evaluating search result diversity is
beginning to receive attention. We propose simple evalu-
ation metrics for diversified Web search results. Our pre-
sumptions are that one or more interpretations (or intents)
are possible for each given query, and that graded relevance
assessments are available for intent-document pairs (as op-
posed to query-document pairs). Our goals are (a) to re-
trieve documents that cover as many intents as possible;
and (b) to rank documents that are highly relevant to more
popular intents higher than those that are marginally rele-
vant to less popular intents. Unlike the Intent-Aware (IA)
metrics proposed by Agrawal et al., our metrics successfully
avoid ignoring minor intents. Unlike α-nDCG proposed by
Clarke et al., our metrics can accomodate (i) which intents
are more likely than others for a given query; and (ii) graded
relevance within each intent. Furthermore, unlike these ex-
isting metrics, our metrics do not require approximation,
and they range between 0 and 1. Experiments with the
binary-relevance Diversity Task data from the TREC 2009
Web Track suggest that our metrics corrrelate well with ex-
isting metrics but can be more intuitive. Hence, we argue
that our metrics are suitable for diversity evaluation given
either the intent likelihood information or per-intent graded
relevance, or preferably both.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Experimentation
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1. INTRODUCTION
Traditional information retrieval research has mostly fo-

cussed on satisfying clearly specified information needs. How-
ever, in reality, queries are often ambiguous and/or under-
specified [7]. When the retrieval system has no or little
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knowledge of the user, the best it can do is to produce out-
put that reflect several interpretations (or intents) of such
queries. In light of this, evaluating search result diversity is
beginning to receive attention [1, 6, 5, 11, 18, 20]. We are
particularly interested in evaluating diversified Web search
engine results, where each result is assumed to be a single
ranked list of documents. While richer forms of output such
as those involving document clustering and aggregating re-
sults from different media and information sources are pos-
sible today, a flat ranked list remains a simple and effective
method for presenting retrieved material to the user.

We propose simple evaluation metrics for diversified Web
search results. Our presumptions are that one or more inter-
pretations (or intents) are possible for each given query, and
that graded relevance assessments are available for intent-
document pairs (as opposed to query-document pairs). Our
goals are (a) to retrieve documents that cover as many in-
tents as possible; and (b) to rank documents that are highly
relevant to more popular intents higher than those that are
marginally relevant to less popular intents. Our approach is
to evaluate Properties (a) and (b) separately first, and then
combine the outcome.

Unlike the Intent-Aware (IA) metrics proposed by Agrawal
et al. [1] our metrics successfully avoid ignoring minor in-
tents. Unlike α-nDCG proposed by Clarke et al. [6], our
metrics can accomodate (i) which intents are more likely
than others for a given query; and (ii) graded relevance
within each intent. Furthermore, unlike these existing met-
rics, our metrics do not require approximation, and are guar-
anteed to range between 0 and 1 and are therefore suit-
able for comparison and averaging across topics. Experi-
ments with the binary-relevance Diversity Task data from
the TREC 2009 Web Track suggest that our metrics cor-
rrelate well with existing metrics but can be more intuitive.
Hence, we argue that our metrics are suitable for diversity
evaluation given either the intent likelihood information or
per-intent graded relevance, or preferably both. We expect
that these two types of information will become available
with diversity test collections in the very near future be-
cause (1) methods exist to estimate the likelihood of each
intent [1, 19]; and (2) search engine companies already use
graded relevance for evaluation, and it is natural for them
to adopt graded relevance also for multiple-intent queries.

The remainder of this paper is organised as follows. Sec-
tion 2 describes previous work related to the present study,
with a focus on evaluation metrics. Section 3 proposes new
metrics for evaluating diversified search results, and clarifies
their advantages over exising metrics. Section 4 describes an
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experiment using the Diversity Task runs from the TREC
2009 Web Track to support our claims. Section 5 concludes
this paper.

2. RELATED WORK

2.1 S-recall
Zhai, Cohen and Lafferty [22] proposed a simple metric

called S-recall (subtopic recall) for evaluating subtopic re-
trieval. Suppose that a topic consists of n subtopics, and
that a document can either be relevant or nonrelevant to
each subtopic. Let dr denote the document at rank r, and
let I(dr) denote the set of subtopics to which dr is rele-
vant. Then, S-recall at document cutoff l is defined as
|⋃l

r=1 I(dr)|/n, i.e. the proportion of subtopics that are
covered by the top l documents. When used on its own,
it is a rather crude metric, since it disregards the positions
of relevant documents within top l and does not accomo-
date graded relevance. The only difference between S-recall
and instance recall used earlier at the TREC interactive
track [10] appears to be that the former is used in ranked
retrieval while the latter was used in set retrieval.

Based on S-recall, Zhai, Cohen and Jafferty further de-
fined S-precision andWS-precision at a given S-recall level [22].
Both of them involve computation of an NP-hard problem,
and therefore approximation is required.

Carterette and Chandar [2] used S-recall for a task simi-
lar to subtopic retrieval, which they called faceted topic re-
trieval. They argued that for their task, S-recall at lmin,
where lmin is the minimum rank at which perfect S-recall
can be achieved, is the most natural evaluation measure.
However, they also point out that finding lmin is NP-hard.

Our proposed metrics for evaluating diversified results use
S-recall as one of its components. However, our methods do
not involve NP-hard problems.

