
	 1	

Supplementary Information for: 
 

Climate warming from managed grasslands cancels the cooling effect of 
carbon sinks in sparsely grazed and natural grasslands  

 
Jinfeng Chang1,2,3*, Philippe Ciais1, Thomas Gasser2, Pete Smith4, Mario Herrero5, 

 Petr Havlik2, Michael Obersteiner2, Bertrand Guenet1, Daniel S. Goll1, Wei Li1, Victoria 
Naipal6, Shushi Peng7, Chunjing Qiu1, Hanqin Tian8, Nicolas Viovy1, Chao Yue9, Dan Zhu1 

 

1 Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université 
Paris-Saclay, 91191 Gif-sur-Yvette, France  

2 International Institute for Applied Systems Analysis, A-2361 Laxenburg, Austria 

3 College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China 

4 Institute of Biological & Environmental Sciences, University of Aberdeen, 23 St Machar Drive, Aberdeen, 
AB24 3UU, UK 

5 Commonwealth Scientific and Industrial Research Organization, St Lucia, QLD 4067, Australia 

6 Ludwig-Maximilian University, Munich, Germany 

7 Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking 
University, Beijing 100871, China 

8  International Center for Climate and Global Change Research and School of Forestry and Wildlife Sciences, 
Auburn University, Auburn, AL, USA 

9 State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F 
University, Yangling, Shaanxi 712100, P.R. China 

*To whom correspondence should be addressed: changjf@zju.edu.cn 

  



	 2	

Table of content: 

Supplementary Discussion 1. Comparison of the greenhouse gas fluxes from the literature and 

those simulated in this study 

Supplementary Discussion 2. Vertical profiles of the simulated grassland soil carbon change  

Supplementary Discussion 3. Model’s responses to changes in grassland management 

Supplementary Discussion 4. Attribution of the simulated grassland carbon balance to different 

drivers 

Supplementary Discussion 5. Impact of erosion on the grassland carbon budget 

Supplementary Discussion 6. Effect of grassland management on the simulated fuel loads, 

burned area and fire emissions 

Supplementary Discussion 7. Grassland area, managed grassland area and management 

intensity 

Supplementary Discussion 8. Effect of rising atmospheric CO2 concentration on the simulated 

productivity 

Supplementary Discussion 9. The climate effect of grassland greenhouse gas fluxes  

Supplementary Methods 1. Model and methods used for grassland greenhouse gas assessment 

Supplementary Methods 2. Model and methods used for radiative forcing attribution 

  



	 3	

Supplementary Discussion 1. Comparison of the greenhouse gas fluxes from the literature 

and those simulated in this study 

Here, we validate our estimates of contemporary CO2, CH4 and N2O fluxes against individual 

gas estimates derived from diverse methodologies (Supplementary Table 2; Supplementary 

Figures 10–14).  

We estimate that the cooling effect of carbon sinks in grasslands worldwide has outweighed the 

emissions of deforestation for pasture, and has offset part of the CH4 and N2O emissions. 

Quantifying the net carbon sink of global grassland is a critical endeavour that requires careful 

validation. Unfortunately, as far as we know, no direct observations of the global grassland 

carbon budget are available. We therefore adopt the following three steps to validate the 

grassland carbon budget and its components indirectly at global scale and, for its components,  

directly at national/regional scale. From a global perspective, we first validate the simulated net 

land carbon budget, and that from all grass-dominated grid cells, against estimates from a set 

of dynamic global vegetation models (DGVMs; TRENDY project) used in annual global carbon 

budget assessment1. We then constrain the recent grassland carbon budget using indirect global 

land carbon budget estimates. In a second step, we validate the critical components affecting 

the budget, including net primary productivity (NPP), the trend of NPP, and whole ecosystem 

carbon turnover, against satellite-based and observation-driven data sets, respectively. Finally, 

we compare the simulated budgets with estimates from the literature derived using diverse 

methodologies at national/regional scale and from long-term grassland experimental sites. 

Over the past five decades, the net global land carbon sink simulated by ORCHIDEE-GM v3.2 

is well within the uncertainty range of the multi-model ensemble of TRENDY v6 models 

(Supplementary Figure 10a). When the carbon budgets over grass-dominated grid cells (with 

grassland covering over 60% of the land area in 2000, according to the land-cover change map 

used in this study) are extracted, the comparison again shows that our estimated sink is within 

the uncertainty range of the multi-model ensemble mean of TRENDY v6 models 

(Supplementary Figure 10b). Although no global estimate of the grassland carbon budget is 

available, we can constrain it with the available indirect estimates of the land carbon budget 

and those from non-grassland ecosystems. Global carbon budget assessment1 estimated a 

terrestrial land sink of 2.6 ± 0.9 Gt C yr-1 for 1990 to 2007. Forest ecosystems sequestrated 2.4 

± 0.4 Gt C yr-1 during the same period2, with the rest (0.2 ± 0.9 Gt C yr-1) contributed by 

cropland and grassland. Carlson et al.3 estimated a carbon loss from global cropland, due to 



	 4	

peatland draining, of about 0.15 ± 0.02 Gt C yr-1. Thus, the grassland carbon budget can be 

indirectly constrained to be a sink of 0.35 ± 0.9 Gt C yr-1, assuming no other net carbon loss or 

gain over cropland. Our estimate (0.37 ± 0.19 Gt C yr-1 for 1990 to 2007) fell within this 

constrained grassland budget range. 

Ecosystem NPP is a major carbon input, and soil + vegetation carbon turnover is a major carbon 

output: both affect the net carbon budget of grasslands.  

We compare modelled mean annual NPP against those from two satellite-based models 

(GIMMS NPP4; and MODIS NPP5,6; data from 2000–2011 were used) over grass-dominated 

grid cells (Supplementary Figure 11). Both positive and negative model-data differences are 

found. The results show that our model does not systematically overestimate the NPP of grass-

dominated grid cells. In addition to mean annual NPP, the NPP trend also affects the grassland 

carbon budget and its trend7,8. Thus we validate the trend of annual NPP simulated by 

ORCHIDEE-GM against the trend of annual mean GIMMS NDVI9 during the period of 1982–

2010 over grass-dominated grid cells. Though NDVI, an index of greenness, does not represent 

the productivity directly, it is a useful proxy for trends in productivity10, albeit with some 

uncertainty11. Spatially, our model is generally good at capturing the phase of the trends shown 

in the GIMSS NDVI data over grass-dominated grid cells (Supplementary Figure 12).  

Soil carbon turnover time is defined as soil carbon stock divided by soil respiration, with the 

implicit assumption that the ecosystem is in a steady state. Several data sets of global soil carbon 

stocks exist. However, a global data-driven soil carbon turnover product with consistent 

respiration and carbon stock products is not available. To evaluate model performance on 

carbon turnover time, we adopt the “apparent whole ecosystem carbon turnover time” over 

grasslands as the ratio between soil + vegetation carbon stocks and net primary productivity 

(NPP) following ref 12. We do not use the whole ecosystem carbon stocks including soil and 

vegetation carbon stock, given the fact that 1) there is no global product of grass biomass; and 

2) biomass only comprises a small fraction of the ecosystem carbon stocks in grassland 

ecosystems. The apparent whole ecosystem carbon turnover time from model simulations can 

thus be evaluated against data-driven estimates using data-based soil carbon stocks and remote 

sensing NPP products. For this comparison, we use six sets of apparent whole ecosystem carbon 

turnover times, derived from the combination of two satellite-based models of NPP (MODIS 

NPP5,6; and GIMMS NPP4), and three soil carbon stock data sets at 1 metre depth (derived from 

ref13; one is from SoilGrids14,15, and two are from the Harmonized World Soil Database 
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(HWSD16) using SOTWIS bulk densities and Saxton bulk densities17, respectively). The 

comparison (Supplementary Figure 13) shows that our model tended to underestimate whole 

ecosystem carbon turnover time (i.e., we simulated a faster whole ecosystem carbon turnover) 

compared to the mean estimate of the six sets. Given that our model: i) does not systematically 

overestimate NPP (i.e., not too high a whole ecosystem carbon input), and ii) simulates faster 

whole ecosystem carbon turnover than observation-driven estimates (i.e., not too low a carbon 

output), it is not likely that our model simulates a large overestimate of the carbon sink of 

grasslands. However, it should be noted that the apparent whole ecosystem carbon turnover 

time adopted in this study tends to be smaller (i.e., faster turnover) than actual soil carbon 

turnover time, because the former overestimates the soil carbon input as not all NPP enters the 

soil. It is particularly the case for intensively managed grasslands, where a higher fraction of 

NPP is removed by grazing and mowing. 

National and regional estimates of grassland carbon budgets from previous studies were 

collected to validate the budgets simulated in this study (Supplementary Table 2; 

Supplementary Figure 14). Various methods were used to estimate the grassland carbon budget: 

soil organic carbon (SOC) inventories (repeated soil samplings or regional comparisons), up-

scaling fluxes from tower observations, atmospheric inversion models, remote sensing plus 

empirical models, process-based models calibrated for specific regions, and combinations of 

independent approaches. Spatially, most estimates relate to North America, Europe and China, 

with one estimate each for Brazil, New Zealand and the Russian Federation.  

Over North America, our estimates are generally within the range of regional estimates from 

the different methods (SOCCR-2, adapted from ref18; and ref19), but higher than those from soil 

carbon inventories combining process-based models and the IPCC Tier 2 method 20. For the 

United States, our simulated carbon sink is comparable with the estimates based on flux tower 

measurements21 and regional process-based models in The Land Carbon Project22-24.  

Over Europe, our estimates are comparable with regional estimates based on flux tower 

measurements across Europe25 and those from a combination of independent approaches26,27. 

However, the simulated carbon sink over grasslands in the United Kingdom is not consistent 

with estimates from soil carbon inventories, in which carbon loss28 or insignificant soil carbon 

change29,30 was found. Over the grasslands of Belgium, our model tends to simulate a larger 

carbon sink than estimates from soil carbon inventories. Although the results do not agree with 

each other – a carbon sink31-33, a source 34,35 and a non-significant change36 were all estimated. 
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For grasslands in the Netherlands, we have conservative carbon sink estimates compared to 

those from soil carbon inventories.  

In Brazil, ref37 estimated a strong carbon source over grasslands using land-use/management 

induced soil carbon loss from the literature and grassland areas. Our model simulates a carbon 

loss over Brazilian managed grassland soils (8 ± 4 Tg C yr-1), a carbon sink for sparsely grazed 

grassland (-14 ± 6 Tg C yr-1), and a large land-use change carbon source due to deforestation 

for pasture (91 ± 23 Tg C yr-1). The total balance of 85 ± 28 Tg C yr-1 is consistent with the 

estimates from ref37. We estimate a neutral carbon balance of -3 ± 1 g C m-2 yr-1 over the 

grasslands of New Zealand for the past decades, which is within the range of measured values 

which range from a sink of 100 ± 37 gC m-2 yr-1 to a source of 121 ± 25 gC m-2 yr-1 (from 

different grassland forms38). For grasslands in Russia, we estimate a conservative carbon sink 

of 122 ± 56 Tg C yr-1 around 1990, compared to a stronger sink of 197 Tg C yr-1 reported by 

ref39. Our lower estimate may be due to the fact that we simulated a faster whole ecosystem 

carbon turnover than data-driven estimates derived from remote-sensing NPP and a soil carbon 

database (see above comparison on the whole ecosystem carbon turnover time). 

Over the grasslands of China, our estimate is consistent with the national estimate compiled 

from a combination of independent approaches40. For temperate grassland in northern China, 

our estimates are within the uncertainty range of estimates from a soil carbon inventory41, and 

are conservative compared to other estimates using different methods42-45.  For grasslands in 

southern China, only two estimates of the carbon budget from regional process-based models 

are available. Our estimates are consistent with one estimate46, but have a stronger sink than the 

other47. For grasslands in the Qinghai-Tibetan plateau, our estimates are within the uncertainty 

range of estimates from a soil carbon inventory48, have a consistent sink with values from the 

other inventory49, and are comparable with estimates from other process-based models50-53. 

Measured changes of soil organic carbon at three long-term grassland experimental sites were 

collected (one site in the United States54; two sites in the United Kingdom55). For comparability, 

we conducted site simulations at LTER sites with exactly the same model version and the same 

parameterizations as those in the global simulation: i) using CRU-NCEP climate forcings 

around the grid cell where the experimental sites are located (using a grid cell with the mean 

annual temperature and annual total precipitation closest to the values reported in the literature), 

and ii) applying the same land use change trajectory and grassland management practices as 



	 7	

indicated in the literature for each LTER site*. We found that ORCHIDEE-GM v3.2 reproduced 

a carbon loss at the Kellogg virgin LTER grassland site in the United States (68 ± 31 g C m-2 

yr-1) consistent with the observations (86.5 g C m-2 yr-1). It should be noted that a relative 

uncertainty of 46%, estimated as the relative standard error of the mean distance between 

simulated carbon budgets and compiled observations from the literature (see Methods for detail), 

was applied for the modelled carbon balance at long-term grassland experimental sites. At 

Palace Leas and Park Grass in the United Kingdom, no significant SOC differences between 

the two inventories are found when accounting for all plots. Our model simulates a carbon 

balance close to neutral at Palace Leas (5 ± 2 g C m-2 yr-1), and a small source at Park Grass  

(23 ± 10 g C m-2 yr-1), which are both within the range of observations variation across different 

plots (–15 to 78 g C m-2 yr-1 at Palace Leas, and –16 to 25 g C m-2 yr-1 at Park Grass). The 

comparison with the long-term grassland experimental sites demonstrates the capability of our 

model in reproducing the observed soil carbon dynamics under different land cover change 

trajectories (the site in the United States54) and management histories (the two sites in the 

United Kingdom55). This result, to some extent, justified the use of our model to simulate 

grassland carbon balance under land cover change and management change. 

In summary, the national/regional grassland carbon budgets estimated in this study are 

generally comparable with estimates from the literature obtained using various methods, 

although our estimates are not always consistent with the observed soil carbon change from 

inventories. It should be kept in mind that: i) most of the SOC change measurements were 

conducted for topsoil (0 to around 0.3 m depth), while our model simulated that of the whole 

soil column; and ii) though wild fire and water erosion are considered, some soil carbon loss 

pathways such as residue burning, and dissolved organic carbon are not taken into account by 

our model. The above factors could bring bias into our comparison. Based on the sensitive 

validations above, we conclude that our model is not likely to greatly overestimate the carbon 

sink of grasslands globally. It gives us sufficient confidence in the simulated historical carbon 

                                                
* For the virgin grassland site at the Kellogg Biological Station’s Long-Term Ecological Research (LTER) site, southwest 
Michigan, United States, oak-hickory forest (represented as temperate broadleaves deciduous forest in ORCHIDEE) was 
cleared for grassland in 1960, and the grassland was mown once per year since then. For the Palace Leas (PL) meadow hay 
plots located at northeast England, United Kingdom, the meadow was established in 1897. Hay is cut and removed from the 
plots every year and the aftermath is grazed by sheep or cattle until autumn. For the Park Grass (PG) continuous hay experiment 
located at southeast of England, United Kingdom, the plots were established in 1856 on a permanent pasture. Between 1856 
and 1875, the plots were cut for hay once per year and the aftermath was grazed by sheep penned on each plot to prevent 
nutrient transfers, but since 1875 there has been no grazing and a second hay cut has been taken. 
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budgets in grasslands worldwide (with a ±46% uncertainty estimated; see Methods and 

Supplementary Table 2), and its cooling effect. 

The grassland CH4 emissions from domestic livestock were 43 ± 8 Tg CH4 yr-1 in 2003, similar 

to the estimate of 44 Tg CH4 yr-1 derived from grassland-derived feed by ref56. Most studies 

estimate CH4 emissions from the livestock sector as a whole (including those from enteric 

fermentation and manure management, and from livestock fed with all kinds of feedstuff) using 

different tiers of IPCC guidelines (Tier 1 or Tier 2). The emissions range from 96 to 118 Tg 

CH4 yr-1 in 2010 57-62. Our estimate is that grassland CH4 emissions (49 ± 10 Tg CH4 yr-1) 

account for 42 – 51% of those from the whole livestock sector. It is noteworthy that a study 

using Tier 3 of the IPCC guidelines estimated much lower livestock CH4 emissions in 2000 (52 

Tg CH4 yr-1; ref63). The grassland CH4 emissions from wild grazers are derived initially from a 

combination of wild animal CH4 emissions (grazer + browser; ref 64) and diet information65 for 

the reference year 1800 (see Supplementary Methods 1, Section “Reconstructing the history of 

wild grazer density and grazed area” for details). We estimated that 11.8 Tg CH4 were emitted 

by wild grazers in 1800, comprising nearly half of the total wild mammal’s CH4 emissions from 

ref 64. The estimated grassland CH4 emissions from wild grazers were 1.8 ± 0.4 Tg CH4 in 2006, 

comprising only 14% of the CH4 from both grazers and browsers estimated by ref64 (13 Tg 

CH4). The difference mainly comes from the resolution of the Anthromes products66,67 used to 

calculate wild animal extirpation. Ref64 used a coarse urbanization index from the Anthromes 

products66 to calculate the regional extirpation of wild mammals and the consequent CH4 

emission reductions. Here, we use gridded Anthromes products66,67 to reconstruct the gridded 

history of wild grazers and their CH4 emissions, which should better represent the spatial pattern 

of the wild grazers extirpation. Large ranges of the CH4 from both grazers and browsers (2–15 

Tg CH4 yr-1) were found from different studies68. Our estimate, from wild grazers only, lies in 

the lower part of this range68,  and is similar to the  value in a recent study using various 

emission-body mass models69. 

Current global estimates of N2O emissions from grasslands mainly focus on those from 

domestic livestock. To be comparable with ref 59,62,63,70, we exclude N2O emissions due to 

atmospheric nitrogen deposition over grasslands and from wild grazers. Our estimates of the 

global grassland N2O emissions from domestic livestock are in agreement with the N2O 

emission from manure left on pasture estimated by ref62 (Supplementary Table 2) for 1961 and 

2010 (a difference of 0.2 Tg N2O yr-1). Our estimate is comparable with those from the 

literature59,63,70, and is also consistent with that from a process-based model which includes a 
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representation of soil nitrogen dynamics associated with N2O emissions71. Spatially, our 

estimates are in good agreement with the country-scale estimates from ref62 (r = 0.81, p < 

0.0001; country-scale grassland N2O emissions from this study and from FAOSTAT are first 

averaged for the period 1961–2012, then log transformed and compared). 

In summary, non-CO2 emissions estimated in this study are consistent with all 5 inventories we 

compiled with emissions from grassland (one for grassland CH4 emissions56, and four for 

grassland N2O emissions59,62,63,70). They are all within the uncertainty range of our estimates.  

 

Supplementary Discussion 2. Vertical profiles of the simulated grassland soil carbon 

change 

In ORCHIDEE-MICT 72, the model version that ORCHIDEE-GM v3.2 is built on, the three 

soil carbon pools (active, slow and passive) share a common 32-layer discretization scheme 

with soil temperature, to a maximum depth of 38 m (such a large soil depth is needed only when 

simulating permafrost C profiles and cryoturbation burial of C with depth). Here, our model 

simulated the SOC changes of the whole soil column to a depth of 2 m, rather than 38 m, 

because we do not consider cryoturbation. New carbon input to the soil pools from decomposed 

litter (separated into metabolic and structural) is partitioned with depth using an exponential 

function which corresponds to the prescribed root profile for each vegetation type (i.e., plant 

functional type, PFT). Decomposition of soil carbon is calculated in each layer, as a function 

of the fraction of each pool, using a base turnover rate, modified by soil temperature, moisture, 

and texture 73,74. Vertical mixing of soil carbon due to bioturbation is accounted for by a 

diffusion term in the soil carbon equation. Ref 72 gives a detailed description of this soil carbon 

discretization, and a validation of the spatial pattern and vertical profiles of soil organic carbon 

over high latitude regions (see their Section 9.2 and Figure 21).  

 

Ref 75 used stable carbon isotope signature data from whole-soil profiles to derive the age 

distribution curve with depth for 55 tropical grassland and forest soil profiles (see their Fig. 2). 

We conducted a series of simulations to derive the age distribution of SOC in the soil profile, 

and validate the age distribution against those shown in ref 75. In these simulations, we stopped 

soil carbon input (i.e., vegetation litter in the model) for 3, 10, 30, 50, and 100 years before the 

year 2010, respectively. The SOC differences in each layer at the end of 2010 between these 

test simulations and the reference simulation (i.e., with continuous soil carbon input) can then 
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be used to determine the fraction of SOC with age lower than 3, 10, 30, 50, and 100 years, 

respectively as a function of depth. Supplementary Figure 15 shows the simulated carbon age 

distribution over the 32 tropical grassland sites used by ref 75 (in their Figure 2). The model was 

run for each 0.5 ´ 0.5 degree grid cell covering the locations of the 32 sites. For comparability 

with ref 75, the simulated soil carbon profile in the top 1 m of the soil was used. We find a 

decrease in the simulated new carbon fraction with increasing soil depth, as seen in the 

observations. The modelled new carbon fraction is lower than that fitted to the observations by 

a bi-exponential regression with age (as in ref 75) for 0 and 10 cm depths, but higher than that 

for 20, 30, and 40 cm depths. We simulated that carbon of age less than 50 years represents 54 

± 9% of top-soil carbon (0-30 cm) and 22 ± 6% of deep carbon (30-100 cm), comparable to, 

although a little higher than, that calculated by ref 75 (45% of topsoil carbon and 13% of deep 

carbon; see their Fig. 2). The modelled soil carbon age distributions are comparable with those 

from meta-analysis based on isotope observations of soil profiles. 

