Optimal filter estimation for Lucas-Kanade optical flow

N Sharmin, R Brad - Sensors, 2012 - mdpi.com
Sensors, 2012mdpi.com
Optical flow algorithms offer a way to estimate motion from a sequence of images. The
computation of optical flow plays a key-role in several computer vision applications,
including motion detection and segmentation, frame interpolation, three-dimensional scene
reconstruction, robot navigation and video compression. In the case of gradient based
optical flow implementation, the pre-filtering step plays a vital role, not only for accurate
computation of optical flow, but also for the improvement of performance. Generally, in …
Optical flow algorithms offer a way to estimate motion from a sequence of images. The computation of optical flow plays a key-role in several computer vision applications, including motion detection and segmentation, frame interpolation, three-dimensional scene reconstruction, robot navigation and video compression. In the case of gradient based optical flow implementation, the pre-filtering step plays a vital role, not only for accurate computation of optical flow, but also for the improvement of performance. Generally, in optical flow computation, filtering is used at the initial level on original input images and afterwards, the images are resized. In this paper, we propose an image filtering approach as a pre-processing step for the Lucas-Kanade pyramidal optical flow algorithm. Based on a study of different types of filtering methods and applied on the Iterative Refined Lucas-Kanade, we have concluded on the best filtering practice. As the Gaussian smoothing filter was selected, an empirical approach for the Gaussian variance estimation was introduced. Tested on the Middlebury image sequences, a correlation between the image intensity value and the standard deviation value of the Gaussian function was established. Finally, we have found that our selection method offers a better performance for the Lucas-Kanade optical flow algorithm.
MDPI
Showing the best result for this search. See all results