2.2 Intent-Aware Metrics
Agrawal et al. [1] proposed a family of Intent-Aware (IA)

metrics, and primarily examined nDCG-IA. Let i be an in-
tent (called “category” in [1]) and suppose that for each
query q, the probabilities of different intents P (i|q) are given.
Then nDCG-IA for q at cutoff l is given by

nDCG-IA@l =
∑

i

P (i|q) nDCGi@l (1)

where nDCGi@l is the “standard” version of nDCG at l1

computed by assuming that the sole intent of query q is i.
That is, for each intent i, we separately imagine an ideal
ranked output, which lists up documents that are relevant
to intent i in decreasing order of relevance, and compare the
system output against the i-th ideal ranked output.

The IA metrics assume that every user has a single intent
(i.e. category), and aim to satisfy the “average” user. Sup-
pose that a query has two intents i1 and i2 with P (i1|q) =
0.9 and P (i2|q) = 0.1. Then, whether a document relevant
to intent i2 is retrieved or not has very little impact on the
overall nDCG-IA value. Hence, a Web search engine tuned
with nDCG-IA may fail to include a document relevant to i2
(say) on the first page. In other words, the IA metrics tend

1For every rank r, the gain at rank r is discounted by divid-
ing it by log(r + 1). Note that this differs from the original
discounting method that used logb(r) with log base b [8].

to ignore long tail users. In contrast, although our proposed
metrics also utilise P (i|q), they pay attention even to minor
intents, as we shall demonstrate in Section 4 with TREC
Diversity Task runs.

Another problem with nDCG-IA is that its value is always
less than one (unless a single ranked list is ideal for all intents
– which is highly unlikely). Hence, comparing and averaging
IA metric values across topics are not recommended.

The Diversity Task of the TREC 2009 Web Track used
the IA version of precision (precision-IA) as a secondary
metric. In addition to the general problems of IA metrics
discussed above, precision-IA has a few more weaknesses:
(i) its per-intent precision itself is undernormalised, when
the document cutoff (e.g. l = 10) is larger than the number
of relevant documents for the intent2; (ii) it disregards the
positions of relevant documents. Hence we prefer to use
nDCG-IA as one of our “baselines.”

2.3 α-nDCG
Clarke et al. [6] proposed α-nDCG to evaluate diversity

and novelty in search results. They view information needs
and documents as sets of nuggets, based on the ideas from
question answering and summarisation evaluation. For ex-
ample, suppose a query has two intents (or “information
needs”) i1 and i2. Then they represent them in the form
i1, i2 ⊆ {n1, . . . , nm} where nk represents a nugget and m
is the total number of nuggets involved for this particular
topic. For example, it may be that m = 4, i1 = {n1} and
i2 = {n2, n3, n4}. We shall come back to this example later.

Let Ji(k) be a flag indicating whether the document at
rank k is relevant to intent i or not, and let Ci(r) =

∑r
k=1 Ji(k),

i.e. the number of relevant documents found within top r
for intent i. Moreover, for convenience let Ci(0) = 0. For
each document at rank r, Clarke et al. defined what we call
novelty-biased gain NG(r) as follows:

NG(r) =

m∑

i=1

Ji(r)(1− α)Ci(r−1) (2)

where α is a parameter, which we shall discuss later.
Clarke et al. [6] computed nDCG based on NG(r), instead

of the traditional gain that directly reflects the graded rel-
evance value of a document [8]. The resultant metric is
called α-nDCG. When α = 0, α-nDCG is reduced to stan-
dard nDCG with the number of matching nuggets as the
graded relevance value. The key feature of α-nDCG is that
it discounts the value of each retrieved relevant document for
intent i based on the number of relevant documents already
seen for the same intent.

Although α-nDCG is a theoretically-derived metric, the
theory builds on a series of assumptions. Firstly, α-nDCG
assumes that the relevance of one nugget to the user’s in-
tent is independent of other nuggets, that a nugget can ei-
ther be relevant or nonrelevant to the need, and therefore
that only the number of matching nuggets determines the
importance of an intent. Hence, unlike the IA metrics, it
does not accomodate P (i|q). Secondly, it assumes that the
relevance of one nugget to a document is independent of
other nuggets, that a nugget can either be relevant or non-

2Of the 199 intents from the TREC 2009 Web Track Diver-
sity Task data (See Table 1), as many as 95 intents have
fewer than 10 relevant documents. With l = 10, it is impos-
sible to achieve perfect precision for these intents.
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relevant to a document, and therefore that only the number
of matching nuggets determines the importance of a docu-
ment. Consider the aforementioned example with i1 and i2,
having one nugget and three nuggets, respectively. Accord-
ing to α-nDCG, a document that covers both n2 and n3 is
more important than one that covers n1, even though the
former only partially covers intent i2 while the latter com-
pletely covers i1. Moreover, consider an ambiguous query
such as “java” [20] run against a Wikipedia document col-
lection, and suppose that each of its intents (or senses) ij
corresponds to a single nugget nj . According to α-nDCG, a
single disambiguation page that lists up m different senses
of “java” retrieved at rank 1 is more valuable than a set of m
pages that actually describe each sense in detail, retrieved
at ranks 1-m. Thirdly, α-nDCG assumes that relevance as-
sessor’s positive judgments (i.e. judging that a document
contains a nugget) are erroneous with probability 1 − α,
while negative judgments (i.e. judging that a document does
not contain a nugget) are always correct (See Section 4.1
in [6]). This flat probability α is exactly the parameter used
for discounting “redundant” documents, as shown in Eq. 2.
However, we are inclined to believe that erroneous negative
judgments (i.e. missing an existing nugget in a document)
are at least as likely as erroneous positive judgments (i.e.
reporting a nonexistent nugget in a document).