To validate the simulated distribution of the “recent” carbon that has been transferred from the 

atmosphere to soil organic matter since 1965 against “bomb-radiocarbon” observation-based 

estimates from ref 75, we conducted another simulation with no soil carbon input after 1965. 

The SOC differences in each layer at the end of 2012 between this simulation and the reference 

simulation (i.e., with soil carbon input) can then be used to show the impact of carbon 

incorporated into the soil since 1965. Here, model results were extracted over the locations of 

all grassland sites used by ref 75. Supplementary Figure 16 shows the depth distribution of 

incorporated “recent” carbon since 1965 as a proportion of the total carbon incorporated in the 

top meter. The simulated depth distribution is similar to that for grasslands presented in the Fig. 

3 of ref 75. In particular, we simulated that around 84% [with 95% confidence interval of 82-

86%] of the SOC incorporation since 1965 was in the topsoil (0-30 cm). The values are well 

within the range of observations. The modelled values of recent soil carbon incorporation (since 

1965) between topsoil and subsoil are comparable with those from radiocarbon observations of 

soil profiles. The spatial pattern (Supplementary Figure 16) shows that around 80% of “recent” 

carbon since 1965 is simulated to be incorporated in topsoil over tropical and temperate 

grasslands, while this fraction is lower for grasslands in permafrost area such as high latitude 

regions of Siberia and North America and the high-altitude region of the Qinghai-Tibetan 

plateau. This is probably due to the fact that the longer freezing period of subsoil, compared to 

topsoil, in permafrost regions, causes lower soil heterotrophic respiration. Thus, more of the  

“recent” carbon incorporated since 1965 is left in the subsoil rather than being mixed into the 
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topsoil.  

 

Supplementary Discussion 3. Model’s responses to changes in grassland management 

Here, we discuss the ability of the model to capture the historical dynamics of grassland 

management including overgrazing, associated degradation and their effect on the carbon 

balance of grasslands.  

First, we compared the contemporary distribution of grassland productivity decrease (an 

indicator of degradation) estimated by our model and that detected by remote-sensing NDVI 

data during the period 1982-1991. 

Second, by defining overgrazing in the model as when the NPP of a grazed grassland goes 

below a certain fraction of natural grassland NPP, we compared the modelled overgrazed area 

against independent degraded land area data from the Global Assessment of Soil Degradation 

(GLASOD) database76. 

Thirdly, we evaluated the modelled response of remaining un-grazed aboveground NPP (ANPP) 

carbon to increasing grazing intensities against local data from a meta-analysis 77.  

Last, we evaluated the modelled response of soil organic carbon to different grazing intensities 

against data from several meta-analysis and review studies77-79. 

Modelled degradation matches decreasing NDVI 

Loss of plant productivity is a characteristic of land degradation. One way to detect areas 

potentially under degradation, with decreasing productivity at the global scale, is to use remote-

sensing proxies of productivity. The vegetation greenness (NDVI) is a good proxy for 

productivity that has been used in land degradation research for both regional studies80,81 and 

global assessments82-84. NDVI data from AVHRR satellites cover the period from 1982 to the 

present, and have been complemented by other space-borne multi-spectral imaging instruments 

in the past two decades (e.g., SPOT vegetation and MODIS9). Given the fact that NDVI data 

do not differentiate between vegetation types in their footprint (0.0833 ´ 0.0833 degree 

resolution for AVHRR), for comparing simulated results with satellite NDVI trends, we used 

modelled mean leaf area index (LAI) of all plant functional types in each 0.5° grid cell, rather 
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than grassland LAI only. Forest dominated ecoregions, according to the IGBP land cover map 

from ref85, were masked out. 

Supplementary Figure 17 shows the (non-forest dominated) grid cells with significant (p < 0.1) 

decrease in the GIMMS3g AVHRR satellites NDVI products (at 0.0833 ´ 0.0833 degree 

resolution), and modelled LAI (at 0.5 ´ 0.5 degree resolution) during the period 1982-1991. To 

detect  degradation, potentially due to land management practices like overgrazing, rather than 

to climate, grid cells with a concurrent decrease of productivity and precipitation were masked 

based on the observation that precipitation is the dominant factor controlling the productivity 

of grasslands, except in wet tundra biomes (blue in Supplementary Figure 17a and 17b). This 

procedure follows the approach used by ref83 to detect degradation from NDVI. We found that 

our model can generally capture the satellite-based decreasing productivity trend (degradation) 

in the western United States, southern Brazil, Argentina, and Australia. Many of these areas 

(e.g., western United States; Supplementary Figure 18a) have high grazing intensity compared 

to surrounding areas but there are exceptions (e.g., southern Brazil and Australia). In central 

Asia and Sub-Saharan Africa, however, the observed decreasing NDVI from degradation was 

not well captured by the model. It should be kept in mind that i) we cannot separate the 

contributions of grassland and cropland in our comparison, and ii) the spatial resolution of the 

GIMMS3g NDVI (at 0.0833 ´ 0.0833 degree resolution) and the modelled LAI (at 0.5 ´ 0.5 

degree resolution) are different, which prevents a detailed comparison being made for “pure” 

grasslands. 

From this work we conclude that the model is capable of capturing the broad-scale patterns of 

the NDVI decrease attributed to degradation, according to the approach of ref83, despite the 

simplified assumption used to reconstruct livestock density, and the lack of “migratory” grazing 

across grid cells. 

Modelled overgrazing matches the GLASOD survey of land degradation 

The Global Assessment of Soil Degradation (GLASOD) database76 provides a reference data 

set of overgrazed areas based on regional surveys, often based on expert assessment and 

knowledge. Here, we compared the continental scale overgrazed area and its spatial pattern 

simulated by our model for the 1980s to the GLASOD data. Modelled output for the 1980s was 

used to be consistent with the time coverage of GLASOD. We classified a grassland grid cell 

as being degraded by overgrazing in the model if the modelled NPP of managed grassland 
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(NPPmanaged) is lower than 90% of the modelled NPP of natural grassland (NPPnatural) in the 

same grid cell. In addition, three overgrazing degradation levels are defined: light, moderate 

and heavy degradation if NPPmanaged is within 70-90%, within 50-70% and lower than 50% of 

NPPnatural respectively. We found that the modelled land area degraded by overgrazing is 

comparable with the degraded areas from GLASOD globally76 (adapted from Table 2 and 3 of 

ref78; Supplementary Table 6 and Supplementary Figure 19). 

At the continental scale, we simulated a higher overgrazed area than GLASOD in Africa 

(+22%), North America (+111%) and South America (+57%), but a lower area in Australia (-

41%) and Eurasia (-34%). GLASOD gives a higher fraction of moderate to strong degradation 

due to overgrazing than our model. However, it should be kept in mind that our level of 

overgrazing is defined according to productivity loss, while the GLASOD surveys focused on 

soil degradation. The spatial pattern of modelled overgrazed lands mainly agrees with that from 

the GLASOD database. The differences are mainly in the Great Plains of North America, the 

Middle East (Arabian peninsula, Iran, and Afghanistan), southwest Russia, and western and 

central Australia. It should be noted that the model does not reproduce the overgrazed area in 

Iran, Afghanistan, and central Australia, mainly because information on grass biomass 

consumption is not available for these regions63 and thus no grazing is simulated by our model 

there (grazing intensity = 0; blank areas in Supplementary Figure 18). It should also be kept in 

mind that GLASOD is thought to be broadly accurate, but is less certain at any particular 

location78.  

Globally, in the historical simulations the simulated overgrazed area is found to have increased 

from 129 million ha in the 1860s to 318 million ha in the 2000s (Supplementary Figure 20). 

We found a small increase of overgrazed area in North America (+14 million ha) and in 

Australia (+13 million ha) from the 1860s to the 2000s. In Eurasia, the modelled overgrazed 

grassland increased by 25 million ha, during two periods of recent history: between the 1880s 

and the 1920s and between 1950s until the present. Overgrazed grassland area is simulated to 

have gradually increased in South America between the 1860s and the 1980s, with a fast 

expansion in the past two decades. Africa is simulated to have tripled its overgrazed area from 

40 million ha in the 1860s to 122 million ha in the 2000s. It should be kept in mind that 1) the 

spatial distribution of ruminants is kept constant across history in the reconstruction used to 

force ORCHIDEE-GM (the gridded livestock distribution in the world from the year 2005, 

GLW286), 2) changes in grazing stocking density (an input to the model) and the overgrazed 

area simulated by our model are mainly driven by historical changes in livestock numbers at 



	 14	

the country/regional level, 3) sub-grid (below the scale of a 0.5° grid cell) heterogeneity of 

stocking density is ignored in the model, i.e. all areas in the real world that have been fenced to 

exclude grazing, conservation areas, inaccessible areas, and their historical changes, due e.g. to 

policies like the grazing act in the United States, or to changes in land use ownership and 

grazing regulations, and 4) cross grid cell migratory motion of livestock is ignored in the model. 

We conclude that our simulations generally capture areas classified as overgrazed in the 

GLASOD data set during the 1980s. This gives us confidence that our simplified treatment of 

management provides a rather realistic simulation of degradation areas.  

Modelled (over)-grazing decreases productivity like observed  

ORCHIDEE-GM v3.2 explicitly simulates the following effects of grassland management on 

productivity: 1) harvest and grazing tend to reduce leaf biomass and LAI; 2) harvest and grazing 

also reduce leaf age, and younger leaves have higher maximum photosynthetic capacity (Vcmax); 

3) defoliation occurs due to livestock trampling; 4) manure and mineral fertilization increase 

the nitrogen availability and stimulate plant growth in the model via an empirical response 

function 87; 5) strong defoliation (e.g., through overgrazing) could reduce carbon reserve 

accumulation (e.g., soil seed stock, rhizomes; represented as carbon reserve in the model), and 

further affect the regrowth at the beginning of next growing season. 

We adopted grazing intensity (GI) from ref77 as an indicator of management intensity: GI is 

defined as the ratio of total harvested and grazed carbon to total aboveground NPP (ANPP) 

over a managed grassland. Supplementary Figure 18b shows the spatial pattern of GI over 

managed grassland in 2000s from our historical simulation E4 in this study (see simulations list 

in Supplementary Table 1). High GI is simulated in part of the western United States, the 

southern edge of Amazonia, southeast Argentina, Europe, northern and eastern Africa, India, 

Mongolia, and northern and southwestern China.  

We show in Supplementary Figure 21 that our model captures the observation-based negative 

relationship between remaining ANPP and grazing intensity. The regressions diagnosed from 

the model output (an emerging output from the set of complex model equations) are similar to 

the ones found in the meta-analysis of ref77 (see their Fig. 4), which was derived from reported 

numbers of animal unit months at different sites, and the carrying capacity calculated from  NPP 

simulated by the Miami empirical model88,89. The regressions shown in Supplementary Figure 

21 are for different climatic zones according to ref90. We simulated steeper (negative) slopes of 
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regressions in managed grasslands over moist warm climate zones, and flatter slopes over dry 

warm climate zones. 

Based on this test, we conclude that the model is consistent with the most up to date meta-

analysis of site data for the decrease of remaining ANPP with increased grazing, which gives 

us confidence that the input to SOC pools as a function of grazing is realistic. 

Modelled (over)-grazing decreases soil organic carbon (SOC) as observed 

The effects of grazing / harvest on net primary productivity impacts soil organic carbon (SOC) 

depending on the soil input (remaining NPP left as litter). However, our model does not 

represent several other processes of potential importance for SOC balance including, but not 

limited to: 1) overgrazing alters soil structure and has impacts on processes like water 

infiltration; 2) overgrazing depletes soil nutrient storage causing permanent degradation, 3) 

degradation from selective grazing by livestock, which may change species composition and 

cause e.g. woody encroachment. Therefore, it is crucial to evaluate the modelled responses of 

the grassland carbon balance (i.e., soil organic carbon change) to different management 

intensities.  

We compared the modelled responses of SOC to different grazing intensities against data from 

the literature. Several studies have collected data focused on in-situ grassland plot to investigate 

the response of SOC storage to grazing and grazing intensities 77-79. To make the comparison 

with model output, we conducted a set of global gridded simulations with different levels of 

prescribed grazing intensities. Although grazing intensity can be prescribed quantitatively in 

our simulations, it is usually only qualitatively reported in literature77. Thus we need to relate 

grazing intensities in the simulation experiments to site-level qualitative information. For 

example, ref78, following ref91, defined heavy grazing as a removal of approximately 50% of 

aboveground annual production (i.e., ANPP), which is 33% higher than the US Natural 

Resources Conservation Service recommendation. The above definition implies a 37.5% 

removal under moderate grazing. Ref77 calculated GI based on numbers of animal unit months 

from literature and ANPP from the Miami model 88,89, and defined four classes of intensity as 

low (GI = 0-0.33), medium (GI = 0.33-0.66), high (GI = 0.66-1.0), and overgrazed (GI >= 1.0). 

Here, we chose grazing intensities of 25%, 37.5%, 50%, and 75% in the model to correspond 

to light, moderate, heavy, and over grazing respectively. Starting from the vegetation and SOC 

status in 1980 from the historical simulation E4, we conducted four test experiments with the 
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above four grazing intensities, along with a control run without grazing, for 20 years. The 

simulations were driven by gridded climate fields and CO2 concentration data from 1981-2000 

without any land cover changes. We chose the period 1981-2000 due to the fact that a majority 

of the grazing experiments in the meta-analysis were conducted within this period 77-79. 

We did not compare the modelled response with the observations for the exact location of the 

in-situ measurements because the local conditions and management history are not supposed to 

be reproduced in our simulations. Instead, we compared the responses from the meta-analysis 

with model results from all grid cells with GI > 0 in Supplementary Figure 18b (i.e., with non-

zero livestock distribution as in the gridded livestock in the world data set, GLW286) and non-

zero grass biomass use (as in the data set of ref63). 

Compared to the control simulation without grazing, we found that increasing GI tends to 

reduce SOC (Supplementary Figure 22a), by an amount similar to that found in observations, 

see for instance Fig. 5 of ref79. The SOC response from our simulations also reproduces the 

range in the  observations. The simulated SOC decrease, in response to increased grazing 

intensity, is largest in regions with annual mean precipitation >= 1000 mm (moist; 

Supplementary Figure 22b) and / or with annual mean temperature >= 10oC (warm; 

Supplementary Figure 22c and Supplementary Figure 23). According to our simulation, 

grasslands in South America and Africa are most sensitive to increased grazing intensity, 

because the SOC turnover time in moist/warm conditions is short, making SOC sensitive to the 

changes in soil input (i.e., remaining NPP after grazing). In dry/cold regions, slower 

decomposition allows larger SOC accumulation than in moist/warm regions, and a 20-year 

decrease in soil input does not much change the SOC content in percentage terms. In the meta-

analysis of ref79, however, the largest SOC decrease with intensive grazing was found in 

grasslands with annual mean precipitation <= 600 mm. Ref77 (see their Fig. 5) also found the 

largest SOC decrease in response to grazing over such dry warm regions. This difference 

indicates that our model may underestimate the SOC response to grazing in dry warm regions.  

Ref78 collated the SOC of 22 paired plots under heavy and moderate grazing intensity 

respectively, and calculated the potential carbon sequestration rate as the difference in SOC 

between moderately and heavily grazed treatments divided by the duration of treatment. 

Similarly, we calculated the potential carbon sequestration rate as the difference in SOC at the 

end of year 2000 between simulation with moderate (GI = 37.5%) and heavy (GI = 50%) 

grazing intensity divided by 20 years of simulation. We simulated an increase in the potential 
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carbon sequestration rate with increasing annual mean precipitation, consistent with the finding 

by ref78. However, the average carbon sequestration rate during the first 20 years, 9.7 ± 8.8 g C 

m-2 yr-1 (see box plot in Supplementary Figure 24 for North America), is lower than the rate (18 

g C m-2 yr-1) estimated by ref78. 

From this test, we conclude that the SOC decrease in the model in response to increased grazing 

intensity is reasonable, although perhaps the model overestimates the negative sensitivity to 

grazing in warm and wet regions characterized by a mean rainfall above 1000 mm yr-1 and 

underestimates the sensitivity to grazing in warm and dry regions. 

In summary, from the four complementary evaluation tests in Supplementary Discussion 3 

detailed above, the grazing parameterization of our model can reproduce overgrazing diagnosed 

from NDVI, degraded grassland regions (GLASOD) and observed negative relationships 

between remaining NPP and increased grazing, and between SOC and increased grazing. 

There are some regions where the model performances are weaker though (central Asia).  

Regional historical drivers of over-grazing (e.g. the homestead act and grazing act in the United 

States, land use conflicts between pastoral and agricultural communities in Africa) and 

feedbacks on degradation (e.g. increased wind erosion and dust, shrub encroachment and other 

desertification processes) are not represented in the global model for dry regions.  

For example, the US Great Plains experienced widespread overgrazing before the 1960s 

followed by a partial recovery92, and our simulations may not account well for this overgrazing 

history (Fig. R3). We simulated relatively low GI in the region (GI < 0.2), driven by our low 

reconstructed grazing stocking rate (Supplementary Figure 18). In reality, there could have been 

hotspots with high grazing stocking rates and also changes in livestock distribution in the 

history of that region 92. But it is beyond our capacity (and the purpose of this “global” paper) 

to reconstruct a better density map, because, as far as we know, large scale quantitative 

information on historical distribution of ruminants is not available.  

Alternatively, to investigate the potential carbon losses and gains due to plausible management 

changes in North America, we conducted a sensitivity simulation with prescribed grazing 

intensity of 50% (heavy grazing) during the period 1900-1960 and of 37.5% (moderate grazing) 

after 1960 (hereafter referred to as simulation Eprescribe). Significant soil carbon losses over 

managed grassland before the 1960s are simulated with the arbitrarily prescribed heavy grazing 

intensity, while marginal carbon sinks over managed grasslands are found after 1960s with 



	 18	

arbitrarily moderate grazing intensity (Supplementary Figure 25b). In simulation Eprescribe, 

managed grasslands are simulated to be a net source of +0.02 Gt CO2 yr-1 since 1900 

(Supplementary Figure 25b), in contrast to the net sink of -0.12 Gt CO2 yr-1 since 1900 in 

simulation E4 (Supplementary Figure 25a; i.e., the original simulation with the default 

reconstructed grazing intensity; Supplementary Table 1). On the other hand, the high grazing 

intensity scenario results in less managed grassland to fulfil the reconstructed grass biomass use 

(Supplementary Figure 25d compared to Supplementary Figure 25c). The larger unmanaged 

grasslands in simulation Eprescribe tend to sequestrate more carbon (sink of -0.36 Gt CO2 yr-1 

over 1900-2012) than that in simulation E4 (sink of -0.25 Gt CO2 yr-1 over 1900-2012). For the 

carbon budget over all the grasslands in North America, a weaker carbon sink is obtained in 

simulation Eprescribe during the period 1900s to the 1950s (-0.15 Gt CO2 yr-1), compared to that 

from the control simulation (-0.20 Gt CO2 yr-1). Since 1960, however, the carbon budgets of 

the two simulations are similar  (-0.57 Gt CO2 yr-1 in both simulations).  The resulting net 

climate effect of grasslands of North America in 2012 is very close for simulations E4 (-55 ± 

26 mW) and Eprescribe (-52 ± 24 mW), meaning that, according to our simulations, distant past 

management changes (e.g., before the 1950s in North America) have a small legacy impact on 

the contemporary carbon balance of grasslands but a significant impact in the 20th century 

period when past management was assumed to be more intense. 

 

Supplementary Discussion 4. Attribution of the simulated grassland carbon balance to 

different drivers 

To disentangle the effects of management and environmental drivers, we conducted a series of 

simulations with one factor fixed at a time to attribute the contribution of environmental drivers 

1) climate change, 2) rising CO2, 3) atmospheric nitrogen deposition, and management drivers 

4) land-use change related to grassland area change transitions, 5) changes in livestock densities, 

human input of carbon and nitrogen from manure, and nitrogen from mineral fertilizers, and 

human extirpation of wild grazers (Supplementary Table 7). The contribution of each 

environmental driver has the net effect to enhance grassland carbon storage during the period 

1860-2012. The increase of CO2 by 105 ppm since 1860 has the largest contribution (85% of 

the net cumulative sink of all the drivers including land use change). The contribution of climate 

change alone is positive (sink) in some regions but negative in others, although it is globally 

positive (22%). The contribution of N deposition is comparable, being a global net sink (24% 
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of the total cumulative sink from all drivers). Human-caused changes of livestock densities and 

extirpation of wild grazers accounts for 39% of the global cumulative sink including all drivers. 

In contrast, land use change related to grassland conversion (forest to pasture and grassland to 

cropland) is responsible for a large cumulative loss of carbon to the atmosphere, which offsets 

141% of the cumulative sink. A residual sink of 69% is due to nonlinear interactions of all the 

drivers (Supplementary Figure 5a).  

Increasing CO2 and atmospheric nitrogen deposition have a consistent positive effect on the 

grassland CO2 sink in all regions due to their positive effect on grassland productivity. Land-

use changes related to deforestation to pasture and conversion of grassland to cropland are net 

sources in all the regions where they occurred. On the other hand, the effect of individual drivers 

can vary in different regions. Climate change has a positive effect on grassland carbon storage 

in North America, the Russian Federation, East and Southeast Asia, and Oceania, almost no 

effect in Europe and South Asia, and a negative effect in the Near East and North Africa, Latin 

America and the Caribbean, and Sub-Saharan Africa. The effect of climate change also has 

decadal variations due to climate variability in different regions and over time (Supplementary 

Figure 5b). For example, the strong grassland carbon sink in the 1970s is derived from the 

strong sink in Oceania and Latin America, which is probably caused by the favourable climate 

for grass growth and thus increased soil carbon input. Grassland management (with an increase 

or decrease of livestock numbers) and the extirpation of wild grazers, have a positive effect on 

the grassland CO2 sink in most regions, while they have a negative effect in Latin America and 

Caribbean. At the global scale, grassland management and the extirpation of wild grazers have 

a positive effect on the grassland CO2 sink over history, but the effect has become neutral in 

the past decade. 

Supplementary Figure 6 shows the spatial distribution of the carbon balance over the past three 

decades. Net SOC sinks are located in the temperate North American and Eurasian grasslands, 

especially in Europe where livestock density has decreased significantly in the past two decades. 

Conversely, net carbon sources are found in South America and Africa, partly due to 

deforestation for pasture and increasing livestock numbers (thus higher grass biomass 

consumption and less litter left as soil input) in those regions. We further investigated the effects 

of climate change, increasing CO2, and atmospheric nitrogen deposition since 1860 on soil 

organic carbon content change in topsoil (0-30 cm) and subsoil (30-100 cm). The results are 

shown in Supplementary Figure 26. For each driver, our model gives similar spatial patterns of 

the impacts on topsoil and subsoil SOC. These drivers, in general, have stronger impacts on 



	 20	

topsoil than subsoil SOC. Climate change (mainly temperature and precipitation) has positive 

or negative effects on SOC across the globe. Increasing CO2 has a positive effect on grassland 

SOC all over the world, with the exception of the tropics where grasslands are mainly converted 

tropical forests. This result indicates that, in the model, the SOC of tropical forest has a larger 

positive response to increasing CO2 than the SOC of tropical grassland, and that conversion of 

tropical forest to grassland, under a simulation with increasing CO2, leads to a larger decrease 

in SOC than a simulation with stable CO2 levels. Increasing atmospheric nitrogen deposition 

also has a positive effect on grassland SOC, especially over regions with relatively high 

deposition rates, such as eastern North America, Europe, and China. 

 

Supplementary Discussion 5. Impact of erosion on the grassland carbon budget 

We account for grassland carbon fluxes due to water erosion by using estimates from a global 

gridded erosion module emulated in the carbon cycle of ORCHIDEE-MICT by an adjusted 

version of the Revised Universal Soil Loss Equation (Adj.RUSLE) model 93. The emulator 

comprises grassland soil carbon dynamics, erosion removal fluxes, and the compensatory soil 

sink process from NPP inputs. The soil carbon dynamics scheme of the emulator is derived 

from the ORCHIDEE-MICT model, while  Adj.RUSLE is used to calculate the annual average 

soil erosion rate for each biome in each grid cell. The erosion factors in the Adj.RUSLE model 

are modified so as to be compatible with coarse resolution environmental input data. The model 

is calibrated to be applicable at the large spatial scale and has been validated at the global scale 

for different land uses94,95.  

Water erosion decreases soil organic carbon, but the removal of soil organic carbon leads to a 

decrease in soil respiration. With the assumption that carbon input through NPP will not change, 

i.e. there is no feedback of erosion on a loss of NPP through degraded soil physical properties 

and fertility, erosion can result in a net loss or an enhanced carbon sequestration when NPP 

inputs compensate for carbon removed laterally by erosion. Therefore, the net carbon fluxes 

caused by water erosion include both gross carbon erosion removal and the extra sink due to 

reduced soil respiration compared to NPP derived inputs. The soil erosion and extra sink from 

ref93 is based on a ORCHIDEE-MICT version similar to the one used in this study (but without 

accounting for grassland management) and with identical land cover change history as used 

here96. Therefore, we used the gridded gross carbon erosion removal fluxes and the extra sink 
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over grassland for the period 1860-2005 from simulation S1 of ref93 directly to estimate net 

carbon fluxes caused by water erosion over grassland. For the period 2006-2012, fluxes with 

values equal to the mean values during the period of 2000-2005 are applied. In addition, to 

account for the uncertainty in water erosion, the minimum and maximum soil erosion scenarios 

from ref94 are applied to calculate the range of erosion fluxes.  

Globally, we found that gross soil carbon losses due to water erosion in grasslands increased 

from 204 [165 – 208] Tg C yr-1 in 1860s to 287 [242 – 380] Tg C yr-1 in 1990s (values in the 

bracket are estimates obtained by using the minimum and maximum soil erosion rates; 

Supplementary Figure 25a). Carbon lost by this removal process was assumed to be respired as 

CO2 to the atmosphere, which is a conservative estimate of the net carbon loss from soils due 

to water erosion (see below). In the meantime, the erosion-induced soil carbon sink due to a 

soil respiration reduction increased from 196 [156 – 266] Tg C yr-1 in 1860s to 223 [181 – 303] 

Tg C yr-1 in 1990s (Supplementary Figure 27b).  

Overall, we found that net carbon fluxes induced by water erosion over grasslands increased 

from a marginal source of 8 [8 – 15] Tg C yr-1 in 1860s to a significant source of 63 [60 – 76] 

Tg C yr-1 in 1990s (Supplementary Figure 27c). During the 1990s, the strongest water erosion 

and resulting net carbon source are simulated over regions with high precipitation (e.g., tropical 

regions, southeast Asia, and northwest North America) or/and high rainfall erosivity97, or/and 

high slope steepness (e.g., southwest China, and the Alps; Supplementary Figure 28). 

Wind erosion was not accounted for as, to our knowledge, no global dataset is available. In 

addition, overgrazing and drought tend to reduce vegetation coverage and enhance wind and/or 

water erosion rates. However, there is no global parameterization of the above effects as far as 

we know, which prevent us taking them into account. Nevertheless, the grassland net carbon 

fluxes due to erosion used in this study could potentially be underestimated because we neglect 

wind erosion (e.g., ref 98) and the potential enhanced water erosion from overgrazing and 

drought. Although it is beyond the scope of the grassland carbon balance focus of this study, it 

should be noted that not all of the eroded soil carbon is released as CO2, and part of the carbon 

is redeposited and can be buried for long periods in alluvial and colluvial reservoirs 99. For 

example, previous studies have shown that up to 80% of the eroded soil and carbon can be 

redeposited, with about 10% to 20% of the eroded carbon being sequestered100,101.  

 



	 22	

Supplementary Discussion 6. Effect of grassland management on the simulated fuel loads, 

burned area and fire emissions 

To account for the impact of fire on the grassland carbon balance and the interaction between 

grassland management and fire, the SPITIFIRE model, which was part of another version of 

the ORCHIDEE model, was included in the version of ORCHIDEE-GM v3.2 used in this study 
72,102,103. The SPITFIRE fire module explicitly simulates open vegetation fires, including fuel 

load impacts on fire propagation and fire impacts on grassland and woodland dynamics 102,103. 

Here, we first compared the simulated burned area and fire CO2 emissions against observation-

derived estimates and against an ensemble of state-of-the-art global fire models that are 

included in the fire model inter-comparison project (FireMIP 104). We then investigated the 

effects of grassland management on burned area, CO2 emissions, and fuel loads.  

The simulated global burned area during the period 1997-2012 (4.9 ± 0.2 million km2; without 

accounting for grassland management) is found to be well within the range of three satellite-

based observation data sets (4.9 ± 0.2 million km2 in GFED4s data set; 4.0 ± 0.3 million km2 in 

ESA-CCI data set; and 3.6 ± 0.2 million km2 in GFED4 data set) and those from FireMIP 

models (ranging from 3.5 ± 0.3 to 5.4 ± 0.3 million km2 105; Supplementary Figure 29a). The 

simulated global fire emissions are 2.0 ± 0.1 Pg C yr-1 during 1997-2012 without accounting 

for grassland management, which is comparable to the GFED4s data set using satellite burned 

area and fuel load from the diagnostic CASA model (2.2 [1.8 – 3.0] Pg C yr-1; numbers in 

brackets give minimum and maximum estimates) where grassland management effects on fire 

emissions are not considered.  

Grassland management significantly decreases fuel loads (dominated by aboveground litter in 

our model) by 1.4 Pg C in 1900s (Supplementary Figure 29c). Following the increase in 

ruminant numbers, the expansion of managed grassland, and the increase in management 

intensity over the 20th century (Supplementary Figure 2), we simulate a decrease in fuel loads 

caused by grassland management reaching 1.8 Pg C in the 2000s, compared to the simulation 

without grassland management. The lower fuel loads further reduced burned area by 0.2 million 

km2 (Supplementary Figure 29a) and decrease associated fire emissions by 0.1 Pg C yr-1 in the 

2000s (Supplementary Figure 29b). Thus, in our simulation, grassland management 

significantly decreased burned area over most of the managed grassland, especially in Sub-

Saharan Africa (decrease by 0.13 million km2 (7%) in the 2000s) and South America (decrease 

by 0.03 million km2 (5%) in the 2000s). In a few regions such as the northern Great Plains in 
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North America and southern France, the extensive grazing increases fuel loads and slightly 

increases burned area (Supplementary Figure 30b). We further investigated the impact of 

grassland management on fuel loads under different grazing intensities (mean values during the 

period 1991-2010). As expected, in general, fuel loads decrease along with increasing grazing 

intensity (Supplementary Figure 23d).  

Furthermore, we investigated the modelled trend of burned area with accounting for grassland 

management (Supplementary Figure 30c) and the contribution due to the changes of grassland 

management intensity during the period 2000-2012 (Supplementary Figure 30d). To attribute 

the effects of management intensification, we conducted a factorial simulation with grassland 

management intensity fixed at the year 2000 level for the period 2000-2012 (Efixintensity). The 

difference in the trends of burned area between the default simulation E4 and Efixintensity is the 

contribution from management intensification. Our results show that recent intensification of 

grassland management led to a decreasing burned area in some regions of Sub-Saharan Africa 

and South America (Supplementary Figure 30d). We found that grassland management 

intensification, caused by the increase in livestock numbers, contributed 35% of the overall 

simulated downward trend of burned area in northern Africa (latitude > 0oN; trend of -1.38% 

yr-2 for default simulation E4 and for -0.89% yr-2 for simulation Efixintensity). The effect is much 

larger than the contribution from cropland expansion (20% for the period 2001-2012 106). In 

South America, 60% of the overall simulated downward trend of burned area can be attributed 

to the grassland management intensification (trend of -0.97% yr-2 for default simulation E4 and 

for -0.38% yr-2 for simulation Efixintensity). 

In summary, our model can effectively capture the impact of fire on the carbon balance of 

grasslands and the impact of grassland management on fuel loads and the trends of burned area. 

Biomass burning not only emits CO2, but can also release various components into the 

atmosphere including CH4 and N2O 107.  Here, we do not account for the fire related CH4 and 

N2O emissions, but the error induced by such omission is small, given the fact that CH4 and 

N2O emission accounts for 2.9% and 3.1% of the warming potential of the GHG emissions 

from savanna fires 108. In addition, fire may alter the soil CO2, CH4 and N2O emissions (e.g., 

ref109). Although these soil effluxes of CH4 and N2O are not simulated in our model, the impacts 

of fire on soil CO2 efflux have been implicitly included, mainly through fire impacts on 

vegetation and its further impacts on the land surface and soil energy and water balance. 
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Supplementary Discussion 7. Grassland area, managed grassland area and management 

intensity 

In the historical land cover maps96 used in this study, the global grassland area changed from 

51.7 million km2 in 1860 to 49.7 million km2 in 2012 (Supplementary Figure 2). The current 

grassland area used in this study is within the wide range given by the recent IPCC SRCCL 110, 

which indicates grass dominated ecosystem covering 37% (30 – 47%) of the global ice-free 

land surface (i.e., 48.1 (39-61.6) million km2). The global managed grassland area estimated 

here increased from 8.5 million km2 in 1860 to 16.5 million km2 in 2012 (Supplementary Figure 

2). The largest expansion of managed grassland is found in sub-Saharan Africa (+2.6 million 

km2) and Latin America and the Caribbean (+2.0 million km2), followed by the Near East and 

North Africa (+1.7 million km2) and East and Southeast Asia (+1.2 million km2). Besides the 

expansion of managed grassland area, the average grazing intensity of managed grassland (GI) 

was simulated to increase 60% globally from 0.10 to 0.16 (Supplementary Figure 31). Here, GI 

is an indicator representing management intensity77, which is defined as the total harvested and 

grazed carbon as a ratio of total aboveground NPP (ANPP) over managed grassland. The largest 

value of GI and also the largest GI increase was simulated to be in South Asia, due to the high 

grass biomass demand and low grassland area. Over European managed grassland, GI increased 

continually since the 1860s, but dropped rapidly in the past two decades. A similar drop in GI 

was simulated in Russia, due to the significant decrease in livestock numbers in these two 

regions. A slight decrease in GI was also simulated in North America in the past three decades. 

A fast increase in GI was simulated over managed grassland in East and Southeast Asia in the 

past three decades, and in Latin America and the Caribbean in the past five decades. 

Supplementary Figure 32 shows the spatial distribution of grassland fraction in 2010, and 

managed grassland fraction, grazing stocking rate and grazing intensity (GI) in the 2000s 

obtained in this study. High GI values were simulated in part of the western United States, the 

southern edge of Amazonia, southeast Argentina, Europe, northern and eastern Africa, India, 

Mongolia, and northern China.  

 

Supplementary Discussion 8. Effect of rising atmospheric CO2 concentration on the 

simulated productivity 

The rising CO2 concentration is the main driver of the simulated grassland CO2 sink in all 

regions. It has the dual effect of increasing leaf photosynthesis and reducing stomatal 



	 25	

conductance, thus indirectly increasing soil moisture in unsaturated soils. These effects increase 

water-use efficiency 111 and reduce the consumption of soil moisture by plant transpiration 112. 

Experiments like Free-Air CO2 Enrichment (FACE) have tested the effects of elevated CO2 on 

a number of terrestrial ecosystems (usually between ambient CO2 concentration and an elevated 

level of 475-600 ppm), and provided valuable data on the responses of the carbon cycle. 

However, trends and variability in temperature and precipitation, as well as nitrogen limitation, 

will all interact with the effects of elevated CO2 to determine actual changes in productivity in 

response to CO2 
112-116. In addition, the response to the increasing CO2 may be non-linear, which 

means the response to further CO2 increase may not be fully comparable with the response in 

history. The strong interactions of the CO2 fertilization effect with local conditions and the non-

linear response prevent a direct comparison with our simulation which has a spatial resolution 

of 0.5 by 0.5°.  

Instead, we compare the simulated response of plant productivity to increasing CO2 during the 

historical period (i.e., CO2 fertilization effect Eco2) to observation-based estimates for C3 plants 

from historical change of deuterium isotopomers in leaf herbarium samples 117 and for global 

(C3 and C4) vegetation to indirect evidence from carbonyl sulfide (COS) atmospheric ice-core 

observations 118. Here, the CO2 fertilization effect (Eco2) is defined by the ratio of GPP (g C m-

2 yr-1) under the current CO2 concentration of 396 ppm (GPP396) to that under a CO2 

concentration of 296 ppm (GPP296). The CO2 concentrations of 296 ppm and 396 ppm 

correspond to the tropospheric mixing ratio of CO2 in year ~1900 and 2012 respectively, and 

are similar to the values used for estimating the response of GPP to a ~100 ppm CO2 increase 

in refs 117 and 118. It should be noted that the comparison is not only for grassland, but for natural 

biomes. The simulated GPP from grid cells of natural biomes averaged for the periods 1901-

1905 and 2008-2012 were used as GPP296 and GPP396, respectively. Here, natural biomes 

indicate grid cells: 1) with less than 20% of cropland fraction in both periods (i.e., without 

significant land use); 2) where biome (forest, grassland, cropland) changes by less than 20% of 

the grid cell between the two periods (i.e., without significant land-use change); and 3) with 

mean annual GPP higher than 100 g C m-2 yr-1 (i.e., not too sparse vegetation).  

The modelled Eco2 by ORCHIDEE-GM for natural biomes ranges between 1.13 and 1.46 for 

most regions (16th and 84th quantile regression, respectively; Supplementary Figure 33a) with 

mean Eco2 of 1.23, slightly lower than the global Eco2 based on long-term atmospheric carbonyl 

sulfide (COS) records of 1.26-1.36118. The modelled Eco2 for C3 plants ranges between 1.15 

and 1.47 for most regions (16th and 84th quantile regression, respectively; Supplementary Figure 



	 26	

33b). The mean Eco2 of 1.24 is consistent with that from herbarium samples (Eco2 = 1.25117). In 

summary, our simulation shows a comparable productivity response to the rising CO2 in the 

past century compared to observation-based estimates,  

 

Supplementary Discussion 9. The climate effect of grassland greenhouse gas fluxes  

The global radiative forcing (RF) from CH4 and N2O emissions is 70 ± 15 mW m-2 (14 ± 3% 

of the global radiative forcing from CH4 emissions) and 30 ± 10 mW m-2 (17 ± 6% of the global 

radiative forcing induced by N2O emissions) respectively. Thus, they have a warming effect on 

climate. The net CO2 sink of grassland makes a negative contribution (a cooling effect) of –194 

± 99 mW m-2, offsetting 11 ± 5% of the current global radiative forcing induced by total 

anthropogenic CO2 emissions including fossil fuel and land-use change emissions. In contrast, 

the land-use change emission related to grassland, including deforestation to pasture and 

conversion of grassland to cropland, has a warming effect of 108 ± 35 mW m-2 (7 ± 2% of the 

global radiative forcing induced by total anthropogenic CO2 emissions). The climate effect of 

the grassland GHG fluxes accounts for not only the instantaneous effect of individual gases, 

but also their atmospheric lifetime119,120. The long lifetime of CO2121,122 indicates that early 20th 

century CO2 sinks of grassland can still make a negative contribution to the current radiative 

forcing. Grassland-related surface albedo change induced by land-use change has only a 

marginal effect on climate (–3 ± 8 mW m-2). 

Since 1901, the cooling effect of carbon sinks in grassland soils worldwide has outweighed the 

warming effect of CH4 and N2O emissions, and partly offset the warming effect from land-use 

change emission related to grassland (Fig. 4b). This offsetting makes the net climate effect of 

global grasslands nearly neutral across the 20th century. This is remarkable, since grassland 

anthropogenic CH4 and N2O emissions increased by factors of 2.6 and 2.2 during that period, 

and large-scale deforestation to pasture (as in South America) took place after the 1930s. The 

absolute contributions of grasslands to global RF through CH4 emissions have progressively 

increased since 1901. The grassland RF contribution through N2O emissions shows a small 

increase between 1901 and 1960, and a strong increase afterwards. CH4 emissions made a larger 

contribution to RF than N2O emissions across the 20th century. 
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Supplementary Methods 1. Model and methods used for grassland greenhouse gas 

assessment 

Model description 

ORCHIDEE is a process-based ecosystem model developed for simulating carbon, water and 

energy fluxes in ecosystems, from site level to global scale123-125. ORCHIDEE-GM126 is a 

version specifically developed to integrate the management of grassland126. The equations 

describing management in ORCHIDEE are derived from PaSim127-130. Accounting for  

management practices, such as mowing, livestock grazing and fertilizer application, on a daily 

basis, ORCHIDEE-GM is capable of simulating the dynamics of leaf area index, biomass, and 

carbon fluxes of managed grasslands. ORCHIDEE-GM v1 was evaluated, and some of its 

parameters calibrated, using eddy-covariance net ecosystem exchange and biomass 

measurements from 11 European grassland sites representative of a range of management 

practices. The model successfully simulates the net carbon budget of these managed 

grasslands126. Ref131 added a parameterization of adaptive management through which farmers 

react to a climate-driven change to previous-year productivity. Though a full nitrogen cycle is 

not included in ORCHIDEE-GM, the positive effect of nitrogen fertilizers on grass 

photosynthesis rates, and thus on subsequent ecosystem productivity and carbon storage, is 

parameterized with an empirical function calibrated from literature estimates (v2.1131). 

ORCHIDEE-GM v2.1 was applied over Europe to calculate the spatial pattern, inter-annual 

variability, and the trends of potential productivity, i.e. the productivity that maximizes 

simulated livestock densities assuming an optimal management system in each grid cell131. This 

version was further used to simulate the net carbon budget, budget trends, and the GHG balance 

of European grasslands during the last five decades at a spatial resolution of 25 km7. Ref132 

recently updated the model to version 2.2 with the general parameterizations from ORCHIDEE 

Trunk.rev3623 (https://forge.ipsl.jussieu.fr/orchidee/browser/trunk#ORCHIDEE), and a new 

parameterization limiting grazing practices under specific conditions such as frost, snow cover 

and wet soil.  ORCHIDEE-GM v2.2 was driven by projected future climate change to provide 

a European-wide assessment of the future changes in productivity and phenology of grassland, 

and their consequences for management intensity and the carbon balance.  