The fact that α-nDCG has two distinct discount mech-
anisms also deserves discussions. α-nDCG first discounts
a relevant document based on the number of relevant doc-
uments seen so far for the same intent, using α. This is
meant to penalise redundancy (i.e. lack of novelty) in the
ranked list. The metric then discounts the same relevant
document based on the number of total documents seen so
far (i.e. the absolute document rank), using the logarith-
mic discount. It is not clear whether this explicit penalty
on redundancy through “double discount” is necessary at
least for Web search, where returning a minimal set of doc-
uments that together cover all intents is not an absolute re-
quirement: we can present (say) 10 documents regardless of
whether there are (say) two intents or five intents in a query.
Moreover, even if two retrieved documents are relevant to
the same intent, the second relevant document may still be
informative to the user, unless the two documents are (near-
) duplicates. We also point out that one of the motivations
for introducing the original logarithmic discount in nDCG
was that the user may have “cumulated information from
documents already seen” [8]. If this is the case, α-nDCG is
discounting “redundant” documents twice, in different ways.

Another potential weakness of α-nDCG is that computing
its ideal gain vector is NP-complete, and therefore an ap-
proximation is required. Hence, in theory, a system output
may outperform the approximated suboptimal ideal output.
We believe that evaluation metrics should be easy to under-
stand and easy to compute.

As α-nDCG was the primary metric used in the recent
Diversity Task of the TREC 2009 Web Track, we use it as
our primary “baseline” in our experiments.

2.4 NRBP
Very recently, Clarke, Kolla and Vechtomova [7] have pro-

posed Novelty- and Rank-Biased Precision (NRBP), by com-
bining the ideas of α-nDCG and Rank-Biased Precision (RBP) [9].

The most basic version of NRBP is defined as:

NRBP =
1− (1− α)p

m

∞∑

r=1

pr−1
m∑

i=1

Ji(r)(1− α)Ci(r) (3)

where p is the persistence parameter of RBP, i.e. the prob-
ability that the user will move from one document to the
one beneath it, irrespective of document relevance. Hence,
just like α-nDCG, NRBP has two discount mechanisms: one
from the viewpoint of redundancy based on α, and another
from the viewpoint of going down the ranks based on p.

Just like α-nDCG, NRBP relies on the novelty-biased gain
(Eq. 2), and therefore all of the above potential weaknesses
of α-nDCG also apply to NRBP. In addition, it inherits a
potential weakness of RBP: RBP is heavily undernormalised
for topics with few relevant documents and does not average
well across topics [16]3. Similarly, NRBP relies on an “ideal
ideal vector” [7], where it is assumed that there are infinite
number of highly relevant documents. This implies that the
maximum NRBP value any system can achieve for a topic
with few relevant document is well below 1. Averaging such
undernomalised values across topics can be problematic.

Clarke, Kolla and Vechtomova [7] further discuss the in-
tegration of the above form of NRBP with the IA approach
of Agrawal et al. [1]. They envision a topic with mutually
exclusive categories, and a set of subtopics for each category.
They propose to use the probabilities P (i|q) at the category
level, and use the above form of NRBP at the subtopic level.
While such an evaluation protocol is novel and interesting, it
remains to be seen whether it is feasible and to what extent
can that somewhat complex metric reflect user’s perception
of the search quality.

2.5 Other Related Metrics
Chapelle et al. [3] briefly discussed an extension of their

Expected Reciprocal Rank (ERR) metric for handling diver-
sity, following the IA approach [1]. Hence we argue that
such a metric inherits the potential disadvantages of the IA
metrics discussed in Section 2.2. As Chapelle et al. note,
ERR is a graded-relevance extension of Reciprocal Rank
(RR), and a special case of the Normalised Cumulative Util-
ity (NCU) [17], discussed below.

Sakai and Robertson [17] examined a family of metrics
called NCU, based on the probability of the user abandon-
ing a ranked list at each document rank and the utility of
the ranked list given that rank. When it is assumed that the
“stopping” probability is uniform across all relevant docu-
ments, NCU is reduced to existing simpler metrics such as
Average Precision (AP), or its graded-relevance extensionQ-
measure which we will use later to design our proposed met-
rics. In addition to this flat probability distribution, Sakai
and Robertson also examined a rank-biased probability dis-
tribution, based on the assumptions that users abandon the
ranked list at a relevant document, and that they are more
likely to abandon it near the top ranks. The rank-biased
probability distribution is defined based on the number of
relevant documents seen so far and resembles the novelty-
based discount of α-nDCG, although they did not discuss
diversity/novelty. They showed that the flat probability
distribution (i.e. emphasising long-tail users who dig deep

3For example, in a binary relevance environment with p =
0.95, the best-possible RBP for a query with 5 known rele-
vant documents is only .226 [16].
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down the ranked list) leads to more stable experimental re-
sults than the rank-biased one, even if the latter is closer to
the reality.

In his first proposal of Q-measure, the aforementioned
graded-relevance IR metric, Sakai [13] applied it to factoid
question answering evaluation, given correct answer strings
that form several equivalence classes. He proposed that,
within a system output (i.e. ranked list of answer strings),
only one answer string from each equivalance class should be
counted as relevant. This is similar to the idea behind the
parameter α of α-nDCG. However, unlike α-nDCG, Sakai’s
Q-measure with answer equivalence classes used graded rel-
evance for each answer string.

Reciprocal Rank is another metric that is somewhat re-
lated to diversity evaluation, as it does not reward retrieval
of multiple relevant documents. So are its graded-relevance
variants [15], and “1-call at l”, which requires systems to
return at least one relevant document within top l [4].