At the global scale, ORCHIDEE-GM v3.1 is a development of v2.1, and includes a parameter 

adjustment for the C4 grassland biome and implements a specific strategy for wild herbivores 
133. Combining livestock production information, ORCHIDEE-GM v3.1 was applied to 
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reconstruct a series of global gridded maps containing a time-dependent history of grassland 

management intensity. These maps are model-dependent, and provide a unique opportunity for 

models with explicit representation of grassland management to make a more accurate estimate 

of global carbon and GHG budgets of grassland 133  – as we have here. In this study, 

ORCHIDEE-GM v3.1 has been updated with i) the parameterizations of v2.2 and ii) the general 

parameterizations from ORCHIDEE-MICT72.rev5308 

(https://forge.ipsl.jussieu.fr/orchidee/wiki/Branches/ORCHIDEE-MICT-IMBALANCE-P) to 

a new version named ORCHIDEE-GM v3.2. ORCHIDEE-MICT72 is a version of ORCHIDEE 

with improved interactions between soil carbon, soil temperature and hydrology, and a fire 

module. 

 

Model input 

ORCHIDEE-GM v3.2 was run on a global grid using the 6-hourly CRU-NCEP v8134,135 

reconstructed climate data at 0.5o × 0.5o spatial resolution for the period 1901–2012. The 

climate data are identical to those used to drive TRENDY v6 models. The fields used as the 

climate input of the model are temperature, precipitation, specific humidity, solar radiation, 

wind speed, pressure, and longwave radiation. Global atmospheric CO2 concentration, used to 

force the model, is prescribed from the combination of ice core records and atmospheric 

observations for 1860–2010136. The ESA CCI Land Cover product137 for the year 2010 was 

used to produce the Plant Functional Type (PFT) map used in the ORCHIDEE model 

(Supplementary Table 4), following the methodology presented by ref138,139. An updated release 

of the historical land-use forcing data set LUHv2h (http://luh.umd.edu/data.shtml; updated from 

LUHv1140) was applied to this reference PFT map to constrain the land-cover changes of forest, 

grassland (combining pasture and natural grassland), and cropland during the period 1860–2010 

using the backward method (BM3) following ref96. It is noteworthy that the cropland area in 

LUHv2h is constrained based on the HYDE3.2 data set141. Another environmental input is the 

atmospheric nitrogen deposition maps from the IGAC/ SPARC Chemistry-Climate Model 

Initiative (CCMI 142). Dominant soil texture in each 0.5o × 0.5o grid cell used as model input is 

based on the 12 USDA texture classes provided at the 0.08◦ resolution from ref 143. 

To simulate the GHG balance of grassland, we must use the historical grassland management 

intensity as a model input. We followed the same methods as in ref 133 to reconstruct the history 

of grassland management intensity for the period 1860–2012 combining gridded and regional 
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livestock production information with productivity from ORCHIDEE-GM v3.2. We extended 

the reconstructed historical grassland management intensity back to 1860 instead of 1901. To 

do so, we hindcasted management intensity to 1860 following changes in the regional 

population, assuming that domestic livestock production experienced the same rate of change 

as population during the period 1860–1900. Another difference comes from the historical land-

cover change maps. The comparison between the historical land-cover change maps used here 

(described above) and in ref 133 is listed in Supplementary Table 4. The reconstructed historical 

maps on grassland management intensity (1860–2012) are the managed grassland area 

(Supplementary Figure 32b), with the fraction that is mown or grazed, and yearly maps of 

domestic grazing (Supplementary Figure 32c) and ruminant stocking density, and yearly maps 

of manure and fertilizer application rate over managed grassland (Supplementary Figure 33a). 

The methodology for the reconstruction is detailed in Supplementary Methods 1, Section 

“Reconstructing the history of grassland management intensity”.  

In addition to domestic livestock, wild grazers also consume grass biomass and contribute to 

the GHG balance of grassland. Here, we combined wild animal species information64, diet 

information65, modelled natural grassland productivity and an anthropogenic biome 

classification system66,67 to reconstruct the gridded history of wild grazer density and the wild 

and semi-natural grasslands occupied by these wild grazers (see Supplementary Methods 1, 

Section “Reconstructing the history of wild grazer density and grazed area” for details).  

The managed grassland area and the fraction that is mown or grazed, and the wild and semi-

natural grasslands occupied by wild grazers were incorporated into the historical land-cover 

change maps, which defined an enhanced historical land-cover map delineating grassland 

management types and wild grazer occupation (mown, grazed, natural, and wild). Input data 

consisting of nitrogen fertilizer application maps, including manure- and mineral-based 

nitrogen fertilizers, is as described in ref 133. Atmospheric nitrogen deposition maps covering 

1860–2012 were from the IGAC/SPARC Chemistry-Climate Model Initiative (CCMI) 

deposition fields142.  

 

Reconstructing the history of grassland management intensity 

1. Domestic grazing-ruminant stock density 
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Gridded domestic grazing-ruminant stock density was constructed by combining the domestic 

ruminant stocking density, historical land-cover change maps and protected fraction. Assuming 

that all the ruminants in each grid-cell were grazing on the grassland within the same grid, we 

define the grazing-ruminant stocking density in grid-cell k in year m (Dgrazing,m,k, unit:  LU per 

ha of grassland area) as: 

"#$%&'(#,*,+ =
-.,/

012344,.,/×062789:89;,/
  

     (1)
 

where Dm,k is the total domestic ruminant stocking density (unit: LU per ha of land area);  fgrass,m,k 

is the grassland fraction in grid-cell k in year m from a set of historic land-cover change maps 

described in Supplementary Methods 1, Section “Model input”; and fprotected,k is the fraction of 

land area formally protected in grid-cell k derived from 

ref144(https://geospatial.tnc.org/pages/data). We assumed that the protected area is excluded 

from grazing by domestic livestock and remains constant across history because we do not have 

any better information on the protected area history. Median fprotected,k from the range provided 

by ref144 was applied. To avoid unrealistic densities of ruminant grazing over grassland (which 

might cause grasses to die during the growing season), a maximum value of 5 LU ha-1 was set 

for the density map. In addition, a minimum grazing-ruminant density of 0.2 LU ha-1 was set, 

to avoid economically implausible stocking rates.  

2. Domestic ruminant stocking density 

The domestic ruminant stocking density maps originate from the Gridded Livestock of the 

World v2.0 (GLW v2.086). GLW v2.0 provides gridded livestock density (unit: head per km2) 

of cattle, sheep and goats for the year 2006. To obtain a more consistent and realistic ruminant 

stocking density, livestock species in GLW v2.0 were converted to livestock unit (LU) based 

on the calculation of the metabolisable energy (ME) requirement for each country. ME 

requirement, the amount of energy (MJ day-1) an animal needs for maintenance and for 

activities such as lactation, and pregnancy, can be calculated based on meat (carcass weight) 

and milk yield following the IPCC Tier 2 algorithms145 (IPCC, 2006 Vol 4, Chapter 10, Eqs. 

10.3 to 10.13). One LU is defined as an average adult dairy cow producing 3000 kg milk 

annually, with live body weight of 600 kg 146 (with ME requirement of ca. 85 MJ day-1, and 

with dry matter intake of ca. 18 kg daily). The conversion factor (F) for livestock category i 

(i.e., cattle, sheep or goats) in country j is calculated as: 
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         (2)
 

where MELU (unit: MJ yr-1 LU-1) is the ME requirement by one LU; and MEhead,i,j (unit: MJ yr-

1 head-1) is the ME requirement per head of livestock category i in country j, given by: 

        (3)
 

where Nanimal,i,j (unit: head) is the total number (in head from FAOSTAT) of animals in livestock 

category i in country j; MEi,j (unit: MJ yr-1) is the total ME requirement of livestock category i 

in country j, which includes the ME of animals for different production types (i.e., animals 

producing milk, slaughtered for meat, or animals neither producing milk nor slaughtered for 

meat; see Supporting Information Text S1 of ref7 for details). To be consistent with the country-

level livestock data used by GLW v2.0, statistical data 62 for the reference year 2006 were used 

to calculate the conversion factors. 

For each grid-cell k in country j, the ruminant density of category i for the reference year 2006 

(Dref,I,j k) can be calculated as: 

        (4) 

where DGLW,i,k is the original density of livestock category i in grid-cell k from GLW v2.0 data 

set (with original unit head per square km of suitable areas in livestock production systems 147). 

To be consistent with the spatial resolution of climate forcings used to drive global vegetation 

models, the category-specific ruminant stocking density (DGLW,i, k) was aggregated from the 

original resolution (about 1 × 1 km at the Equator) to 0.5o × 0.5o (about 50 × 50 km at the 

Equator) considering suitable areas in livestock production systems147, and was then converted 

to the unit of LU per hectare of land area in each grid-cell.  

Domestic ruminant numbers, and therefore stocking density, are continually changing from 

year-to-year as reported in FAOSTAT 62. However, GLW v2.0 only provides livestock density 

for the reference year (i.e., 2006). To establish the historic changes of ruminant density from 

1860 to 2012, two assumptions were made: 1) the distribution of ruminant density did not 

change during the time-span of this study (1860 - 2012); and 2) the changes in the ruminant 

!!
Fi , j =

MEhead ,i , j
MELU

MEhead ,i , j =
MEi , j
Nanimal ,i , j

Dref ,i , j ,k =DGLW ,i ,k ×Fi , j
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density of each category in all grid cells of a country co-varied with the changes in category-

specific ME requirement in that country. Thus the total ruminant density for grid-cell k in 

country j in year m (Dm,j,k, with the unit of LU per ha of land area) is calculated as:  

        (5) 

where Dref,i,j,k is the ruminant density of category i for grid-cell k in country j in the reference 

year (i.e., 2006); MEm,i,j and MEref,i,j (units of both: MJ yr-1) are the total ME requirement by 

ruminant category i for country j in year m and in the reference year, 2006, respectively . The 

method used to calculate the ME requirement is given in Supporting Information Text S1 of 

ref7. Here, the range of year m is from 1961 to 2012, since FAOSTAT 62 provides annual 

country-averaged statistical data for dairy cows, beef cattle, sheep and goats of livestock 

numbers (unit: head), and meat (carcass weight) or milk yield for the period from 1961 up to 

the present day.   

For the period 1961-2012, the annual country-averaged statistical data for dairy cows, beef 

cattle, sheep and goats of livestock numbers (unit: head), and meat (carcass weight) or milk 

yield are available in FAOSTAT62. For the period 1890-1960, regional livestock numbers for 

10-year intervals derived from ref148-150 were scaled to match the 1961 FAOSTAT data (data 

processed by Dr. Kees Klein Goldewijk, and given for 17 world regions with the numbers of 

cattle, sheep and goats; available in the HYDE database: 

http://themasites.pbl.nl/tridion/en/themasites/hyde/landusedata/livestock/index-2.html). The 

17 world regions were designated for global change research, as defined by ref151. Linear 

interpolation is applied to calculate the regional livestock numbers for each year. For the period 

1860-1890, regional livestock numbers are assumed to experience the same rate of change as 

regional population during the period 1860–1890. Assuming the meat (carcass weight) and milk 

yields for the period of 1860-1960 are the same as those for 1961 from FAOSTAT 62, total 

ruminant stocking density for grid-cell k in region q in year m (Dm,p,k) is then simply extended 

to 1860-1960 through: 

       (6)
 

where Dref,i,q,k is the ruminant density of category i for grid-cell k in region q in the reference 

Dm, j ,k = (Dref ,i , j ,k ×
MEm,i , j
MEref ,i , j

)∑

Dm,q ,k = (Dref ,i ,q ,k ×
MEm,i ,q
MEref ,i ,q

)∑
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year (i.e., 2006); MEm,i,q and MEref,i,q are the total ME requirement by ruminant category i for 

region q in year m and in the reference year, 2006, respectively. Regional livestock numbers 

were further hindcasted to 1750 using the same rate of change as that of the regional population 

during the period 1750-1860. These values were used to calculate CH4 and N2O emissions from 

domestic ruminants. 

3. Manure and mineral fertilizer application over grassland 

The nitrogen application rate of manure and mineral fertilizer over European grasslands (EU27) 

came from ref152-154 (as used in ref7). For countries/regions other than the EU-27, the following 

data were used. The amount of manure-N fertilizer (excluding manure deposited during grazing) 

for 17 world regions in 1995 was derived from various sources (e.g., ref155-157): these are 

synthesized by ref 158,159. For mineral-N fertilizers on grassland, country-scale data of fertilized 

area and mean fertilization rate for 1999/2000 are available in ref160 with grassland/pasture 

being fertilized in 13 non-EU countries. The regional/country-scale data were downscaled to a 

0.5° × 0.5° grid, and extended to cover the period 1860-2012.  

To downscale the total amount of regional N fertilizer to grid-level (except for OECD Europe 

and Eastern Europe where gridded data are available), the rules suggested by ref158 were used, 

namely: animal manure application to grasslands is assumed to occur in mixed farming systems 

that are defined as grasslands occurring in grid-cells where the arable land coverage exceeds 

35% in developed countries and 15% in developing countries. Here, the grasslands that satisfy 

the above rules were cited as manure-suitable grassland (Amanure-suit,ref,q,k). In addition, assuming 

a higher ruminant density produces more manure, we calculate the manure-N application rate 

for grid-cell k in region q in the manure data reference year, 1995, (Nmanure,ref,q,k) as: 

    (7) 

where Qmanure,q is the total amount of manure-N fertilizer in region q from ref158,159; Amanure-

suit,ref,q,k is the manure-suitable grassland area for grid-cell k in region q; and Dref,q,k is the total 

domestic ruminant stocking density (including cattle, sheep and goats from the maps 

established in Supplementary Methods 1, Section “Reconstructing the history of grassland 

management intensity”) for grid-cell k in region q where manure-suitable grassland exists. 

Nmanure ,ref ,q ,k =
Qmanure ,q

(Dref ,q ,k × Amanure−suit ,ref ,q ,k )∑
×Dref ,q ,k
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Given the assumption that a higher ruminant density produces more manure, the manure 

fertilizer application rate (Nmanure) is assumed to change along with changes in the total ruminant 

stocking density (as calculated in Supplementary Methods 1, Section “Reconstructing the 

history of grassland management intensity”). It is calculated as: 

      (8)
 

where Nmanure,m,k and Nmanure,ref,k is the manure N application rate for grid-cell k in year m and in 

the manure application data reference year, 1995, respectively; Dm,k and Dref,k are the total 

domestic ruminant stocking density (from the maps established in Supplementary Methods 1, 

Section “Reconstructing the history of grassland management intensity”) in grid-cell k in year 

m and manure application data reference year 1995 respectively. 

For mineral-N fertilizers on grassland, country-scale data of fertilized area and mean 

fertilization rate (Nmineral) for 1999/2000 are available in ref 160 with grassland/pasture being 

fertilized in 34 countries. Of these 34 countries, 21 of them are in the EU-27 for which gridded 

fertilizer application rate data  is available. For the other 13 non-EU-27 countries, the fertilized 

areas are given, indicating that not all the grassland is fertilized. Thus the national mean 

application rates are applied on grid-cells with a total ruminant stocking density above a certain 

threshold. The value of this threshold is determined for each country, making the total grassland 

area of fertilized grids identical to the national fertilized grassland area reported by ref160. 

However, note that the regional total amount of mineral-N fertilizer aggregated from country-

scale data in ref160 is much lower than the values given in ref159. 

The temporal evolution of gridded mineral-N fertilization for the EU-27 has been described by 

ref7. For the other 13 countries, the country-scale total nitrogenous fertilizer consumption data 

(Qmineral); derived from FAOSTAT62) were used to extrapolate the mineral-N application rate 

(Nmineral). For Azerbaijan and Belarus, where FAOSTAT only provide data for 1992-2002, the 

variation of nitrogenous fertilizer consumption by the former USSR is used for the period 1961-

1991. The rate of mineral-N application for grid-cell k in year m in country j (Nmineral,m,j,k) 

changes along with the variation of country-scale Qmineral, and is calculated as: 

      (9)
 

Nmanure ,m,k =Nmanure ,ref ,k ×
Dm,k
Dref ,k

Nmineral ,m, j ,k =Nmineral ,ref , j ,k ×
Qm, j
Qref , j
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where Nmineral,ref,k is the mineral-N application rate for grid-cell k in the mineral application data 

reference year, 2000, which is given by ref160; Qm,j and Q2000,j are the country-scale total 

nitrogenous fertilizer consumption in country j in year m and in the mineral application data 

reference year, 2000, respectively. The mineral-N fertilization rate after 2002 is taken as a 

constant using the value for 2002. For the period 1901-1960, the same set of rules as applied 

for the EU-27 (see section ‘Simulation set-up’ in ref7 for details) are used: 1) no mineral-N 

fertilizer was applied over grassland before 1950; and 2) for the period 1951-1961, the rate of 

application is assumed to increase linearly from zero to the level of 1961. 

4. Managed grassland area with the fraction that is mown or grazed 

We combined model output, grass biomass use data and grassland area data to reconstruct 

managed grassland area with the fraction that is mown or grazed. Ref63 established a global 

livestock production data set containing a high-resolution (8 km × 8 km) gridded map of grass-

biomass use for the year 2000. Here, this data set is extrapolated annually over the period 1860-

2012 to constrain the grass-biomass consumption in ORCHIDEE-GM v3.2. Assuming that 

grass-biomass use for grid cell k in country j and year m (GBUm,j,k, unit: kg dry matter (DM) 

per year) varies proportionally with the total ME requirement of domestic ruminants in each 

country, GBUm,j,k can be calculated from its value in the year 2000 given by Ref63, according 

to : 

       (10)
 

where Dm.k and D2000,k are the total ruminant stocking density for grid-cell k in year m and in 

year 2000 calculated in Supplementary Methods 1, Section “Reconstructing the history of 

grassland management intensity”, which take into account the changes in category-specific ME 

requirement at country-scale (1961-2012) or regional-scale (1860-1960).
 
 

ORCHIDEE-GM simulates the annual potential (maximal) harvested biomass from mown 

grasslands (Ymown, unit: kg DM m-2 yr-1 from mown grassland) and the annual potential biomass 

consumption per unit area of grazed grassland (Ygrazed, unit: kg DM m-2 yr-1 from grazed 

grassland) in each grid-cell. Under mowing, the frequency and magnitude of forage harvests in 

each grid cell is a function of grown biomass 130. The effective yield on grazed grassland (i.e., 

Ygrazed) depends on the grazing stocking rate (here, Dgrazing) and on the environmental conditions 

of the grid cell 7, and calculated as:  

GBUm,k =GBU2000,k ×
Dm,k

D2000,k
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      (11) 

where IC is the daily intake capacity for 1 LU (~ 18 kg dry matter per day calculated in 

Supporting information Text S1 of ref7), Tgrazing,m,k is the number of grazing days in grid cell k 

at year m. Due to the impact of livestock on grass growth through trampling, defoliation (i.e., 

biomass intake) etc., thresholds of shoot biomass, depending on the grazing stocking rate, are 

set for starting, stopping and resuming grazing 87. For each grid cell, we set the biomass 

threshold for starting grazing as Bstart, and the threshold for stopping grazing as 0.45´Bstart, and 

made the grass biomass between the two thresholds enough to be continually grazed for 60 days 

under the grazing stocking density in that grid cell. The thresholds then determine when grazing 

stops (0.45´Bstart), or when grazing can start again (dry biomass recovered to the thresholds 

Bstart for at least 15 days). Ygrazed is usually lower than Ymown in temperate grasslands, due to the 

lower herbage-use efficiency of grazing simulated by ORCHIDEE-GM87. However, in some 

arid regions, the grass biomass does not grow enough during the season to trigger harvest, i.e., 

it does not reach the threshold in the model at which farmers are assumed to decide to cut grass 

for feeding forage to animals (see ref87), so that Ygrazed can become larger than Ymown. The 

following set of rules was used to reconstruct historical changes in grassland management 

intensity, based on Ygrazed and Ymown simulated by ORCHIDEE-GM: 

Rule-1: for each grid-cell and year, the total biomass removed by either grazing and cutting 

must be equal to the grass-biomass use, GBUm,k ; 

Rule-2: grazing management has priority in fulfilling GBUm,k; 

Rule-3: if the potential biomass consumption from grazing (Ygrazed) is not high enough to fulfil 

GBUm,j,k, a combination of grazing and mowing management is taken. 

Thus, for grid-cell k in year m, the minimum fraction of grazed (fgrazed,m,k), the minimum fraction 

of mown (fmown,m,k) and the maximum fraction of unmanaged grassland (funmanaged,m,k) are 

calculated with the following equations (definitions of minimum and maximum in this context 

are given below). 

If , then:  

       (12) 

Ygrazed,m,k = IC ×Tgrazing,m,k ×Dgrazing,m,k

Agrass,m,k ×Ygrazed,m,k >GBUm,k

fgrazed ,m,k =
GBUm,k

Agrass ,m,k ×Ygrazed ,m,k
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         (13) 

         
(14) 

where Agrass,m,k (unit: m2) is the grassland area for grid-cell k in year m of the series of historic 

land-cover change maps.  

If 
, and , then: 

  (15) 

        (16)  

        (17) 

If GBUm,k cannot be fulfilled by any combination of modelled Ygrazed and Ymown, we diagnose a 

modelled grass-biomass production deficit and apply the following equations : 

if  Ygrazed > Ymown, then fgrazed,m,k = 1, fmown,m,k = 0, and funmanaged,m,k = 0 (18) 

if Ygrazed < Ymown, then fmown,m,k = 1, fgrazed,m,k = 0, and funmanaged,m,k = 0  (19) 

This set of equations is valid for a mosaic of different types of grasslands in each grid-cell, 

some managed (grazed and/or mown) and some remaining unmanaged. In reality, 1) farm 

owners could increase the mown fraction to produce more forage. A situation which 

corresponds approximately to the mixed and landless systems of ref161; and 2) animals could 

migrate a long way across grazed and unmanaged fractions (as they do in real rangelands) and 

only select the most digestible grass in pastoral systems, which corresponds to extensively 

grazed grasslands. Yet, given the approximations made in this study, fgrazed,m,k  and fmown,m,k 

represent the minimum fractions of grazed/mown grasslands rather than the actual fractions, 

and on the other hand funmanaged,m,k corresponds to a maximum fraction of unmanaged grasslands 

since both mixed and land less and extensive grazing are not modelled. 

 

Reconstructing the history of wild grazer density and grazed area 

fmown,m,k =0

funmanaged ,m,k =1− fgrazed ,m,k

Agrass ,m,k ×Ygrazed ,m,k <GBUm,k Agrass ,m,k ×Ymown,m,k >GBUm,k

fgrazed ,m,k × Agrass ,m,k ×Ygrazed ,m,k + fmown,m,k × Agrass ,m,k ×Ymown,m,k =GBUm,k

fgrazed ,m,k + fmown,m,k =1

funmanaged ,m,k =0
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Human activities not only impacted grassland through changing management intensity by 

introducing domestic livestock, but also caused large reductions in wild grazer populations by 

land-use change, animal kill-off and spreading diseases. The result is the relatively small 

population of wild grazers left today. The reduction of wild grazers may significantly influence 

the historical grassland GHG fluxes (e.g., CH464). Thus, the GHG fluxes from wild grazers 

should be accounted for in the GHG balance of grassland. To our knowledge, however, detailed 

historical wild grazer distribution and density maps do not exist. We therefore combined wild 

animal species information64, diet information65, modelled natural grassland productivity and 

an anthropogenic biome classification system67 to reconstruct the gridded history of wild grazer 

density, and the wild and semi-natural grasslands occupied by wild grazers. 

Pre-industrial wild mammal (grazers, browsers and mixed feeders of each continent for the year 

1800) data were derived from Table S1 of ref64, including body mass, animal density, 

geographic range and CH4 emission. Five continents were differentiated by ref64, namely: 

Africa, Australia, Eurasia, North America and South America. Focusing on grassland, we 

extracted data on mammals that consume mainly grass biomass (i.e., mainly grazers) based on 

diet of genera from Appendix S1 of ref65 (continent-specific diet for each genus). For mixed 

feeders, we assumed half of their diet coming from grass biomass. For genera without diet 

information given by ref65 (mainly small mammals), we searched the Internet (e.g., Wikipedia) 

for the diet composition. Given that only an “average grazer” can be assumed in ORCHIDEE-

GM v3.2, a variety of wild grazers were aggregated and unified to livestock unit (LU as for 

domestic livestock) based on their dry matter intake (DMI). DMI for wild mammal genus i in 

continent j (DMIwild,i,j; unit: kg dry matter day-1) was calculated following IPCC algorithms145 

(IPCC, 2006 Vol 4, Chapter 10, Eqn 10.18a): 

     (20) 

where BMwild,i,j is the body mass of wild mammal genus i in continent j; NEma is the dietary net 

energy concentration, with an intermediate value of 6.0 MJ kg-1 dry matter, corresponding to  

moderate quality forage as used in ref 133. Total wild grazer numbers (Nwild1800,j; unit: LU) for 

continent j in 1800 were calculated as: 

     (21) 

where Dwild,i,j and Awild,i,j are animal density (unit: number km-2; originated from the equations 

DMIwild ,i , j =BMwild ,i , j
0.75 ×(0.0119×NEma

2 +0.1938
NEma

)

Nwild1800, j = (DMIwild ,i , j ×Dwild ,i , j
i
∑ × Awild ,i , j )/DMILU
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of ref162) and geographic range (unit: km2; originated from ref163, respectively, as defined by 

ref64; DMILU is the dry matter intake of one standard livestock unit, i.e., 18 kg dry matter per 

day as calculated in Supporting Information Text S1 of ref7. 

To spatialize the continental wild grazer numbers of 1800 on to a gridded map, we applied a 

similar strategy to that in the Supporting Information Text S4 of ref 133. Assuming higher 

consumable NPP supports more wild grazers, the wild grazer density in 1800 for grid-cell k in 

continent j (Dwild1800,j,k; unit: LU km-2) is calculated as:  

   (22) 

where ANPPunmanaged,j,k is the aboveground NPP of sparsely grazed grassland for grid-cell k 

simulated by ORCHIDEE-GM v3.2 for the 1800s (in this study forced by 1901–1910 climate 

and pre-industrial CO2 concentration; simulation E2 in Supplementary Table 1); Awild1800,j,k is 

the grassland area occupied by wild grazers in 1800 for grid-cell k. To estimate the reduction 

of wild large grazers due to human land use, we followed the assumption of ref164 and made 

use of the anthropogenic biome classification system from the Anthromes products67, which 

separated three major categories: used, semi-natural, and wild. We assumed the remnant habitat 

for wild grazers to be the “wild and semi-natural” categories. Thus Awild1800,j,k is calculated as: 

      (23) 

where Aunmanaged1860,j,k is the area of sparsely grazed grassland in 1860 for grid-cell k from the 

reconstructed historical maps on grassland management intensity (see Supplementary Methods 

2 “Model input” and Supplementary Figure 1), assuming there is no change in the area of 

sparsely grazed grassland between 1800 and 1860; fw+s1800,j,k is the remnant habitat fraction in 

1800 assumed for wild grazers at the spatial resolution of 0.5o × 0.5o, which is aggregated from 

the 5’× 5’ resolution of the Anthromes products. Decadal Anthromes products were obtained 

from the HYDE3.2.1 data set141 (available at: ftp://ftp.pbl.nl/hyde/hyde3.2/anthromes/). 

Constant wild grazer density (Dwild1800,j,k) is assumed from 1800 to 2012, except for two major 

events where major reductions in wild grazers were caused by factors other than human land 

use. They are the North America Great Plains bison kill-off during the 1860s and 1870s, and 

the African rinderpest epizootic during the 1890s. After these two events (i.e., in 1880 for North 

America, and in 1900 for Africa), wild grazer density (Dwild,j,k) is assumed to decrease by the 

same fraction as the reduction of aggregated continental total wild grazer numbers: 

Dwild1800, j ,k =
Nwild , j

(ANPPunmanaged , j ,k × Awild1800, j ,k )
k
∑

× ANPPunmanaged , j ,k

Awild1800, j ,k = Aunmanaged1860, j ,k × fw+s1800, j ,k
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       (24) 

where Dwild,event,j,k is the wild grazer density at the end of each event for grid-cell k in the 

corresponding continent j; and Nwild,event,j is the residual total wild grazer numbers at the end of 

each event for the corresponding continent j, which can be calculated from Supplementary 

Equations 21 and 22 using wild mammal reduction data from ref64. During the events (i.e., 

1860-1880 for North America, and 1890–1900 for Africa), wild grazer density (Dwild,j,k) 

decreased linearly. Following the changes in the sparsely grazed grassland from the 

reconstructed historical maps on grassland management intensity (Aunmanaged), and the remnant 

habitat fraction for wild grazers (fw+s) derived from the HYDE3.2.1 data set, we estimated an 

83% decrease of global total wild grazer numbers since 1800, with regional differences 

(Supplementary Figure 2), similar to the extent estimated by ref164. To reflect more realistically 

the changes in wild grazers, two issues relating to this study should be noted. First, no wild 

grazers were distributed over high latitude Siberian grassland (mainly tundra), considering that 

few herbivore species exists there165 (mainly moose and reindeer as mixed feeders). Second, 

wild grazer density changes in Australia following human population introduction starting 

around 1875 ref64 were neglected, because population growth and the expansion of its 

geographic range was slow. 

 

Simulation set-up 

In the simulation of the grassland GHG balance, we assume that global grasslands were 

managed for a long time before 1750, and that the 1860 land cover and grassland management 

intensity applied equally before 1860. The series of simulations are shown in Supplementary 

Table 1. ORCHIDEE-GM v3.2 is first run for a spin-up period (simulation E1) by recycling the 

first 10 years of climate forcing (1901–1910) in a loop with land-cover, grassland management, 

wild grazer density, and CO2 concentration fixed at the level for 1860 (286 ppm for CO2) until 

an equilibrium is reached for all the carbon pools at each grid point (long-term net ecosystem 

exchange, NEE = 0 at each grid point). This spin-up usually takes 20,000 years. Starting from 

soil carbon pools in equilibrium for year 1860 (end of the spin-up), a second simulation 

(simulation E2) is then conducted for the period 1751–1860 with grassland management, wild-

grazer grazing, manure application (no mineral fertilizer applied at that time), and atmospheric-

nitrogen deposition of 1860 to reproduce the management history. For the period 1861–1900, 

Dwild ,event , j ,k =Dwild1800, j ,k ×
Nwild ,event , j

Nwild1800, j
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simulation E3 is carried out with the first 10 years of climate forcing (1901–1910) cycled, and 

other inputs variable. As a final simulation (simulation E4), ORCHIDEE-GM v3.2 is run for 

the period 1901–2012 forced by all input variables (Supplementary Table 1). 

 

The calculation of the components of the grassland GHG balance 

The grassland GHG balance at ecosystem and farm scale in this study is calculated using 

equation (1) of the Methods section. Each component of the grassland GHG balance is 

estimated as follows. 

1. The CO2 fluxes of grassland ecosystem and farm scale and land-use change emissions due 

to deforestation for pasture and conversion of grassland to cropland 

We define the grassland net CO2 fluxes (FCO2-C) as the net carbon balance of a grassland 

ecosystem assuming that there is no long-term storage of the harvested carbon. It is calculated 

as: 

<=>?@= = ABB + <=DE@=@FGH + <I%$JFKL + <F$HK'H( − <'(NOL  (25) 

where FCH4-C-eco is the enteric fermentation CH4 emission from grazing livestock; Fharvest is the 

carbon exported as harvested biomass (grass forage); Ferosion is the net carbon fluxes induced 

by water erosion including erosion removal fluxes, and the compensatory soil sink (see 

Supplementary Discussion 5); and Finput is the carbon input into the system through organic 

fertilizers; and NEE is net ecosystem exchange of grassland ecosystem calculated as:  

ABB = PI + P% + P%('*%Q@FGH + <0'$F − RSS    (26) 

where Rh is the heterotrophic respiration from soil; Ra is the plant autotrophic respiration; 

Ranimal-eco is the respiration of grazing livestock; Ffire is the fire emissions (see Supplementary 

Discussion 6); and GPP is the plant gross primary productivity through photosynthesis. All the 

above fluxes are either simulated by the model (e.g., NEE and its components, FCH4-C-eco, Fharvest) 

or included as input data (Finput). Negative fluxes indicate a carbon sink, and positive fluxes 

indicate a carbon source. 
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To fully account for the grassland carbon balance, carbon losses due to deforestation to pasture 

and conversion of grassland to cropland (ELUC) are additionally identified. The method of 

estimating ELUC is described in the Methods section. 

2. Grassland ecosystem and off-field CH4 fluxes 

The grassland CH4 emission (FCH4-C) can be expressed as the combination of the CH4 flux from 

the ecosystem (FCH4-C-eco) and that from the off-field farm system (FCH4-C-farm): 

      (27) 

where FCH4-C-eco is the enteric fermentation CH4 emission from grazing livestock that can be 

simulated by ORCHIDEE-GM126,130 (with uncertainty of ±30 to ±50% from ref145 IPCC, 2006 

Vol 4, Chapter 10, pp10.33). The off-field CH4 emissions (i.e., at farm scale; FCH4-C-farm) come 

from enteric fermentation of housed livestock (FCH4-C-EFfarm) and from manure management 

(FCH4-C-MM): 

      (28) 

Assuming the enteric fermentation CH4 emission rate (RCH4-C-EF; unit: g CH4-C per kg dry 

matter (DM) intake) is the same for grazing livestock as for housed livestock eating grass forage 

inside. FCH4-C-EFfarm is calculated as: 

      (29) 

where Ymown (unit: kg DM) is the total amount of grass dry matter harvested from mown 

grassland of each grid cell; and RCH4-C-EF is calculated as: 

        (30) 

where FCH4-C-eco is the enteric fermentation CH4 emission from grazing livestock, and Ygrazed 

(unit: kg DM) is the total amount of dry matter intake by grazing for each grid cell.  

The CH4 emission from manure management (FCH4-MM) in each grid cell can be calculated from 

the livestock numbers fed by harvested biomass from grassland following the IPCC Tier 1 

FCH4−C = FCH4−C−eco +FCH4−C− farm

FCH4−C− farm = FCH4−C−EFfarm +FCH4−C−MM

FCH4−C−EFfarm =Ymown ×RCH4−C−EF

RCH4−C−EF =
FCH4−C−eco
Ygrazed
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algorithms145 (IPCC, 2006 Vol 4, Chapter 10, Eqn 10.22), but note that it depends on livestock 

types as well as on temperature: 

       (31) 

where EF5(i) is the emission factor for CH4 emitted from manure management (unit: kg CH4 

head-1 yr-1) depending on livestock categories, regions, as well as temperature145 (IPCC, 2006 

Vol 4, Chapter 10, Table 10.14); for each grid cell, mean annual temperature derived from 

climate forcing is used to determine the EF5(i). The uncertainty of EF5(i) is ±30%145 (IPCC, 2006 

Vol 4, Chapter 10, pp10.39; uncertainty expressed as half the 95 per cent confidence interval 

divided by the mean and expressed as a percentage). Ni is livestock number (unit: head) of 

category i (i.e., beef cattle, dairy cows, sheep, and goats) that can be fed by Ymown in each grid 

cell. Ni is calculated as: 

       (32) 

where NLU is the total livestock number (unit: LU) that can be fed by Ymown in each grid cell; fi,j 

is the fraction of livestock category i in country j, and is calculated based on the total 

metabolisable energy (ME) requirement of livestock category i and of all livestock categories 

in country j; MELU (unit: MJ yr-1 LU-1) is the ME requirement by one LU; and MEhead,i,j (unit: 

MJ yr-1 head-1) is the ME requirement per head of livestock category i in country j. The typical 

weight of each livestock category is given in ref145 IPCC, 2006 Vol 4, Chapter 10, Table 10A-

4, 10A-5, and 10A-9, and one LU is defined as an average adult dairy cow producing 3000 kg 

of milk annually, with live body weight of 600 kg146. The calculation of ME is described in the 

Supporting Information Text S1 of ref7. NLU is calculated as: 

        (33) 

Ymown (unit: kg DM) is the total amount of grass dry matter harvested from mown grassland of 

each grid cell; and DMILU = 18 kg DM day-1 is daily dry matter intake by one LU, calculated 

by the ME requirement of ca. 85 MJ day-1 per LU divided by the energy density of the feed 

(with a default value of 18.45 MJ kg-1 of dry matter145). 

CH4 emission from wild grazers largely depends on animal body mass 133. Thus to account for 

the body mass effect, we directly use the wild mammals’ CH4 emissions from ref64. Similar to 

FCH4−C−MM = Ni ×EF5(i)∑

Ni = NLU × fi, j ×
MELU

MEhead,i, j

NLU =
Ymown

DMILU ×365
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the continental total wild grazer numbers (Nwild1800,j) extracted in the Supplementary Methods 1 

Section “Reconstructing the history of wild grazer density and grazed area”, we extracted and 

aggregated continental total CH4 emissions from wild grazers (FCH4,wild1800,j) from ref64, and 

calculated the CH4 emission factor for wild grazers in continent j (EFCH4,wild1800,j; unit: kg CH4 

LU-1 year-1) as: 

       (34) 

As for wild grazer density (Dwild1800,j,k), a constant EFCH4,wild1800,j is assumed from 1800 to 2012. 

Combining the wild animal CH4 emissions64 and diet information65, we estimated wild grazer 

CH4 emission of 11.9 Tg CH4 yr-1 for the year 1800, which comprises 46% of total wild 

mammals’ CH4 emissions from ref64. 

3. Grassland ecosystem and off-field N2O fluxes 

The grassland N2O emission (FN2O-N) can be expressed as the combination of N2O fluxes from 

managed soil in the ecosystem (FN2O-N-eco) and those from manure management at the farm level 

(FN2O-N -farm): 

      (35) 

The N2O fluxes are calculated as follows. 

N2O emission from managed soil  

The N2O emissions from managed soil are mainly due to the application of nitrogen to grassland 

as manure or mineral fertilizer, by excreta from grazing livestock including wild grazers, and 

through atmospheric deposition in the form of oxidized nitrogen (NOy) and reduced nitrogen 

(NHx). It includes direct N2O emissions from managed soil (FdirectN2O-N-eco), indirect N2O 

emissions from atmospheric deposition including nitrogen volatilized from managed soils and 

transported from other sources (FvolN2O-N-eco), and indirect N2O emissions from nitrogen 

leaching/runoff from managed soils in regions where leaching/runoff occurs (FleachN2O-N-eco): 

    (36) 

EFCH4 ,wild =
FCH4 ,wild1800, j
Nwild1800, j

FN2O−N = FN2O−N−eco +FN2O−N− farm

FN2O−N−eco = FdirectN2O−N−eco +FvolN2O−N−eco +FleachN2O−N−eco



	 45	

All the N2O emissions were calculated following the IPCC Tier 1 algorithms145 (IPCC, 2006 

Vol 4, Chapter 11, Eqns 11.1, 11.9 and 11.10). Direct N2O emissions from managed soil are 

calculated as: 

     (37) 

Indirect N2O emissions from atmospheric deposition (including nitrogen volatilized from 

managed soils and transported from other sources) are calculated as:  

<JHQT?>@T@FGH = <UFN × B<V       (38) 

Indirect N2O emissions from nitrogen leaching/runoff from managed soils in regions where 

leaching/runoff occurs are calculated as:  

<QF%GIT?>@T@FGH = (<XT + <>T + <YZY + <UFN) × <\]^_`a=D@D × B<b (39) 

where: 

FSN = annual amount of mineral fertilizer nitrogen applied to soils and atmospheric nitrogen 

deposition; 

FON = annual amount of animal manure, compost, sewage sludge and other organic nitrogen 

additions applied to soils; 

FPRP = annual amount of nitrogen deposited as urine and dung by grazing animals on grassland, 

including wild grazers; 

Fdep = annual amount of atmospheric nitrogen deposition over grasslands; 

FracLEACH-H = fraction of all nitrogen added to, or mineralized in, managed soils in regions 

where leaching/runoff occurs that is lost through leaching and runoff; 

EF1 = 0.01 (uncertainty range of 0.003 to 0.030); EF2 = 0.02 (uncertainty range of 0.007 to 

0.060) for cattle, and 0.01 (uncertainty range of 0.003 to 0.030) for sheep; EF3 = 0.01 

(uncertainty range of 0.002 to 0.050); EF4 = 0.0075 (uncertainty range of 0.0005 to 0.0250); 

FracLEACH-H = 0.30 (uncertainty range of 0.10 to 0.80). The default values of these parameters 

and emission factors and their uncertainty ranges are from guidelines145 (IPCC, 2006 Vol 4, 

Chapter 11, Table 11.1 and 11.3); FSN and FON come from the gridded nitrogen addition maps 

(including nitrogen fertilizer application maps with manure-nitrogen and mineral-nitrogen 

FdirectN2O−N−eco = (FSN +FON )×EF1 +FPRP ×EF2
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fertilizers, and atmospheric-nitrogen deposition maps; see Supplementary Methods 1, Section 

“Model input”. and ref133 for detail); FPRP is calculated in ORCHIDEE-GM v3.2. It is 

noteworthy that ref166 reports a lower emission factor (0.0075 instead of 0.01 in ref145) of direct 

N2O emission from managed soil; Fdep during 1860–2012 were from the IGAC/SPARC 

Chemistry-Climate Model Initiative (CCMI) deposition fields142.  

In this study, we assume leaching would not occur over regions with an arid climate in the 

Koppen-Geiger climate classification167. 