3. PROPOSED METRICS
Our goals are (a) to retrieve documents that cover as many

intents as possible; and (b) to rank documents that are
highly relevant to more popular intents higher than those
that are marginally relevant to less popular intents. In Sec-
tions 3.1 and 3.2 we propose how to evaluate Properties (a)
and (b), respectively, and in Section 3.3 we combine these
evaluation metrics.

3.1 I-recall
Our first “proposal” is to use S-recall (see Section 2.1) to

evaluate Property (a). We prefer to call it I-recall (intent
recall) because we are interested in handling queries with
multiple possible intents or interpretations. The intents may
well be subtopics of an underspecified query, or they may
correspond to different senses of an ambiguous query. Thus,
let Iq denote the complete set of intents for query q. and let
n = |Iq|. A document may be relevant to n′ (0 ≤ n′ ≤ n)
intents. Let dr denote the document at rank r, and let I(dr)
denote the set of intents to which document dr is relevant.
For a document cutoff l, define:

I-rec@l =
|⋃l

r=1 I(dr)|
n

(4)

which is just the proportion of intents covered by the top l
documents. Note that if l < n, an I-recall of 1 may not be
achievable even if some retrieved relevant documents cover
multiple intents. In the experiment we report later, the
maximum number of intents per topic in our data is n = 6,
while we use l = 10 to follow the Diversity Task at TREC
2009 Web Track. So I-recall ranges between 0 and 1 for all
topics.

Suppose that n = l = 10, and that System x has ten
documents at ranks 1-10, each relevant to exactly one new
intent, while System y has exactly one relevant document at
rank 1, which covers all ten intents. Note that, in contrast
to α-nDCG, I-recall does not rate y higher than x. Return-
ing a minimal number of documents that together cover all
intents [2] is not of our concern, and no NP-hard problem is
involved here. This is because Web search can return (say)
ten documents within the first search result page, regardless
of whether it is possible to cover all the intents with just one
document. Moreover, as was discussed in 2.3, a single doc-
ument that covers multiple intents is not necessarily better

than a set of documents that each highly satisfies a single
intent, at least for our purpose.

I-recall is a binary-relevance metric – for each intent, a
document can either be relevant or nonrelevant – and it
assumes that each intent is equally important. The idea
is to satisfy every user (each corresponding to a different
set of intents) at least to some extent within top l. Below,
we discuss simple graded-relevance metrics that can reflect
the importance of each intent and examine the positions of
relevant documents, to complement I-recall.

3.2 div-nDCG and div-Q
Consider a query q with its set of possible intents Iq, and a

document d. Let rel be a random binary variable, and define
rel = 1 for (q, d) iff ∃i ∈ Iq s.t. rel = 1 for (i, d). That is,
we say that d is relevant to q if d is relevant to at least one
of q’s intents, and otherwise it is not relevant. According
to the probability ranking principle [12, 20], systems should
rank documents by P (rel = 1|q, d).

Like the IA metrics, our presumption is that P (i|q) values
are available. Moreover, just like the IA metrics, we assume
that, for any pair of intents i, i′ ∈ Iq, i and i′ are exclusive:
that is, a user searching on q has only one of the possible
intents. Under this assumption, we obtain:

P (rel = 1|q, d) =
∑

i∈Iq

P (i|q)P (rel = 1|i, d) . (5)

We note that this is exactly what Spärck-Jones, Robertson
and Sanderson [20] have casually discussed, though not in
the context of how to evaluate systems.

We estimate P (rel = 1|i, d) in Eq. 5 based on manual rele-
vance assessments as follows. Suppose, for example, we have
four relevance levels so that highly relevant, relevant, par-
tially relevant and judged nonrelevant documents are man-
ually obtained for each intent i (rather than for each query
q). Then we may assign a gain value [8], e.g. 3,2,1,0, to each
type of the above judged documents, respectively. Let gi(d)
denote the gain value of a document d with respect to intent
i. Now, let us further assume that P (rel = 1|i, d) ∝ gi(d).
That is, we interpret the gain values as statistics that di-
rectly reflect the probability of (binary) relevance of a docu-
ment to an intent4. Then from Eq. 5, the probability ranking
principle reduces to ranking documents by

∑

i∈Iq

P (i|q) gi(d) (6)

which we call the global gain (GG) of document d given
query q.

Let GG(r) denote the global gain of the document at rank
r, and let the cumulative GG be CGG(r) =

∑r
k=1 GG(k).

Moreover, let GG∗(r) and CGG∗(r) denote the GG and the
CGG at rank r for an ideal ranked output (i.e., one that
exhaustively lists up the relevant documents in decreasing
order of the global gain as defined in Eq. 6). Note that,
unlike nDCG-IA that require n = |Iq | distinct ideal ranked
lists, we require a single ideal list.

Based on global gains, existing graded-relevance metrics

4This is one way to interpret graded relevance assessments.
Note that the probability ranking principle is still based on
binary relevance.
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such as nDCG and Q-measure [17] can be computed5:

div-nDCG@l =

∑l
r=1 GG(r)/ log(r + 1)

∑l
r=1 GG∗(r)/ log(r + 1)

(7)

divBR(r) =

∑r
k=1 J(k) + β

∑r
k=1 GG(k)

r + β
∑r

k=1 GG∗(k)
(8)

div-Q =
1

R

L∑

r=1

J(r)divBR(r) (9)

where l is a document cutoff; J(k) is a flag indicating whether
the document at rank k is (at least partially) relevant to
at least one intent; β is the persistence parameter for the
blended ratio [17], which combines precision (

∑r
k=1 J(k)/r)

and normalised (global) cumulative gain
(
∑r

k=1 GG(k)/
∑r

k=1 GG∗(k));6 R is the number of docu-
ments that are (at least partially) relevant to at least one
intent; and L is the size of the system output.

The only difference between traditional nDCG/Q-measure
and div-nDCG/Q is that the latter metrics use the global
gains (Eq. 6) instead of the raw gains. Just like α-nDCG,
div-nDCG and div-Q assume that documents that cover
many intents are important. However, unlike α-nDCG, the
importance is weighted according to how important each in-
tent is (i.e. P (i|q)), and how relevant each document is to
an intent (i.e. gi(d)). These metrics reward systems that
satisfy Property (b) discussed earlier.

Note that Q-measure and nDCG rely on the number of
relevant documents R (the former directly, and the latter
indirectly through the use of an ideal ranked list). Some re-
searchers argue that using R for evaluation no longer makes
sense in this Web search era as the trueR is difficult/impossible
to obtain [23]. However, we argue that interpreting R as
the number of known relevant documents is one reasonable
approach: if relevance assessors have already given us 5 rel-
evant documents for Topic 1, and 50 relevant documents
for Topic 2, utilising this information for normalisation is
indeed useful. For example, metrics that rely on R such
as Q-measure are known to be more discriminative than
precision-oriented metrics like RBP, in that they are more
robust to variance across topics (See Section 4.4) [16].

Unlike metrics like α-nDCG and nDCG-IA, the maximum
value of div-nDCG is exacly one regardless of the document
cutoff value l. Whereas, the maximum value of div-Q is ex-
actly one provided that the system output size L is larger
than or equal to R (because if L < R, obviously the system
cannot list up all relevant documents). In traditional ad hoc
tasks at evaluation forums like TREC and NTCIR, usually
L >> R holds, so this should not be a problem. However,
for Web search evaluation environments in which a small
cutoff is often used (e.g. l = 10 so that the system output is
in effect truncated to size L = 10), the above undernomali-
sation problem may occur. Hence, to avoid this, we use the
following cutoff-based version of div-Q in this paper:

div-Q@l =
1

min(l, R)

l∑

r=1

J(r)divBR(r) (10)

5“div” obviously stands for “diversity.”
6A small β (e.g. β = 0.1) makes the blended ratio resemble
precision; a large β (e.g. β = 1000) makes it resemble nor-
malised cumulative gain. The former implies heavier penal-
ties for relevant documents retrieved later in the ranked list.
We let β = 1 in this paper.

3.3 Idiv-nDCG and Idiv-Q
I-recall is a simple, binary-relevance, intent-level metric

that rewards wide coverage of different intents in the top
ranks. div-nDCG and div-Q are simple, graded-relevance,
document-level metrics that reward early retrieval of docu-
ments that are highly relevant (or more precisely: “highly
likely to be relevant”) to major intents. As we want both
Properties (a) and (b), we simply combine the metrics as
follows:

Idiv-nDCG@l = γI-rec@l+ (1− γ)div-nDCG@l (11)

Idiv-Q@l = γI-rec@l + (1− γ)div-Q@l (12)

where γ is a parameter. In this paper, we let γ = 0.5 by
default. We use linear combination because we would like
to reward systems even when they satisfy only one of the
two properties mentioned above. (A harmonic mean of two
metrics, for example, would be zero if either of them is zero.)

The Idiv metrics are rather ad hoc, in that they lack a uni-
fied user model7. Nevertheless, they offer several strengths:

1. They are easy to interpret. It is easy to imagine the
kind of ranked output that the Idiv metrics are de-
signed to pursue – all the possible intents should be
listed up in the early ranks, and highly relevant doc-
uments for the major intents should be ranked above
partially relevant documents for the minor intents.

2. They are easy to compute – unlike α-nDCG, S-recall@lmin,
S-precision and WS-precision (See Section 2.1), no NP-
hard problem is involved.

3. Unlike IA metrics, even minor intents are considered
important, especially with a large γ (0 ≤ γ ≤ 1).

4. Unlike α-nDCG, it accomodates P (i|q) and graded-
relevance of documents to each intent.

5. Unlike α-nDCG and IA metrics, they are guaranteed
to range fully between 0 and 1, provided that the doc-
ument cutoff l is chosen for I-recall so that it is no
smaller than the maximum number of intents across
the query set (See Section 3.1).

4. EXPERIMENTS

4.1 Data
We have already clarified the advantages of our Idiv met-

rics over existing metrics. We now demonstrate how they
work in practice compared to nDCG-IA and α-nDCG, us-
ing the recent Diversity Task (Category A) data from the
TREC 2009 Web Track [5]. The statistics of the test collec-
tion are summarised in Table 1. As it shows, the topic set
includes 243 subtopics, but only 199 of them have at least
one relevant document. These are treated as our intents. As
many as 23 intents have only one relevant document, and
we point out that this is not good news for nDCG-IA, since
its per-intent nDCG values for such intents will rely solely
on whether one particular document is in top 10 or not.

7The original Q-measure, as an instance of NCU, does have
a user model: There is a population of users abandoning the
ranked list at different ranks, and the “stopping probability”
is uniform across all relevant documents [17].
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Table 1: Statistics of the TREC 2009 Web Track Diversity Task (Category A) test collection.
Documents ClueWeb09 (approx. one billion Web pages; 25TB of uncompressed data in multiple languages) [5]
Topics 50 topics (12 ambiguous; 38 faceted) with subtopics. 243 subtopics (177 informational; 66 navigational)
Intents 199 intents (i.e. subtopics with at least one relevant document).