Off-field N2O emissions from manure management  

Following the IPCC Tier 1 algorithms145 (IPCC, 2006 Vol 4, Chapter 10), the N2O can be 

directly emitted from manure management (FdirectN2O-N-MM), indirectly emitted due to 

volatilization of nitrogen from manure management (FvolN2O-N-MM), and indirectly emitted due 

to leaching/runoff from manure management in regions where leaching/runoff occurs (FleachN2O-

N-MM): 

    (40) 

All the N2O emissions are calculated following the IPCC Tier 1 algorithms145 (IPCC, 2006 Vol 

4, Chapter 10, Eqn 10.25). Direct N2O emission from manure management is calculated as: 

      (41) 

where Ni is livestock number (unit: head) of category i (i.e., beef cattle, dairy cows, sheep, and 

goats) that can be fed by Ymown in each grid cell as calculated in Equation (14); MSi is the fraction 

of total annual nitrogen excretion that is managed in the manure management system; EF6 is 

the emission factor for direct N2O emissions from the manure management system (unit: kg 

N2O-N per kg N in manure management system). The manure management system information 

is derived from ref145 (IPCC, 2006 Vol 4, Chapter 10, Table 10A.4 and 10A.5). EF6 is derived 

from ref145 (IPCC, 2006 Vol 4, Chapter 10, Table 10.21) for each system. Nexi is annual average 

nitrogen excretion (unit: kg N head-1 yr-1), which is calculated as ref145 (IPCC, 2006 Vol 4, 

Chapter 10, Eqn 10.30): 

      (42) 

FN2O−N−MM = FdirectN2O−N−MM +FvolN2O−N−MM +FleachN2O−N−MM

FdirectN2O−N−MM = (Nexi∑ ×EF6 ×Ni ×MSi )

Nexi = (Nrate(i) ×TAMi /1000)×365
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where Nrate(i) is daily nitrogen excretion rate (unit: kg N per 1000 kg animal mass), and TAMi is 

typical animal mass for livestock category (unit: kg per animal). The default value and the 

uncertainty of Nrate(i) (50%) and TAMi are adopted from ref145 (IPCC, 2006 Vol 4, Chapter 10, 

Table 10.19, and Table 10A-4 to Table 10A-9).  

Indirect N2O emission due to volatilization from manure management is calculated as ref145 

(IPCC, 2006 Vol 4, Chapter 10, Eqn 10.26): 

    (43) 

where Fracgas(i) is the percentage of managed manure nitrogen for each livestock category that 

volatilizes as NH3 and NOx in the manure management system (default value and uncertainty 

range for each type of livestock is derived from ref145 (IPCC, 2006 Vol 4, Chapter 10, Table 

10.22); EF7 is emission factor for N2O emissions from atmospheric deposition of nitrogen on 

soil and water surfaces given as the same default value of EF3 with 0.01 kg N2O-N per kg of 

NH3-N+NOx-N volatilized (uncertainty range of 0.002 to 0.050).  

Indirect N2O emission due to leaching from manure management systems is calculated as ref145 

(IPCC, 2006 Vol 4, Chapter 10, Eqn 10.28): 

    (44) 

where Fracleach(i) is the percent of managed manure nitrogen losses for livestock category due 

to runoff and leaching during solid and liquid storage of manure (typical range 1%–20%; 5% 

is used in this study as the default value); EF8 is emission factor for N2O emissions from 

nitrogen leaching and runoff given as the same default value of EF4 with 0.0075 kg N2O-N per 

kg of N leaching/runoff (uncertainty range of 0.0005 to 0.0250).  

 

Supplementary Methods 2. Model and methods used for radiative forcing attribution 

Radiative forcing due to the changes in grassland GHG fluxes 

1. OSCAR v3.1 

OSCAR is a compact Earth system model calibrated to emulate the behaviour of more complex 

models. All components of the Earth system necessary to simulate future climate change are 

represented in the model. Notably, the model includes an ocean carbon cycle, a land carbon 

cycle, and atmospheric chemistry for CH4 and N2O. Radiative forcings from CH4 reported in 

FvolN2O−N−MM = (Nexi ×Fracgas(i) ×Ni ×EF7 )∑

FleachN2O−N−MM = (Nexi ×Fracleach(i) ×Ni ×EF8 )∑
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this study include the direct effect of atmospheric CH4 concentration change, but also the effect 

of ensuing changes in stratospheric H2O and tropospheric O3 concentrations. Similarly, the 

reported radiative forcings from N2O include the direct effect of atmospheric N2O concentration 

change, and that of the ensuing change in stratospheric O3. 

Compared to v2.2 (ref119), OSCAR v3.1 is a major update of the model. All successive updates 

are described on the GitHub repository where OSCAR can be freely downloaded 

(https://github.com/tgasser/OSCAR). 

2. OSCAR v3.1 simulation setup 

The simulation setup is briefly described in the Methods section. The detailed description of 

the OSCAR v3.1 simulation setup is as follows.  

As preliminary simulations for this study, in addition to climate driving data, OSCAR is also 

forced with the observed time series of atmospheric concentrations of CO2168, CH4 and N2O169, 

and reconstructed time series before direct observations were possible170. The model is then run 

for the first time to estimate compatible anthropogenic emissions of CO2, CH4 and N2O: 

prescribed atmospheric concentrations are balanced with the natural fluxes simulated by 

OSCAR to deduce the compatible amount of yearly anthropogenic fluxes through simple mass 

conservation (see e.g., ref171). A second simulation is then realized, driven this time by the 

compatible emissions deduced from the first simulation, to check that the simulated 

atmospheric concentrations of CO2, CH4 and N2O are the same as the observed ones. This 

second simulation is the control experiment. 

The attribution is made to 9 regions and 8 sectors. Sectors are defined as emissions of CO2, CH4 

and N2O from managed versus sparsely grazed grasslands, and of CO2 from land-use change 

emissions of deforestation to pasture and of conversion of grassland to cropland. The attribution 

protocol requires that, in addition to a control experiment, 73 simulations are made, one for 

each combination of region and sector, plus one for the rest (i.e. all the remaining emitting 

sectors unrelated to grasslands). In each of these simulations, the same emissions as in the 

control experiment are prescribed, except a small fraction of 1% of the region’s sectoral 

emissions are removed. The difference between the control simulation and each of those 

factorial simulations, once normalized by the sum of the 73 differences, provides the 

contribution of each region and sector. This approach to attribution is called the “normalized 

marginal” method, and it is described further by ref172 and references therein.  
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The uncertainty in the simulations was assessed through a Monte Carlo approach (n = 10,000) 

in which biophysical parameters of the model were randomly drawn (see ref119) and associated 

to every single set of anthropogenic grassland GHG fluxes of the first Monte Carlo ensemble.  

Because OSCAR naturally produces a range of uncertainty larger than we considered  

reasonable for the three greenhouse gases simulated in this study, we weighted our Monte Carlo 

ensemble using existing emission inventory data sets as constraints. 

For each ensemble member, the cumulative compatible emissions simulated by OSCAR in the 

second (i.e. control) experiment, in the case of fossil-fuel CO2, CH4, and N2O are taken, and 

then compared to reference values. For fossil-fuel CO2, we take the CDIAC data set over 1901–

2010 and apply an uncertainty of 5%, for CH4 and N2O, we take the EDGAR data set over 

1970–2008 and apply a 10% uncertainty. 

Each ensemble member is then given three weights (one per GHG), calculated as the probability 

of drawing the ensemble member’s cumulative emission value from a normal distribution 

whose average and standard deviation are the reference value and its associated uncertainty, 

respectively. This approach was previously used by ref1 section 2.7.3. The three weights are 

then multiplied together to obtain the final weights used to provide the weighted averages and 

standard deviations reported in the text and figures. 

 

Radiative forcing from albedo change due to grassland-related land-cover change  

The same method as used by OSCAR v3.1173 is applied to assess the radiative forcing induced 

by changes in grassland-related land cover (RFefghhijj ). Here, grassland-related land-cover change 

is defined as both grassland converted from (grassland increase) and to (grassland decrease) 

other land-cover groups (i.e., biomes). Five biomes are differentiated in this study including 

bare soil, evergreen forest, deciduous forest, grassland and cropland. RFefghhijj is modelled 

following the first-order equation of ref174, and is calculated as:  

      (45) 

where the upward transmittance is set to πtrans = 0.854 175, AEarth designates the surface area of 

the Earth (510.1 × 106 km2),  is the monthly averaged (month j) albedo difference 

between biome b and grassland at region i, is the area change between biome b and 

RFgrass
LCC =

1
2×(−π trans ϕrsds

i , j Δαalb
i ,b , j ΔAi ,b

AEarthb
∑

i , j
∑ )

Δαalb
i ,b , j

ΔAi ,b
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grassland in region i, and is the surface radiative shortwave-downward flux over the area 

with grassland-related land-cover change in region i. To ensure that the sum of biome-specific 

radiative forcing (i.e.,∑ RFl
ijj

l ) is equal to the radiative forcing induced by all land-cover 

changes ( as in section 2.11 of ref119) and to avoid double counting the land-cover change, 

we divided the final RFefghhijj  by two as in Equation (45). 

The radiation fluxes φrsds are taken from one of three monthly climatologies: GEWEX176  over 

the 1984–2007 period, CERES177 over 2000–2014, or MERRA178 over 1979–2014. The albedos 

αalb are based on one of two monthly climatologies: either GlobAlbedo179 over the 1998–2011 

period, or MODIS (MCD43C3180) over 2001–2012. We calculate the monthly-averaged biome-

specific albedos ( ) by weighting the monthly albedo climatology by one of three land-

cover maps – MODIS (MCD12Q1181), ESA-CCI137 (https://www.esa-landcover-cci.org/) or 

GLC2000182– and by the monthly radiation climatology used for φrsds, in a similar fashion as 

ref183. This approach ensures that the monthly-averaged albedo accounts for the local 

seasonality, especially that of snow cover. The changes in grassland-related land cover ( ) 

are derived from the historic land-cover change maps used in this study (see Supplementary 

Methods 1, Section “Model input”. and Supplementary Table 4 for detail), but is traced back 

to 1750 for simulating the RFefghhijj .  

Regarding the deduction of biome-specific albedos, we make the same assumptions as ref119. 

First, we weight the biome-aggregated albedos by their biome area fraction map, taken to the 

power 3. This approach is used to give more importance – in a given region – to the grid cells 

in which biomes are purer, without taking the risk of having too few of those grid cells if we 

were to set a threshold of biome area fraction instead. Second, we remove the grid cells that see 

less than 1% of their area changing over the historical period according to our land cover change 

maps (see Supplementary Methods 1, Section “Model input” and Supplementary Table 1 for 

detail). 

The uncertainty of RFefghhijj is assessed as the standard deviation of the 18 RFefghhijj  derived from 

the different data sets’ combinations with three land-cover maps, three radiation fluxes 

climatologies, and two albedo climatologies (see above).  

ϕrsds
i , j

RFLCC

αalb
i ,b , j

ΔAi ,b
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Supplementary Figure 1. The decadal greenhouse gas (GHG) fluxes for grassland in 

different regions since 1750. Light and dark blue bars represent CO2 fluxes from managed and 

sparsely grazed grassland, respectively; orange and yellow represent CH4 fluxes from managed 

(domestic livestock) and sparsely-grazed (wild grazers) grassland, respectively; light green and 

dark green represent N2O fluxes from managed and sparsely grazed grassland, respectively; 

and pink and purple represents land-use change emissions related to grassland from 

deforestation to pasture and from conversion of grassland to cropland respectively. Black dots 

and their error bars indicate net total GHG balance and its 1-sigma uncertainty. Red squares 

and their error bars indicate the anthropogenic GHG balance after subtracting pre-industrial 

GHG fluxes. Negative values indicate GHG sinks and positive values indicate GHG sources. 

Regions are classified following the definitions in the FAO Global Livestock Environmental 

Assessment Model (GLEAM; http://www.fao.org/gleam/en/). We combined western and 

eastern Europe as “Europe” to avoid the individual regions being too small. 
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Supplementary Figure 2. Historical changes in the area of managed (mown and 

intensively grazed) and sparsely grazed grassland and in ruminant numbers for 1860 and 

2012 by region, together with the global total. Data were reconstructed following the same 

procedures as in ref 133, but using different land-cover change maps (see Methods for detail). 

Regions are classified following the definitions in the FAO Global Livestock Environmental 

Assessment Model (GLEAM; http://www.fao.org/gleam/en/). We combined western and 

eastern Europe as “Europe” to avoid any individual region being too small. 
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Supplementary Figure 3. The distribution of wild grazer biomass in time and space. (a) 

Temporal evolution of global and regional total wild grazer biomass (unit: million tonnes 

live weight), and wild grazer biomass density in (b) 1800 and (c) 2000 calculated in this 

study. To present the total wild grazer biomass of each grid cell, the wild grazer biomass density 

in (b) 1800 and (c) 2000 is expressed as tonnes of wild grazer live weight biomass per km2 of 

total land in each grid cell (including grassland and all other ecosystems), which is mainly 

caused by human land use. Constant wild grazer density over grassland is assumed from 1800 

to 2012, except for two major events where major reductions in wild grazers were caused by 

factors other than human land use (Supplementary Methods 1, Section “Reconstructing the 

history of wild grazer density and grazed area”.).  
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Supplementary Figure 4. The intensity of the decadal greenhouse gas (GHG) fluxes over 

intensively managed and sparsely grazed grassland in different regions since 1750. The 

intensity (in units of tonne CO2e ha-1 yr-1) is calculated as the regional GHG fluxes divided by 

the regional area of intensively managed and sparsely grazed grassland respectively. Land-use 

change emissions are not included in this intensity calculation. Light and dark blue bars 

represent CO2 fluxes from managed and sparsely grazed grassland, respectively; orange and 

yellow represent CH4 fluxes from managed (domestic livestock) and sparsely-grazed (wild 

grazers) grassland, respectively; light green and dark green represent N2O fluxes from managed 

and sparsely grazed grassland, respectively; and pink and purple represents land-use change 

emissions related to grassland from deforestation to pasture and from conversion of grassland 

to cropland respectively. Black dots and squares (and their error bars) indicate net GHG balance 

(and its 1-sigma uncertainty; excluding land-use change emissions) over intensively managed 
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and sparsely grazed grassland respectively. Regions are classified following the definitions in 

the FAO Global Livestock Environmental Assessment Model (GLEAM; 

http://www.fao.org/gleam/en/). We combined western and eastern Europe as “Europe” to avoid 

any individual region being too small.  
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Supplementary Figure 5. (a) The effect of each driver on the net CO2 fluxes of grassland 

in each region and the global average for the period 1860-2012, and (b) the global effects 

for each decade since the 1860s. Positive values indicate net CO2 source or the driver(s) 

contribute to CO2 emission, and negative values indicate net CO2 sink or the driver(s) contribute 

to CO2 sink. R1-R9 indicate the nine regions used in this study, which are North America (R1), 

Russian Federation (R2), Europe (R3), Near East and North Africa (R4), East and Southeast 

Asia (R5), Oceania (R6), South Asia (R7), Latin America and Caribbean (R8), and Sub-Saharan 

Africa (R9) respectively. Bars with hatching indicate the net regional/global CO2 fluxes of 

grassland averaged for the period 1860-2012; ∆climate, ∆CO2, ∆deposition, ∆ELUC, 

∆management are the individual effects of climate change, rising CO2 concentration, changes 

in atmospheric nitrogen deposition, land-use changes related to grassland, and grassland 

management together with the extirpation of wild grazers, respectively, to the net CO2 fluxes 

for grassland. The sum of individual effects can be less than, or more than, the effect of all the 

factors taken together, due to nonlinear interactions, and the residual is defined as ∆residual.  
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Supplementary Figure 6. Global distribution of grassland carbon balance for the period 

1981-2010. Negative values indicate carbon sinks and positive values indicate carbon sources. 

Land-use change emission related to grassland (CO2 ELUC) is not included here. 
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Supplementary Figure 7. The decadal differences between the regional grassland CO2 

fluxes from simulations with (E4) and without (Enomanage) accounting for wild grazers and 

grassland management. Positive values indicate that accounting for grassland management 

reduces net CO2 sink or enhances net CO2 source. Black error bars indicate 1-sigma uncertainty 

of the CO2 fluxes. Regions are classified following the definitions in the FAO Global Livestock 

Environmental Assessment Model (GLEAM; http://www.fao.org/gleam/en/). We combined 

western and eastern Europe as “Europe” to avoid any individual region being too small. 

Enomanage is a simulation with the same set-up as E1 to E4 (Supplementary Table 1), but does 

not account for wild grazers and grassland management practices such as grazing, mowing, and 

nitrogen fertilization. 

  



	 59	

 

Supplementary Figure 8. The decadal carbon budget and its components for regional 

grassland from simulations with (E4; solid bars) and without (Enomanage; bars with hatching) 

accounting for wild grazers and grassland management. Solid bars indicate the carbon 

budget from simulations with wild grazers and grassland management, which include fluxes 

like carbon input, harvest, animal respiration and methane emissions caused by wild grazers 

and grassland management; while bars with hatching indicate the carbon budget from 

simulations without accounting for wild grazers and grassland management. Negative values 

indicate a C sink, and positive values indicate a C source. NEE is net ecosystem exchange of 

grassland ecosystem calculated by Supplementary Equation 26. Rh is the heterotrophic 

respiration, NPP is the net primary productivity, carbon input is the carbon fluxes into the 

system through organic fertilizers. Regions are classified following the definitions in the FAO 

Global Livestock Environmental Assessment Model (GLEAM; http://www.fao.org/gleam/en/). 

We combined western and eastern Europe as “Europe” to avoid any individual region being too 
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small. Enomanage is a simulation with the same set-up as E1 to E4 (Supplementary Table 1), but 

does not account for wild grazers and grassland management practices such as grazing, mowing, 

and nitrogen fertilization. 
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Supplementary Figure 9. The radiative forcing (RF) from albedo change due to grassland-

related (red lines and pink-coloured area) and all land-cover change (black lines and grey-

coloured area) since 1750. The thick coloured lines indicate the mean of the ensemble of 

simulations (see Supplementary Methods 2, Section “Radiative forcing from albedo change 

due to grassland-related land-cover change”), and the coloured area its 5th to 95th percentiles. 

The black dot and its uncertainty (-0.15 ± 0.10 W m-2) on the right hand side of the “Global” 

estimates are the IPCC estimates of radiative forcing from albedo change due to all land use 

change and its 90% uncertainty range120.  
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Supplementary Figure 10. Comparison of (a) net land carbon budget, and (b) budget over 

grass-dominated grid cells derived from the TRENDY models (green, individual model 

output; black, their multi-model ensemble mean), and that estimated by ORCHIDEE-

GM v3.2 in this study (red). Net land carbon budget is the total land CO2 exchange between 

the atmosphere and the terrestrial biosphere. The individual TRENDY model simulations with 

both estimates of residual land sink and land-use change emissions (i.e., S3 experiments 

including CO2, climate and land-use forcings) are used here, including CABLE, CLASS-CTEM, 

CLM4.5 (BGC), DLEM, ISAM, JSBACH, JULES, LPJ-GUESS, LPJ, LPX-Bern, OCN, 

ORCHIDEE, ORCHIDEE-MICT, VEGAS, VISIT and SURFEX. Decadal budgets from 

TRENDY model simulations from the 1960s to the 2000s are presented in the box-and-whisker 

plot, with the red points showing the decadal budgets simulated by ORCHIDEE-GM. Grass-

dominated grid cells are those with grassland covering over 60% of the land area in 2000 

according to the land-cover change map used in this study (Supplementary Table 4). Here, 

negative values indicate a net land carbon sink, and positive values indicate a net land carbon 

source.  
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Supplementary Figure 11. Differences between terrestrial net primary productivity (NPP) 

simulated by the ORCHIDEE-GM v3.2 model and those from two satellite-based models 

(GIMMS-NPP and MODIS-NPP) over grass-dominated grid cells. MODIS-NPP is derived 

from the MOD17A3 data set of the Moderate Resolution Imaging Spectroradiometer (version 

55 5,6) for the period 2000–2013. The extracted annual MODIS-NPP is aggregated to 0.5o× 0.5o 

spatial resolution to be comparable with model output. GIMMS-NPP is a 30-year global data 

set of satellite-derived NPP (1982-2011) derived from ref4. GIMMS-NPP is constructed using 

the MODIS NPP algorithm, and driven by long-term Global Inventory Modeling and Mapping 

Studies (GIMMS) FPAR and LAI data184. Grass-dominated grid cells are those with grassland 
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covering over 60% of land area in 2000 according to the land-cover change map used in this 

study (Supplementary Table 3). All data were averaged for the common period 2000–2011.  
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Supplementary Figure 12. Comparison of the spatial pattern between the trend of annual 

mean GIMMS-NDVI and the trend of annual net primary productivity (NPP) simulated 

by ORCHIDEE-GM v3.2 during the period 1982–2010 over grass-dominated grid cells. 

Grass-dominated grid cells are those with grassland covering over 60% of land area in 2000 

according to the land-cover change map used in this study (Supplementary Table 4). The 

NOAA/AVHRR composite GIMMS-NDVI data9 were used here. 