Max. #intents per topic: 6. Max. #intents per document: 5.
Relevance data Total relevant across 50 topics: 4942. Total relevant across 199 intents: 6501.

Table 2: τ and τap rank correlation: Idiv-nDCG@10 run rankings vs. other rankings as baselines.
γ = 0 γ = .2 γ = .5 γ = 0.8 γ = 1 (I-rec@10)

α-nDCG@10 .880/.778 .913/.807 .893/.747 .873/.747 .860/.729
nDCG-IA@10 .960/.931 .940/.908 .867/.774 .807/.709 .793/.692
Idiv-Q@10 (same γ) .880/.882 .947/.931 .980/.977 .993/.990 1/1

Table 3: τ and τap rank correlation: Idiv-Q@10 run rankings vs. other rankings as baselines.
γ = 0 γ = .2 γ = .5 γ = 0.8 γ = 1 (I-rec@10)

α-nDCG@10 .773/.670 .860/.742 .887/.733 .867/.736 .860/.729
nDCG-IA@10 .880/.846 .953/.910 .873/.775 .800/.700 .793/.692
Idiv-nDCG@10 (same γ) .880/.885 .947/.934 .980/.977 .993/.990 1/1

Table 4: τ and τap rank correlation: effect of γ on the Idiv-nDCG@10 (Idiv-Q@10) run ranking, with γ = .5
as the baseline.

γ = 0 γ = .2 γ = 0.8 γ = 1 (I-rec@10)
Idiv-nDCG@10 (γ = .5) .867/.774 .913/.812 .940/.916 .927/.898
Idiv-Q@10 (γ = .5) .807/.722 .893/.792 .927/.905 .907/.877

Unfortunately, this test collection is not ideal for our pur-
pose, because it has neither the information on P (i|q) for
each topic nor graded-relevance assessments for each intent.
We overcome the first problem by using simulated P (i|q)
values: for a query with n intents, we assume that the j-
th intent has the probability 2n−j+1/

∑n
k=1 2

k. As for the
second problem, we chose to use the existing binary rele-
vance assessments “as is” even though this means that the
graded-relevance capability of the Idiv metrics cannot be
demonstrated. Thus, in our experiment, the global gain of
a document (Eq. 6) at rank r reduces to:

GGbinary(r) =
∑

i∈Iq

P (i|q)Ji(r) . (13)

We plan to construct and use graded-relevance diversity test
collections in our future work.

The TREC 2009 Web diversity task received 25 run sub-
missions. Below, we evaluate all of these runs with our pro-
posed metrics as well as α-nDCG and nDCG-IA. As was
mentioned in Section 3.1, we use l = 10 as the document
cutoff for all metrics, because diversifying the first result
page is especially important for Web search engines. We
used the official α-nDCG values released by the Web track
organisers (hence α = .5); as for all other metrics, we used a
set of scripts that we developed ourselves for diversity eva-
lution in general. The scripts are publicly available at
http://research.nii.ac.jp/ntcir/tools/ir4qa eval2.tar.

gz.

4.2 System Ranking Comparisons
We quantify the similarity between two run rankings (based

on two different evaluation metrics) by Kendall’s τ rank cor-
relation and Yilmaz/Aslam/Robertson τap [21]. τ is a mono-
tonic function of the probability that a randomly chosen pair
of ranked items is ordered identically in the two rankings.
Hence a swap near the top of a ranked list and that near the
bottom of the same list has equal impact. Whereas, τap is
“top-heavy,” in that it is a monotonic function of the prob-
ability that a randomly chosen item and one ranked above it
are ordered identically in the two rankings. While τ is sym-
metrical, τap is not: it treats one ranked list as the ground
truth.

Table 2 shows τ and τap rank correlations between a run
ranking based on Idiv-nDCG (with γ = 0, .2, .5, .8, 1) and
one based on another metric. As Eq. 11 shows, Idiv-nDCG
with γ = 0 equals div-nDCG, and Idiv-nDCG with γ =
1 equals I-recall. Note also that Idiv-nDCG is compared
with Idiv-Q using the same value of γ. Values higher than
0.9 are shown in bold for convenience. For example, the τ
between Idiv-nDCG (γ = .5) and α-nDCG is .893, and the
corresponding τap value (with α-nDCG taken as the ground
truth) is .747. It can be observed that:

• Idiv-nDCG with different γ’s rank runs similarly to
α-nDCG, but there are differences;

• Idiv-nDCG with different γ’s rank runs similarly to
nDCG-IA, and the similarity increases as γ becomes
smaller (i.e. as Idiv-nDCG moves away from I-recall
and towards div-nDCG);

• Idiv-nDCG rank runs similarly to Idiv-Q, especially
with a large γ (Note that when γ = 1, they both equal
I-recall).

Table 3 shows a similar table for Idiv-Q. It can be observed
that Idiv-Q with different γ’s also rank runs similarly to α-
nDCG and to nDCG-IA, but that there are differences.

Table 4 shows τ and τap rank correlations between two
rankings, both based on Idiv-nDCG but with different γ’s.
The table also contains similar information for Idiv-Q. It can
be observed that different γ’s do not change the run ranking
dramatically.

Figure 1 also shows the robustness of Idiv-nDCG to the
choice of γ. The two axes represent I-recall and div-nDCG,
and the solid slant lines represent contour lines for Idiv-
nDCG with γ = .5; the dotted slant lines represent those
with γ = .2 and γ = .8. Each circle in the graph represents
a run. For example, it can be observed that runs MSDiv3
and MSRACS lie close to the same solid contour line, and
therefore that they are almost equally effective in terms of
Idiv-nDCG with γ = .5. MSDiv2 is the top performer ac-
cording to Idiv-nDCG with γ = .5 and with γ = .8; MSDiv3
is the top performer according to Idiv-nDCG with γ = .2
(which is in agreement with α-nDCG as we shall see later).
However, the “top five” runs in Figure 1 lie very close to each
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Figure 1: TREC 2009 diversity runs evaluated with
Idiv-nDCG@10, with contour lines for γ = .2, .5, .8.

other and the differences are not statistically significant (See
Section 4.4). The main observations from this figure are:

• I-recall (an intent-based recall metric) and div-nDCG
(a document-based precision metric) are highly corre-
lated with each other8;

• Because of the high correlation between I-recall and
div-nDCG, Idiv-nDCG is quite robust to the choice of
γ for ranking runs.

We have obtained very similar results for Idiv-Q as well.
Since Idiv-nDCG and Idiv-Q are robust to the choice of γ

for ranking runs, and because we do not have a systematic
method for determining γ, we focus our attention on γ = .5
henceforth.

Figure 2 visualises the run rankings by Idiv-nDCG, Idiv-Q
(both with γ = .5), nDCG-IA and α-nDCG. The runs have
been sorted by the official α-nDCG performance, so the α-
nDCG curve is monotonically decreasing; each increase in
the other curves represents a disagreement with α-nDCG. As
indicated in the figure, Idiv-nDCG and Idiv-Q rank MSDiv2
at the top; nDCG-IA ranks MSDiv3 at the top; and α-nDCG
ranks MSRAACSF at the top. However, none of these runs
is statistically significantly better than the others in any of
the metrics.

We have demonstrated that, given the intent probabilities
P (i|q), Idiv-nDCG and Idiv-Q produce run rankings that
are similar to, but different from those based on α-nDCG
and nDCG-IA. A more important question is whether these
metrics are measuring what we want to measure. Below, we
examine the actual ranked lists of MSDiv2 and MSRAACSF
to demonstrate how our proposed metrics reward diversified
systems.

8τ = .793. τap = .686 with I-recall as the ground truth;
τap = .749 with div-nDCG as the ground truth.
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Figure 2: TREC 2009 diversity runs evaluated with
different metrics, sorted by the official α-nDCG val-
ues.

4.3 A Closer Look at Disagreements between
Metrics

Figure 3 shows, for Idiv-nDCG, nDCG-IA and α-nDCG,
the performance of MSDiv2 minus that of MSRAACSF per
topic. Thus, dots above the horizontal axis represent “wins”
by MSDiv2, and those below represent wins by MSRAACSF.
For 38 topics out of 50, the three metrics agree with one
another as to which run is better. Idiv-nDCG disagrees
with nDCG-IA for 7 topics, and disagrees with α-nDCG for
6 topics; nDCG-IA disagrees with α-nDCG for 9 topics. The
trend is similar for Idiv-Q. Below, we take a close look at
three topics highted in Figure 3.

Topic 21 has n = 5 intents, with P (i1|q) = 32/62, P (i1|q) =
16/62, . . . , P (i5|q) = 2/62. The actual top-10 ranked lists,
with relevant intents for each document, are shown below.
(Document ID prefixes “clueweb09-en” are omitted through-
out this paper to save space.)
rank MSDiv2 MSRAACSF

1 0005-48-03496 0010-85-03735 i5

2 0013-96-08199 0012-66-27529 i5

3 0013-66-18211 0012-46-18076
4 0013-66-18147 i1 0013-27-24714
5 wp01-79-16252 wp02-04-16080
6 0003-59-13504 0037-28-21832
7 0041-68-19894 0062-72-09421
8 0004-64-17952 0047-54-35373
9 0080-91-29662 0099-86-05525

10 0004-51-16201 0060-08-24587

Because Idiv-nDCG and nDCG-IA utilise the fact that i1
is a much more popular intent than i5 (in our experimen-
tal setting), they prefer MSDiv2 to MSRAACSF. Whereas,
α-nDCG prefers MSRAACSF, as it can only treat each in-
tent equally. This example demonstrates that, given the
intent probabilities, Idiv-nDCG and nDCG-IA can be more
intuitive than α-nDCG.

Topic 28 also has n = 5 intents. The ranked lists are
shown below:
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Figure 3: Per-topic performance of MSDiv2 minus that of MSRAACSF.

rank MSDiv2 MSRAACSF
1 wp00-88-23480 0022-00-34499 i4

2 0007-19-33611 i4 0007-19-33611 i4

3 0002-47-07470 wp00-88-23480
4 0009-64-18412 i4 0037-28-16212 i2

5 wp02-24-00069 0009-64-18412 i4

6 wp01-05-00069 0029-92-16034
7 0127-32-28190 0064-52-31354
8 0004-42-16367 0115-25-00480
9 0100-95-14715 i5 0034-67-36999

10 0030-22-33316 i2 0020-05-14160

Idiv-nDCG prefers MSDiv2; α-nDCG prefers MSRAACSF;
nDCG-IA is undecided, but leans towardsMSRAACSF. Since
MSDiv2 covers three intents while MSRAACSF covers only
two, Idiv-nDCG may be the most intuitive for the purpose
of diversification. Note that having a document relevant to
i5 in MSDiv2 has very little impact on the computation of
nDCG-IA as this is a “very minor” intent (See Eq. 1).