  



	 66	

 
Supplementary Figure 13. Comparison of whole ecosystem carbon turnover times over 

grass-dominated grid cells. Here, whole ecosystem carbon turnover time is calculated as total 

soil carbon/NPP (in units of years). (a) Whole ecosystem carbon turnover times derived from 

total soil carbon and NPP simulated by ORCHIDEE-GM. For comparison, we used six sets of 

whole ecosystem carbon turnover times derived from the combinations of two satellite-based 

models of NPP (MODIS-NPP5,6; and GIMMS-NPP4, and three soil carbon stock data sets at 1 

metre depth13 (one is given by SoilGrids14,15, and two are given by the Harmonized World Soil 

Database (HWSD16) using SOTWIS bulk densities and Saxton bulk densities17). Mean whole 

ecosystem carbon turnover time of the six sets, and their uncertainty (standard deviation; 

expressed as percentage of the mean value) are shown in subplots (b) and (c) respectively. 
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Grass-dominated grid cells are those with grassland covering over 60% of land area in 2000 

according to the land-cover change map used in this study (Supplementary Table 4). 
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Supplementary Figure 14. Comparison of the grassland carbon budgets estimated in this 

study against estimates from previous studies. Detailed information on the data used in this 

figure can be found in Supplementary Table 1. For comparability, all budgets are expressed in 

units of g C m-2 yr-1.  A negative value indicates a carbon sink, and a positive value indicates a 

carbon source. ‘C loss’ indicates a loss of soil carbon is observed; ‘NS’ indicates no significant 

change in SOC is observed. Error bars indicate the uncertainty of the estimates (expressed as 

standard deviation), while an error bar with a ‘#’ symbol below indicates that the uncertainty 

of the estimates is given as 95% confidence interval. UK, United Kingdom; BE, Belgium; NL, 

Netherlands. LTER, the virgin grassland site at the Kellogg Biological Station’s Long-Term 

Ecological Research (LTER) site, southwest Michigan, United States; PL, the Palace Leas (PL) 
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meadow hay plots located in northeast England, United Kingdom; PG, Park Grass (PG) 

continuous hay experiment located in southeast of England, United Kingdom. 
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Supplementary Figure 15. (a) carbon age distribution over 32 tropical grassland soil 

profiles, and (b) depth distribution of the carbon that has been incorporated in soil 

organic matter between 1965-2012 simulated by ORCHIDEE-GM v3.2. The value in (b) is 

expressed as a proportion of the total carbon incorporated in the top 100 cm. Error bars indicate 

the 1-sigma uncertainty from model outputs over the 32 tropical grassland soil profiles. 
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Supplementary Figure 16. Spatial pattern of “recent” carbon that has been incorporated 

in topsoil (0-30 cm) in grassland between 1965 and 2012 simulated by ORCHIDEE-GM 

v3.2. The value is expressed as a proportion of the total carbon incorporated in the top 100 cm. 
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Supplementary Figure 17. Grid cells with significant (p < 0.1) decrease in (a) the 

GIMMS3g NDVI, and (b) the modelled leaf area index (LAI) during the period 1982-1991. 

Grid cells with decreasing NDVI or modelled LAI and decreasing precipitation are colored blue. 
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Supplementary Figure 18. The spatial pattern of grazing intensity over managed 

grassland in (a) 1980s and (b) 2000s from simulation E4.  
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Supplementary Figure 19. Overgrazed land fraction in the 1980s derived from (a) model 

simulation and from (b) the Global Assessment of Soil Degradation (GLASOD) database. 

Overgrazed grassland in the model simulation is defined as when the modelled NPP of managed 

grassland (NPPmanaged) is less than 90% of the modelled NPP of natural grassland (NPPnatural) 

in the same grid cell. 
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Supplementary Figure 20. Decadal changes in the overgrazed grassland area from model 

simulation from the 1860s to the 2000s.  
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Supplementary Figure 21. Regression of remaining (un-grazed) aboveground net primary 

productivity (ANPP) to grazing intensity for each climatic zone. Both remaining ANPP and 

grazing intensity from the simulation E4 are averaged for the period 1991-2010. Only grid cells 

with significant annual removal of biomass (grazed or harvested) greater than 10 g C m-2 yr-1 

were used. Red dots are adapted from Figure 4 of ref 77. 
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Supplementary Figure 22. Influences of (a) grazing intensity, (b) mean annual 

precipitation, (c) mean annual temperature on the changes in soil organic carbon (SOC) 

stocks (0-30 cm soil depth), and (d) the SOC changes for the different continents. The 

changes in SOC stocks are calculated as the differences between SOC stocks under different 

grazing intensity after 20 years and those without grazing. The box plots give the 25th (Q1) and 

75th (Q3) quantile, the middle of the box is the 50th quantile, and the lower and upper whiskers 

represent Q1-1.5×IQR and Q3+1.5×IQR respectively with IQR = Q3-Q1. Red dots and error 

bars are from observations (mean effect sizes with 95% confidence intervals) digitized from 

Figures 5, 6, 7, 11 of ref 79. 
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Supplementary Figure 23. Impacts of grazing intensity on soil organic carbon (SOC) 

stocks (0-30 cm soil depth) under the different climate zones. Impacts are measured using 

the response ratio ln(RR), which is calculated as the natural logarithm of the ratio of SOC of 

grazed grassland to SOC of un-grazed grassland. The box plots give the 25th (Q1) and 75th (Q3) 

quantile, the middle of the box is the 50th quantile, and the lower and upper whiskers represent 

Q1-1.5×IQR and Q3+1.5×IQR respectively with IQR = Q3-Q1.  
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Supplementary Figure 24. Modelled carbon sequestration potential when turning grazing 

intensity from heavy (grazing intensity GI = 50%) to moderate grazing (GI = 37.5%) and 

its relation to mean annual precipitation. The box plots give the 25th (Q1) and 75th (Q3) 

quantile, the middle of the box is the 50th quantile, and the lower and upper whiskers represent 

Q1-1.5×IQR and Q3+1.5×IQR respectively with IQR = Q3-Q1. Red dots and box are 

observations digitized from Fig. 3 of ref78. 
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Supplementary Figure 25. The decadal greenhouse gas (GHG) fluxes of grassland (a and 

b) and historical changes in the area of managed (mown and grazed) and sparsely grazed 

grassland (c and d) in North America with (a and c) reconstructed grazing intensity and 

(b and d) test simulations with a higher prescribed grazing intensity of 50% (heavy grazing) 

during the period 1900-1960 and  37.5% (moderate grazing) after 1960. Little difference in 

the current CO2 fluxes is seen from the legacy of a more intensive grazing in the early 20th 

century by comparing Fig. a with Fig. b. 
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Supplementary Figure 26. Spatial distribution of the effects of climate change (a,b), rising 

CO2 (c, d), and atmospheric nitrogen deposition (e, f) since 1860 on soil organic carbon 

content in topsoil (0-30 cm; a, c, e) and subsoil (30-100 cm; b, d, f), respectively. The effects 

are expressed as kg C per square metre of grassland integrated over topsoil (0-30 cm) and 

subsoil (30-100 cm).  
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Supplementary Figure 27. Water erosion induced (a) gross soil carbon losses, (b) extra 

carbon sink due to the reduced soil respiration, and (c) the net carbon fluxes over 

grassland for the period 1860-2012. Positive values indicate carbon losses, and negative 

values indicate carbon sinks. 
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Supplementary Figure 28. The spatial patterns of water erosion induced (a) gross soil 

carbon losses, (b) extra carbon sink due to the reduced soil respiration, and (c) the net 

carbon fluxes over grassland for the period 1990-1999. Positive values indicate carbon losses, 

and negative values indicate carbon sinks. 

  



	 84	

 
Supplementary Figure 29. (a) Global burned area and (b) fire emissions for the period 

1900-2012 simulated by ORCHIDEE-GM v3.2 with and without accounting for grassland 

management, (c) the simulated changes in fuel loads caused by grassland management for 

the period 1900-2012, and (d) the simulated response of fuel loads to grazing intensity in 

the past 20 years (1991-2010). 
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Supplementary Figure 30. (a) Spatial pattern of mean burned fraction during the period 

1997-2012 simulated by ORCHIDEE-GM v3.2 accounting for grassland management, (b) 

the differences in burned fraction (mean of 1997-2012) caused by grassland management, 

(c) the trend of burned fraction during the period 2000-2012, and (d) the contribution of 

grassland management intensity change (increase or decrease of livestock numbers) on 

the trend of burned fraction during the period 2000-2012. Positive differences in (b) indicate 

that grassland management increased burned area, while negative differences indicate that 

grassland management decreased burned area. 
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Supplementary Figure 31. Historical changes in the simulated grazing intensity over 

managed grassland for 1860 and 2012 by region, together with the global total. 
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Supplementary Figure 32. The spatial distribution of the grassland fraction in 2010, and 

the average managed grassland fraction, the grazing stocking rate and the grazing 

intensity (GI) in 2000s obtained in this study. The grassland fraction in 2010 is derived from 

the ESA CCI Land Cover product137 for the year 2010, and is converted to the Plant Functional 

Type (PFT) map used in ORCHIDEE following the methodology presented by ref138,139. The 

managed grassland fraction, grazing stocking rate is reconstructed as presented in 

Supplementary Discussion 7. The grazing intensity is simulated by ORCHIDEE-GM v3.2, and 

is calculated as total harvested and grazed carbon as a ratio of total aboveground NPP (ANPP) 

over managed grassland following ref77. 
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Supplementary Figure 33. Comparisons between pre-industrial gross primary 

productivity (GPP) with atmospheric CO2 concentration of 296 ppm (GPP296) and current 

GPP with atmospheric CO2 concentration of 396 ppm (GPP396) for all natural plants (a) 

and natural C3 plants (b) by ORCHIDEE-GM v3.2. The color scale shows the point density. 

The ratio between GPP396 and GPP296 indicates the CO2 fertilization effects (ECO2). Green 

hatched areas indicate the observed ECO2 from based on long-term atmospheric carbonyl sulfide 

(COS) records of ref118. Red lines indicate the observed ECO2 from ref 117. Black lines indicate 

the modelled ECO2 from ORCHIDEE-GM. 
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Supplementary Figure 34. The spatial distribution of the manure and fertilizer 

application rate over managed grassland in 2010 obtained in this study. 
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Supplementary Table 1. Simulation protocol and input data. 

  Simulation E1 Simulation E2 Simulation E3 Simulation E4 Simulation Enomanage 
Simulation period Spin-up (20000 years) 1751–1860 1861–1900 1901–2012 Spin-up + 1751–2010 
Input data      
  Climate forcinga 1901-1910 cycled 1901–1910 cycled 1901–1910 cycled 1901–2012 Same as E1 to E4 
  Atmospheric CO2 concentrationb 1860 1860 1861–1900 1901–2012 Same as E1 to E4 
  Enhanced historic Land-cover changec 1860 1860 1861–1900 1901–2012 Same as E1 to E4 
  Grazing-ruminant stocking densityd 1860 1860 1861–1900 1901–2012 Not applied 
  Nitrogen fertilizer applicationd Not applied 1860 1861–1900 1901–2012 Not applied 

  Atmospheric-nitrogen depositione Not applied 1860 1861–1900 1901–2012 Same as E1 to E4 
  Wild-grazers population densityf 1860 1860 1861–1900 1901–2012 Not applied 

 
a, climate forcing: the 6-hourly CRU-NCEP134,135 reconstructed climate data at 0.5o × 0.5o spatial 

resolution for the period 1901– 2012. Variables used by ORCHIDEE include temperature, rainfall, 

snowfall, short-wave and long-wave downward radiation, air humidity, and air pressure. 

b, atmospheric CO2 concentration comes from the combination of ice core records and atmospheric 

observations for 1860–2012 (ref136 and update) 

c, the enhanced historic land-cover change data set is the PFT maps produced in this study 

incorporating specific historic area changes under different grassland management types and wild 

grazer occupation (mown, grazed, natural and wild) reconstructed adapted from ref 133 with some 

improvement described in Supplementary Discussion 7. 

d, these input data were described in detail in ref 133. 

e, atmospheric-N deposition maps during 1860–2012 were from the IGAC/SPARC Chemistry-

Climate Model Initiative (CCMI) N deposition fields142. 
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f, wild-grazers population density is reconstructed in this study using the method described in 

Supplementary Methods 1, Section “Reconstructing the history of wild grazer density and grazed 

area”. 
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Supplementary Table 2. Comparison of the grassland greenhouse gas fluxes estimated in 
this study with those from previous studies. A negative value indicates a GHG sink, and a 
positive value indicates a GHG source. Values are expressed as mean ± standard deviation, while 
values in brackets indicate 95% confidence interval of the measurements. The grassland carbon 
budget estimates from previous studies focus on fluxes from grassland without accounting for 
deforestation for pasture. Thus, the grassland net CO2 fluxes (FCO2-C as in Supplementary 
Equation 25) excluding land-use change emissions from this study are used here for comparison 
of CO2 fluxes. The only exception is the estimate for Brazil. We combined the grassland net CO2 
fluxes and the emissions from deforestation for pasture to be comparable with Schroeder and 
Winjum (1995). The studies used for estimating the relative uncertainty of the simulated 
grassland CO2 fluxes are denoted with a ‘#’ symbol in the “Reference” column. 
 

GHG 
Fluxes 

Globe/Region/Co
untry/Site 

Period This study Grassland area 
from this study 

GHG estimates from 
literature 

Grassland area 
from literature 

Methods used in 
literature 

Reference 

CO2                 

 World Around 1990a  –491 ± 223 Tg C yr-1 49 × 106 km2 –500 Tg C yr-1  
Combination of 

sparse 
observations and 

model results 

Schurlock and 
Hall, 1998185 

 

North America 2000-2005  –124 ± 56 Tg C yr-1 8.2 × 106 km2  –100 [–100 to 0] Tg C yr-1 b 

 

Atmospheric 
inversion 

Peters et al., 
200719 

 

North America 2000-2006  –101 ± 44 Tg C yr-1       

(–12 ± 5 g C m-2 yr-1) 8.2 × 106 km2  –332.5 ± 301.3 Tg C yr-1                
(–46 ± 42 g C m-2 yr-1) c 

 

Atmospheric 
Inversion Models 

SOCCR-2, 
adapted from 
Hayes et al., 

201218 #      

 –25.2 Tg C yr-1                   (–3 
g C m-2 yr-1) c 

 

Inventory 
Analysis 

SOCCR-2, 
adapted from 
Hayes et al., 

201218 #      

 –130.5 ± 151.8 Tg C yr-1                 

(–18 ± 21 g C m-2 yr-1) c 7.3 × 106 km2 Process-based 
model 

SOCCR-2, 
adapted from 
Hayes et al., 

201218 
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United States 
(Great Plains) 2000-2008  –18 ± 8 g C m-2 yr-1 

 

–24 ± 14 g C m-2 yr-1 

 
Flux tower 

observations up-
scaling 

Zhang et al., 
201121 # 

 
United States 
(Managed 
grassland) 

1990-2009 -106 ± 49 Tg C yr-1        
(-25 ±12 g C m-2 yr-1)  4.2 × 106 km2 –11.5 ± 2 Tg C yr-1                   

(–4 ± 1 g C m-2 yr-1) d < 2.6 × 106 km2 
Process-based 
model + IPCC 
Tier 2 method 

U.S. EPA, 2011 20 
# 

 United States 2001-2005  –101 ± 46 Tg C yr-1      

(–24 ± 10 g C m-2 yr-1) 4.2 × 106 km2  –54.7 Tg C yr-1                    (–
20 g C m-2 yr-1) 2.7 × 106 km2 Process-based 

model 

The Land Carbon 
project22-24; Liu et 

al., 2014; Liu et 
al., 2012; Zhu et 

al., 2011  

Brazil 1980s  85 ± 28 Tg C yr-1        2.3 × 106 km2 72 to 103 Tg C yr-1 e 1.1 × 106 km2 
Combination of 

independent 
approaches 

Schroeder and 
Winjum, 199537 

 New Zealand 
between 1960-
1992 to 2002-

2010 
 –3 ± 1 g C m-2 yr-1   –100 ± 37 to 121 ± 25 g C 

m-2 yr-1 f 
 

SOC change 
inventories with 

repeated soil 
sampling 

Schipper et al., 
201038 

 

Russia around 1990a  –122 ± 56 TgC yr-1      
(–24 ± 11 g C m-2 yr-1) 5.3 × 106 km2  –197 Tg C yr-1    

(–45.6 g C m-2 yr-1) 4.3 × 106 km2 
Combination of 

independent 
approaches 

Nilsson et al., 
200039 # 

 Europe (located at 
15 countries) Since 2002  –62 ± 28 g C m-2 yr-1   –76 ± 11 g C m-2 yr-1 g  

Flux tower 
observations + 
observation of 

input/output at 39 
sites 

Soussana et al., 
201425 # 

 EU25 2000-2005  –59 ± 27 Tg C yr-1        

(–59 ± 27 g C m-2 yr-1) 1.0 × 106 km2  –32 ± 4 Tg C yr-1           (–
56 ± 7 g C m-2 yr-1) 0.6 × 106 km2 

Combination of 
independent 
approaches 

Schulze et al., 
200927 # 

 Continental 
Europe 2000-2005  –121 ± 55 Tg C yr-1      

(–49 ± 22 g C m-2 yr-1) 2.5 × 106 km2  –85 ± 12 Tg C yr-1            (–
57 ± 34 g C m-2 yr-1) 1.5 × 106 km2 

Combination of 
independent 
approaches 

Schulze et al., 
200927 # 

 Continental 
Europe 1990s  –83 ± 38 Tg C yr-1         

(–35 ± 16 g C m-2 yr-1) 2.4 × 106 km2  –101 ± 133 Tg C yr-1  

(–67 ± 88 g C m-2 yr-1) 1.5 × 106 km2 
Combination of 

independent 
approaches 

Janssens et al., 
200326 # 
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 England and 
Wales 1978-2003  –55 ± 25 g C m-2 yr-1   A loss of soil carbon h  

SOC change 
inventories with 

repeated soil 
sampling 

Bellamy et al., 
200528 

 Scotland 
between 1978-
1988 to 2007-

2009 
 –36 ± 16 g C m-2 yr-1  No significant change  

(–17 to 21 g C m-2 yr-1) i 
 

SOC change 
inventories with 

repeated soil 
sampling 

Chapman et al., 
201329 

 UK 1978-2007  –49 ± 22 g C m-2 yr-1   No significant change j  
SOC change 

inventories with 
repeated soil 

sampling 

Reynolds et al., 
201330 

 Belgium 1955-2005  –100 ± 46 g C m-2 yr-1  –43.8 g C m-2 yr-1   
SOC change 

inventories with 
repeated soil 

sampling 

Goidts and van 
Wesemael, 200731 

# 

 Belgium 1960-2006  –99 ± 45 g C m-2 yr-1  –25.4 ± 56.2 g C m-2 yr-1      
SOC change 

inventories with 
regional 

comparison 

Meersmans et al., 
200933 # 

  
Flanders 
(Northern 
Belgium) 

1990-2000  –71 ± 33 g C m-2 yr-1   150 g C m-2 yr-1       

SOC change 
inventories with 

regional 
comparison 

Mestdagh et al., 
200935 # 

 Belgium 1960-2000  –103 ± 47 g C m-2 yr-1  –22.5 g C m-2 yr-1    3684 km2 

SOC change 
inventories with 

regional 
comparison 

Lettens et al., 
2005a32 # 

 

Belgium 1990-2000  –72 ± 33 g C m-2 yr-1  90 g C m-2 yr-1    
SOC change 

inventories with 
regional 

comparison 

Lettens et al., 
2005b34 # 

 

Belgium 1984-2000  –85 ±38 g C m-2 yr-1  Non-significant increase in 
SOC k 

 
SOC change 

inventories with 
regional 

comparison 

Reijneveld et al., 
200936 

 

Netherlands 1985-2004  –26 ± 12 g C m-2 yr-1  –39 g C m-2 yr-1  3350 km2 

SOC change 
inventories with 

regional 
comparison 

Hanegraaf et al., 
2009186 # 
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China 1982-1999  –94 ± 43 Tg C yr-1      

 (–19 ± 9 g C m-2 yr-1) 4.8 × 106 km2  –74 ± 14 Tg C yr-1             (–
14 ± 3 g C m-2 yr-1) 5.5 × 106 km2 

Combination of 
independent 
approaches 

Piao et al., 200940 
# 

 

China (northern) Between 1980s 
to 2001-2005  –16 ± 7 g C m-2 yr-1  –4 [–23 to 15] g C m-2 yr-1 2.0 × 106 km2 

SOC change 
inventories with 

regional 
comparison 

Yang et al., 
201041 # 

 

China (temperate) 2000-2010  –1 ± 0 g C m-2 yr-1 

 

 –158 ± 25 g C m-2 yr-1 

 
Flux tower 

observations up-
scaling 

Zhang et al., 
201445 # 

 

China (temperate) between 2002-
2004 to 2015 

 –14 ± 6 Tg C yr-1          

(–16 ± 7 g C m-2 yr-1) 0.6 × 106 km2 
 –22 [–16 to –29] Tg C yr-1         

(–51 [–35 to –66] g C m-2 
yr-1) l 

0.4 × 106 km2 

SOC change 
inventories with 

repeated soil 
sampling 

Kou et al., 201843 
# 

 

China (temperate) 2001-2012  –15 ± 7 g C m-2 yr-1 

 

 –88 g C m-2 yr-1 

 

Remote sensing + 
empirical model 

Dai et al., 201642 
# 

 China (temperate) 1951-2007  –14 ± 6 g C m-2 yr-1 0.9 × 106 km2  –11 g C m-2 yr-1 0.7 × 106 km2 Process-based 
model Sui et al., 201344 