Topic 38 has n = 3 intents, with P (i1|q) = 8/14, P (i2|q) =
4/14, P (i5|q) = 2/14. The ranked lists are shown below:
rank MSDiv2 MSRAACSF

1 0011-83-04353 0022-32-01173
2 0022-89-07369 i1 0011-83-04353
3 0009-04-14265 0009-04-13849
4 0006-15-25073 i1 0008-94-08357
5 0009-49-19901 i1 0039-80-34409 i1

6 0078-29-22726 0004-30-16737 i1, i3

7 0026-63-30995 0009-70-21188
8 0052-82-45572 i1 0024-34-31519 i1

9 0008-62-07163 i1 0035-17-17820
10 0004-07-33887 i1 0009-12-14653 i1

Idiv-nDCG prefers MSRAACSF, as it covers not only i1 but
also i3. α-nDCG is undecided, but leans towardsMSRAACSF.
Again, nDCG-IA prefers MSDiv2 as it virtually ignores the
minor intent i3.

The above examples demonstrate that:

• nDCG-IA indeed tends to ignore minor intents and
may be counterintuitive for the purpose of evaluating
diversity;

• Given the intent probabilities, Idiv-nDCG can be more
intuitive than α-nDCG, as the latter metric does not
take the probabilities into account. (The same is true
for Idiv-Q.)

We also remind the reader that our proposed metrics (a) can
handle per-intent graded relevance (unlike α-nDCG), and
(b) do not require approximation and range fully between 0
and 1 (unlike α-nDCG and nDCG-IA).

4.4 Discriminative Power
We finally compare our proposed metrics with α-nDCG

and nDCG-IA in terms of discriminative power [14]. We
want metrics that are robust to variation across topics, so
that the same conclusion can be reached as to which of
two given systems is better, regardless of the choice of the
topic set. More precisely, we measure discriminative power
by conducting a statistical significance test for every pair
of runs, and counting the number of significantly different
pairs. We have 25 runs, so 25*24/2=300 run pairs are tested.
For significance testing, we use the two-tailed paired boot-
strap test, with α = .05 and B = 1000 bootstrap samples [14].
Note that this experiment is not about whether the metrics
are right or wrong; it is about how metrics can be consis-
tent across experiments and as a result how often differences
between systems can be detected with high confidence. We
regard high discriminative power as a necessary condition
for a good evaluation metric, not as a sufficient condition.

The discriminative power method also provides a natu-
ral estimate of the performance delta between two systems
required to achieve statistical significance. This is done by
recording, for every run pair, the performance difference that
corresponds to the borderline between significance and non-
significance among the B = 1000 trials, and then by select-
ing the largest value among all run pairs (i.e. a conservative
estimate). This is one of the advantages of using the boot-
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Table 5: Discriminative power and estimated differ-
ence between two mean performances required for
α = .05.

metric disc. power diff. required
Idiv-Q@10 192/300=64.0% 0.12
Idiv-nDCG@10 188/300=62.7% 0.13
α-nDCG 185/300=61.7% 0.10
I-rec@10 181/300=60.3% 0.20
nDCG-IA 173/300=57.7% 0.08
div-nDCG@10 171/300=57.0% 0.10
div-Q@10 148/300=49.3% 0.12

strap test. Details can be found in [14].
Table 5 summarises the results of our discriminative power

experiments. For example, Idiv-Q is the most discriminative
metric of the ones we examined, managing to detest statisti-
cal significance for 192 run pairs; Given 50 topics, when the
performance difference between to systems is 0.12 or higher
in Idiv-Q, this difference is usually statistically significant.
It can be observed that9:

• Idiv-Q (γ = .5) is more discriminative than its compo-
nents, namely I-recall and div-Q; similarly, Idiv-nDCG
(γ = .5) is more discriminative than I-recall and div-
nDCG.

• Idiv-Q and Idiv-nDCG (γ = .5) are at least as discrimi-
native as α-nDCG (α = .5) and possibly more discrim-
inative than nDCG-IA. For example, Idiv-Q manages
to obtain seven more significantly different run pairs
compared to α-nDCG.

Hence Idiv-Q and Idiv-nDCG are at least as good as ex-
isting metrics from the viewpoint of robustness to variation
across topics and hence consistency across experiments, and
our approach of combing I-recall and div-Q/div-nDCG is
probably beneficial.

5. CONCLUSIONS
This paper proposed simple, intuitive metrics called Idiv-

nDCG and Idiv-Q for evaluating diversified search results.
They are designed to (a) retrieve documents that cover as
many intents as possible; and (b) rank documents that are
highly relevant to more popular intents higher than those
that are marginally relevant to less popular intents. We
showed that they offer several advantages over existing met-
rics: They do not require approximation and range fully be-
tween 0 and 1; Unlike the IA metrics, they pay attention to
minor intents; Unlike α-nDCG, they can accomodate P (i|q)
and per-intent graded relevance. We have also demonstrated
that they correlate well with the existing metrics, and can
be more intuitive. We therefore argue that they are suitable
for evaluation with diversity test collections that accomo-
date either P (i|q) or per-intent graded relevance.

Our future work includes setting parameters such as γ
based on clickthrough data (possibly per topic); explicitly
handling informational vs. navigational intents; and design-
ing new diversity metrics that are directly motivated by a
user model. However, we maintain that evaluation metrics
should be easy to understand and easy to compute.

9According to these bootstrap tests, the “top five” runs in
Figure 1 are not significantly different from one another in
terms of any of the metrics shown in Table 5. Whereas,
some of these runs are significantly better than MSDiv1 also
shown in Figure 1 in terms of several different metrics.
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