 

China (southern) 1961-2013  –30 ± 13 g C m-2 yr-1 0.7 × 106 km2  –1.5 g C m-2 yr-1 0.3 × 106 km2 Process-based 
model 

Zhang et al., 
201747 

 China (southern) 2001-2010  –33 ± 15 g C m-2 yr-1 

 

  –82 to –3 g C m-2 yr-1 

 

Process-based 
model Sun et al., 201546 

 

China (Qinghai-
Tibetan plateau) 

Between 1980s 
and 2001-2004  –18 ± 8 g C m-2 yr-1 1.6 × 106 km2 0.6 [–35.8 to 36.5] gC m-2 

yr-1 1.1 × 106 km2 

SOC change 
inventories with 

regional 
comparison 

Yang et al., 
200948 # 

 

China (Qinghai-
Tibetan plateau) 

between 2001-
2004 to 2013-

2014 

 –33 ± 15 Tg C yr-1        

 (–21 ± 9 g C m-2 yr-1) 1.6 × 106 km2 

 –32 [–46.7 to –17.4] Tg C 
yr-1          

(–28 [–41 to –15] g C m-2 
yr-1) m 

1.1 × 106 km2 

SOC change 
inventories with 

repeated soil 
sampling 

Ding et al., 201749 
# 

 

China (Qinghai-
Tibetan plateau) 1980-2009  –29 ± 13 Tg C yr-1         

(–18 ± 8 g C m-2 yr-1) 

 

 –18 Tg C yr-1 

 

Process-based 
model Piao et al., 201250 
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China (Qinghai-
Tibetan plateau) 1961-2010  –14 ± 7 g C m-2 yr-1 

 

 –10 g C m-2 yr-1 

 

Process-based 
model Yan et al., 201551 

 China (Qinghai-
Tibetan plateau) 1990s  –12 ± 6 g C m-2 yr-1 

 

 –28 g C m-2 yr-1 

 

Process-based 
model 

Zhuang et al., 
201053 

 China (Qinghai-
Tibetan plateau) 1981-2012  –18 ± 8 g C m-2 yr-1 

 

 –4 g C m-2 yr-1 

 

Process-based 
model Yi et al., 201452 

 United States 
(LETR) 1988-2006  68 ± 31 g C m-2 yr-1    A loss of soil carbon (86.5 g 

C m-2 yr-1) n   

SOC change 
inventories over a 

long-term 
experiment site 

Senthilkumar et 
al., 200954 # 

 UK (Palace Leas) 1982-2006   5 ± 2 g C m-2 yr-1    No significant change    (–
15 to 78 g C m-2 yr-1) o   

SOC change 
inventories over a 

long-term 
experiment site 

Hopkins et al., 
200955 

 UK (Park Grass) 

1959-2002 

 23 ± 10 g C m-2 yr-1 

 

No significant change    (–
16 to 25 g C m-2 yr-1) o  

 

SOC change 
inventories over a 

long-term 
experiment site 

Hopkins et al., 
200955 

CH4                 

Domestic 
livestock 

World 2003 43 ± 8 Tg CH4 yr-1 
 

44 Tg CH4 yr-1 p 
 

Emission factors 
and feed statistics 

Clark et al., 
200556 

Domestic 
livestock 

World 2010 49 ± 10 Tg CH4 yr-1 
 

104 Tg CH4 yr-1   (livestock 
sector) 

 
Emission factors 

and livestock 
statistics 

FAOSTAT, 
201762 

     
115 Tg CH4 yr-1   (livestock 

sector) 

 
Emission factors 

and livestock 
statistics 

EDGAR v4.3.2 59 
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103 Tg CH4 yr-1    

(livestock sector) 

 
Emission factors 

and livestock 
statistics 

EPA, 201258 

     
96 Tg CH4 yr-1    (livestock 

sector) 

 
Emission factors 

and livestock 
statistics 

Dangal et al., 
201760 

     118 ± 16 Tg CH4 yr-1    
(livestock sector 

 Improved 
emission factors 

and livestock 
statistics 

Wolf et al., 2017 
57 

     98 ± 11 Tg CH4 yr-1    
(livestock sector, enteric 

fermentation only) 

 Emissions based 
on energy content 

of feed 
consumption  

Chang et al., 2019 
61 

Domestic 
livestock 

World 2000 42 ± 8 Tg CH4 yr-1 
 

52 Tg CH4 yr-1    (livestock 
sector) 

 
Emission factors 

and livestock 
statistics 

Herrero et al., 
201363 

Wild 
grazers 

World 2000-2009 1.9 ± 0.4 Tg CH4 yr-1 
 

10 [2 to 15] Tg CH4 yr-1 
(grazers + browsers) q 

 
Combination of 

independent 
approaches 

Saunois et al., 
201668 

Wild 
grazers 

World 2006 1.8 ± 0.4 Tg CH4 yr-1 
 

13 Tg CH4 yr-1     (grazers + 
browsers) r 

 
Emission factor 

related to 
mammal body 
mass, and wild 

herbivores dataset 

Smith et al., 
201664 

Wild 
grazers 

World Contemporary 1.8 ± 0.4 Tg CH4 yr-1  1.1 to 2.7 CH4 yr-1 (grazers 
+ browsers)  

 Emission factor 
related to body 

mass, and 
collected world 
population size 

Pérez-Barbería  
, 2017 69 

N2O                 

Domestic 
livestock 

World 1961 1.5 ± 0.5 Tg N2O yr-1 
 

1.3 Tg N2O yr-1 s 
 

Emission factors 
and livestock 

statistics 

FAOSTAT, 
201762 
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Domestic 
livestock 

World 2010 2.7 ± 1.0 Tg N2O yr-1 
 

2.5 Tg N2O yr-1 s 
 

Emission factors 
and livestock 

statistics 

FAOSTAT, 
201762 

Domestic 
livestock 

World 2000 2.5 ± 0.9 Tg N2O yr-1 
 

1.8 Tg N2O yr-1 
 

Emission factors 
and livestock 

statistics 

Herrero et al., 
201363 

Domestic 
livestock 

World 1990 2.4 ± 0.8 Tg N2O yr-1 
 

2.4 Tg N2O yr-1 
 

Emission factors 
and livestock 

statistics 

Oenema et al., 
199770 

Domestic 
livestock World 1970-2012 2.4 ± 0.8 Tg N2O yr-1 

 
2.0 Tg N2O yr-1 t 

 Emission factors 
and livestock 

statistics 

EDGAR v4.3.2 
59;  

Domestic 
livestock 

World 1961-2012 2.2 ± 0.8 Tg N2O yr-1   2.7 Tg N2O yr-1 u   Process-based 
model 

Dangal et al., 
2019 71 

 
a Schurlock and Hall, 1998: No time span is indicated for this ‘best guess’ of the global grassland 

carbon balance. Based on the literature used by Schurlock and Hall (1998), we compare it with the 

mean value of 1986-1995. 

b Peters et al., 2007: The estimate is derived from CarbonTracker data assimilation system for 

grassland and shrubland; the range indicates the values from a set of sensitivity experiments. 

c The values for grasslands in North America were derived from Table 10.1 of SOCCR-2 Chapter 

10 (Pendall et al., 2018), which were adapted from Hayes et al. (2012). For estimates using 

atmospheric inversion models and land-surface models, they were directly derived from the 

estimates for “other” land in Table 4 of Hayes et al. (2012), given the fact that most of the land 

“other” than forestland and cropland are grassland, which is also the definition in most land-surface 

models. For inventory-based estimates, Pendall et al. (2018) used the grassland net ecosystem 

exchange (NEEG) for Canada (-3.06 Tg C yr-1) and the United States (-13.16 Tg C yr-1), and the 
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NEP value for “Others” for Mexico (-9.06 Tg C yr-1; Table S7-S9 of Hayes et al., 2012). In fact, 

for NEEG of Canada, Hayes et al. (2012) used the average grassland sink per area from the U.S. 

data (2.1 gC m-2 yr-1); and the NEEG for the U.S. was derived from the Environmental Protection 

Agency Greenhouse Gas Inventory (EPA, 2011). 

d EPA (2011): U.S. EPA estimated grassland soil carbon stock changes for the period 1990-2009 

for “grassland remaining grassland” (sink of -5.2 Tg C yr-1 with uncertainty of [-32%, +25%]; Table 

7.1 of EPA, 2011) and “land converted to grassland” (sink of -6.3 Tg C yr-1 with uncertainty of 

±15%; Table 7.1 of EPA, 2011) respectively. The mineral soil carbon stock changes were estimated 

using the Century biogeochemical model, while the organic soil carbon stock changes were 

estimated using the Tier 2 method provided in IPCC (2003, 2006), which utilizes U.S.-specific C 

loss rates (Ogle et al. 2003) rather than default IPCC rates. In total, EPA (2011) estimated a sink 

of -11 ± 2 Tg C yr-1 over “grassland remaining grassland” and “land converted to grassland”. It 

should be noted that the above two grassland categories only include all private-owned grassland 

but not federal land, thus they are less than the 2.6 × 106 km2 grassland area shown in Table 7.5 of 

EPA (2011). This value is not much lower than the one in Table S8 of Hayes et al. (2012). Here, 

using the grassland area of 2.6 × 106 km2, we derived the average grassland C sink of -4 ± 1 gC m-

2 yr-1.  

e Schroeder and Winjum, 1995: The estimate is derived by combining grassland area with land 

use/management induced soil carbon loss derived from literature or by assumption: i.e., 62 to 93 

Tg C yr-1 carbon loss over 0.151 × 106 km2 pasture; carbon neutral for 0.74 × 106 km2 

savanna/grasslands; 10 Tg C yr-1 carbon loss over 0.179 × 106 km2 degraded grassland. It did not 
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consider inter-annual variation from climate impacts. Thus we compare it with the mean value of 

1980–1989 including land-use change emissions due to deforestation for pasture. 

f Schipper et al., 2010: The estimate is derived from soil re-sampling of 83 profiles under pasture 

in New Zealand with initial sampling between 1960 and 1992, and re-sampling between 2002 and 

2010. On average, soils were resampled 27 years after the first sampling which generally took place 

in the early 1980s. The values of the soil depth of 0-90 cm were used here. Original literature gives 

values for four land forms/land uses: 31 ± 27 gC m-2 yr-1 for flat drystock pastures; 121 ± 25 gC m-

2 yr-1 for flat dairy pastures; -100 ± 37 gC m-2 yr-1 for north island hill; and 35 ± 8 gC m-2 yr-1 for 

south island tussock. We compare it with the mean value of 1980-2006.  

g Soussana et al., 2014: The estimate is derived from 213 site-year flux observations + carbon 

input/output observations from 39 sites located in 15 European countries. We compare the mean 

value of the 15 countries for the period 2002–2012. 

h Bellamy et al., 2005: No exact value is available from literature. From Fig. 2 of Bellamy et al., 

2005, the values for grassland SOC change for England and Wales between 1978–2003 are just 

below 0 g kg-1 yr-1 for rotational grass and permanent grass, ca. -0.5 g kg-1 yr-1 for rough grazing, 

and just greater than -2 g kg-1 yr-1 for upland grass. All values show losses of soil organic carbon 

over grasslands of England and Wales. 

i Chapman et al., 2013: The measurement shows a decrease in mean total carbon stock of 450gC 

m-2 over improved grassland, and an increase of 540 gC m-2 over semi-natural grassland between 

the two inventories (the first one in 1978–1988, the second one in 2007–2009). But both changes 

are not significant. 
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j Reynolds et al., 2013: The measurements were presented as topsoil carbon concentration. No 

significant overall changes in topsoil carbon concentration were observed between 1978 and 2007. 

k Reijneveld et al., 2009: A non-significant increase in SOC of 0.1 g kg-1 of soil over grassland 

was observed. 

l Kou et al., 2018: The estimate is derived from soil re-sampling of 76 profiles (0.5 m depth) under 

Inner Mongolian grasslands with initial sampling between 2002 and 2004, and re-sampling in 2015. 

Values in brackets indicate 95% confidence interval. We compare it with the mean value of 2003–

2012. 

m Ding et al., 2017: The estimate is derived from soil re-sampling of 103 profiles (30 cm depth) 

under Tibetan grasslands with initial sampling between 2001 and 2004, and re-sampling between 

2013 and 2014. Values in brackets indicate 95% confidence interval. We compare it with the mean 

value of 2002–2012. 

n Senthilkumar et al., 2009: A soil carbon loss of 7.7 g kg of soil was measured. The average bulk 

density measured in 2007 was 1.12 g cm-3; this value was assumed to be applicable to the 1986 

data as well. As a result, a carbon loss of 1730 g C m-2 was estimated between 1987 and 2006. The 

lack of bulk density measurements from the 1980s is a drawback for the C stock calculations of 

this study that reduces accuracy in the estimates of C stocks; however, it does not affect C 

concentration results. For estimates with SOC change inventories over long-term experimental sites, 

we compare them with model output of the 0.5o × 0.5o grid cell in which the experiments were 

located or of the surrounding grid cell (using the grid cell with the mean annual temperature and 

annual total precipitation closest to the values reported by literature). 
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o Hopkins et al., 2009: The plots in these two experiment sites did not show consistent changes in 

SOC. For the PL site, four plots showed no significant changes in SOC (SOC increase can be as 

high as 3.42 t C ha-1 using plot 6 data from Table 2 of Hopkins et al., 2009), while the other two 

plots showed significant losses of carbon of 18 and 15 t C ha-1. For the PG site, SOC change ranges 

from carbon losses of 10.5 t C ha-1 to carbon gain of 6.6 t C ha-1. Authors found no significant SOC 

differences between the two inventories for these two sites. We compare them with model output 

of the 0.5o × 0.5o grid cell in which the experiments were located or of the surrounding grid cell 

(using the grid cell with the mean annual temperature and annual total precipitation closest to the 

values reported by literature). 

p Clark et al., 2005: The estimate is calculated using grassland-derived feed and emission factors. 

q Saunois et al., 2016: This estimate accounted for all wild animals including grazers and browsers 

with large uncertainty (Bouwman et al., 1997). Original data from Leng (1993; 2-6 Tg CH4 yr-1) 

and Houweling et al. (2000; 15 Tg CH4 yr-1). 

r Smith et al., 2016: This estimate accounted for all wild animals including grazers and browsers; 

the contemporary wild animal CH4 emissions are derived from emissions of 1800 and consider the 

reduction by regional percentage urbanization of natural habitats. 

s FAOSTAT, 2017: This estimate is derived from manure left on pasture, but does not account for 

the N2O emissions due to mineral fertilizer application over grassland in some regions (e.g., 

Bouwman et al., 2002). 

t EDGAR v4.3.2; This estimate includes N2O emissions from “Manure in pasture/range/paddock” 

and “Manure management”. 
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u Dangal et al., 2019: This N2O estimate is derived from DLEM model simulation with 

representation of soil N dynamics associated with N2O emissions 
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Supplementary Table 3. The absolute and relative contributions of grassland to the various 

components of global radiative forcing in 2012. 

  
radiative forcing 

(mW m-2) 
Relative 

contribution (%) 

CO2 soil sink  -194 ± 99  -11 ± 5% 
    Managed -41 ± 22  
    Sparsely grazed -152 ± 78  
CO2 ELUC  108 ± 35 7 ± 2% 
    Deforestation to pasture 81 ± 26  
    Conversion of grassland to cropland 27 ± 9  
CH4 (including O3 and H2O) 70 ± 15 14 ± 3% 
    Managed 95 ± 20  
    Sparsely grazed  -25 ± 5  
N2O (including O3) 30 ± 10 17 ± 6% 
    Managed 52 ± 18  
    Sparsely grazed  -22 ± 9  
Net GHGs  15 ± 105  1 ± 4% 

Albedo  -3 ± 8  1 ± 7% 

Grassland Total  12 ± 105  1 ± 4% 

    Managed 204 ±48  

    Sparsely grazed -193 ± 80  
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Supplementary Table 4. Comparison of the historic land-cover change maps used in ref 133 
and in this study. 

  Chang et al., 2016 ref 133 This study 
Reference map GLC2000 for year 2000182,187 ESA CCI for year 2010137  
Methodology used to produce 
PFT map 

Poulter et al., 2011 (ref138) Poulter et al., 2011; 2015 (ref138,139) 

Historical land-use forcing data 
set 

LUH1140 LUH2v2 
(http://luh.umd.edu/data.shtml) 

Constraint of Cropland area HYDE3.1 188                                      HYDE3.2141                                  

Method used to define the land-
cover transitions between 
natural vegetation and 
agriculture 

BM3 method96  BM3 method96  
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Supplementary Table 5. Uncertainty estimates for the grassland carbon sink and land-use 
change emission related to grassland in this study. A negative value indicates a carbon sink, 
and a positive value indicates a carbon source. Relative uncertainties in bold are used as the 
uncertainty of grassland carbon sink (46%) and land-use change emission related to grassland 
(31%) in this study. 

  
Standard error of the mean distance (g 

C m-2 yr-1)  
Mean of the simulated carbon budgets (g 

C m-2 yr-1)  Relative uncertainty 

Grassland carbon fluxes 16 -35 46% 

  
Standard deviation from 16 

TRENDYv6 models (Gt C yr-1) 
Net land carbon fluxes from 16 
TRENDYv6 models (Gt C yr-1) Relative uncertainty 

Net land carbon fluxes (average of 
1960-2009) -0.61 -1.44 42% 

  
Standard deviation from 12 

TRENDYv6 models (Gt C yr-1) 
Multi-model ensemble mean of 12 

TRENDYv6 models (Gt C yr-1) Relative uncertainty 

Land-use change emissions 0.39 1.22 31% 
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Supplementary Table 6. Comparison of overgrazed grassland and portion of overgrazed land 

within each severity class in the 1980s from model simulation and from the Global Assessment 

of Soil Degradation (GLASOD) Database. The data from GLASOD are adapted from ref78, which  

originated from the Global Assessment of Soil Degradation76. 

  

Overgrazed grassland from model 

simulation (million ha)   

 

Overgrazed grassland from GLASOD 

Database (million ha) 

Continent Total Light Moderate Strong   Total Light Moderate 

Strong 

and 

Extreme 

Africa  106.6 78.5% 14.3% 7.3%  87.7 34.6% 35.2% 30.2% 

Australia/Pacific  28.8 68.6% 14.5% 16.9%  49.1 97.5% 2.3% 0.2% 

Eurasia  56.5 68.0% 24.9% 7.1%  85.6 54.8% 41.8% 3.4% 

North America  29.5 76.9% 11.5% 11.5%  14 14.5% 73.4% 12.1% 

South America  41.1 71.6% 19.7% 8.7%  26.2 35.8% 57.6% 6.6% 

Global  262.5 73.9% 17.1% 9.0%   262.5 52.0% 35.5% 12.5% 
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Supplementary Table 7.  The simulation protocol and the drivers used for the factorial 
simulations. The contribution of climate change, rising CO2, atmospheric nitrogen deposition, and 
grassland management (including manure and fertilizer application) together with the extirpation 
of wild grazing is calculated as the differences between the net CO2 fluxes between Ereference and 
Eclimate, Eco2, Edeposition, and Emanagement respectively. The contribution of land-use change is the land-
use change emissions (CO2 ELUC) related to grassland as described in the methods section of the 
main text. The CO2 ELUC of deforestation to pasture is calculated as the difference in the net CO2 
fluxes between EELUC_reference and EELUC_FtoG, and the CO2 ELUC of conversion of grassland to 
cropland is calculated as the difference in the net CO2 fluxes between EELUC_reference, and EELUC_GtoC. 

  Simulation 
Ereference 

Simulation 
Eclimate 

Simulation 
Eco2 

Simulation 
Edeposition 

Simulation 
Emanagement 

Simulation 
EELUC_reference 

Simulation 
EELUC_FtoG 

Simulation 
EELUC_FtoC 

Simulation period 1861-2012 1861-2012 1861-2012 1861-2012 1861-2012 1861-2012 1861-2012 1861-2012 

Input data         

  Climate forcing 

1901–1910 cycled 
for 1861-1900, 

and historical 
climate for 1901–

2012 

1901–1910 
cycled 

Same as E3 
to E4 

Same as 
Ereference 

Same as 
Ereference 

Same as 
Ereference Same as Ereference Same as Ereference 

  Atmospheric CO2 
concentration 1861-2012 1861-2012 1860 1861-2012 1861-2012 1861-2012 1861-2012 1861-2012 

  Atmospheric-nitrogen 
deposition 1861-2012 1861-2012 1861-2012 1860 1861-2012 1861-2012 1861-2012 1861-2012 

  Historic Land-cover 
change 1861-2012 1861-2012 1861-2012 1861-2012 1861-2012 

Time invariant 
land cover of 

1860 for all 
biomes 

Time invariant 
cropland of 1860, 

and historical land 
use transitions 
from forest to 

grassland 

Time invariant 
forest of 1860, 

and historical land 
use transitions 

from grassland to 
cropland 
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  Grassland 
management 1861-2012 1861-2012 1861-2012 1861-2012 1860 Not applied Not applied Not applied 

  Wild-grazers 
population density 1861-2012 1861-2012 1861-2012 1861-2012 1860 Not applied Not applied Not applied 
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