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Abstract

The introduction of social media technologies
has fostered the diffusion of misinformation.
The speed and format with which misinforma-
tion is created and the pace at which it dif-
fuses poses new challenges for practitioners
and policy-makers alike. In this paper, we
show that a simple network using character-
level inputs given to a CNN is well suited
to detect misinformation. We believe the ef-
fectiveness of such a simple architecture is
because the CNN can exploit morphological
differences between misinformation and other
types of information. To test our intuition,
we compare the character CNN inputs to dif-
ferent others like word embeddings. We find
that the network using character CNN out-
performs models that do not take into consid-
eration morphologies and matches the perfor-
mance of others that consider it to some ex-
tent. We argue that the nature of misinforma-
tion, the low availability of training data and
the multidisciplinary background of individu-
als implementing misinformation detection al-
gorithms make simple, easy-to-implement net-
works such as the character CNN good alterna-
tives to other models.

1 Introduction

In 2016, the world witnessed the climax of an
epidemic of misinformation. Democracies from
around the world were suddenly confronted to de-
ceivers that, regardless of their goals, looked to
influence people’s beliefs and perceptions; and
even if such worries had been present every time
new technological breakthrough appears (Penny-
cook and Rand, 2017), the magnitude and scale of
the problem facilitated through social media over-
whelmed governments from Britain to the United
States. So profound were the stakes and conse-
quences that countries like France and the United
Kingdom have sparked national discussions on

how to rein in misinformation campaigns.
Even if the problem of misinformation and de-

ception detection is not new, its format (e.g.,
the way it can be easily crafted and then spread
through social media) poses new challenges for
academics and practitioners alike. In fact, there
has been little research in the field of automatic de-
ception detection in social media1 (Rubin, 2017)
as many argue that studying textual elements
within social media posts is challenging and con-
tend that a better way to study the problem is by
analysing its patterns of diffusion (Monti et al.,
2019).

However, long-established research in auto-
matic deception detection together with newer
studies in psychological research suggests there is
a case to be made in using textual features of social
media posts to detect misinformation. The former
argue that deceivers carefully select their language
to avoid being caught (Feng and Hirst, 2013). But
research has shown that monitoring linguistic pat-
terns is difficult for deceivers and can be used
to detect lies2. The latter suggests polarisation
makes it more likely for individuals to rationalise
beliefs and raise the possibility deceivers may en-
gineer their posts to maximise influence (Nyhan
and Reifler, 2010; Polage, 2012; Pennycook et al.,
2017; Swire et al., 2017). Recent research looking
into misinformation in the 2016 presidential cam-
paign in the United States (Amador et al., 2017;
Vosoughi et al., 2018) finds that deceivers are us-
ing both language leakages and polarisation. Lan-
guage leakages were detected by statistically sig-
nificant differences in the use of capitalisation and
special characters (Amador et al., 2017). Dif-

1Notable exceptions are: Mukherjee et al. (2013); Toma
and Hancock (2012); Ranabothu Nithin and Kumar (2012).

2A well-known example of language leakages can be
found in the AIDS disinformation campaign in the 80s where
deceivers claiming to be English native speakers wrote an ar-
ticle with the text ‘virus flu’ instead of ‘flu virus’.



ferences in polarisation were identified by dif-
ferences in the usage and variations of tone and
sentiment (Vosoughi et al., 2018). By exploiting
such traits, one could potentially build a language-
based model to detect misinformation.

Nevertheless, the before-mentioned character-
istics specific to misinformation in online social
media pose essential challenges. First, deceivers
use of special characters in social media raises the
possibility of having plenty of out-of-vocabulary
(OOV) tokens. Next, difficulties in annotating so-
cial media together with the pace it is being gener-
ated, makes it challenging to have a large amount
of data that can easily be used in different con-
texts. Together, these two characteristics may hin-
der the effectiveness of popular models and even
state-of-the-art neural language techniques. The
former would struggle to learn in the presence of
a large amount of OOV tokens. The latter may not
be as useful as pre-trained, context-aware embed-
dings may tussle in the presence of rapidly chang-
ing contexts. As such, we argue that character
level inputs passed to a CNN are particularly well-
suited for the task due to its ability to better handle
morphologies and syntactic differences related to
language leakages in misinformation. To test this
hypothesis, we compare the performance of char-
acter CNN inputs to different others that (1) do
not take into consideration morphologies, (2) “par-
tially” take into considerations morphologies, and
(3) take into consideration morphologies. Specifi-
cally, we test the following hypotheses:

A bi-LSTM using character-level inputs passed
through a CNN achieves higher accuracy and F1
scores than:

1. A bi-LSTM using randomly initialised word
embeddings.

2. A bi-LSTM using fasttext embeddings.

3. A bi-LSTM using character-level embed-
dings randomly initialised.

For our experiments, we use a set of tweets
related to the presidential election in the United
States in 2016. Tweets were annotated as misin-
formation or regular information.

The main contributions of this article are to un-
derscore the fact that specific characteristics of
misinformation in online social media, together
with the difficulty of assessing what constitutes
misinformation make models that exploit morpho-
logical differences particularly well-suited for the

task of detecting misinformation, to assess the ef-
fectiveness of different types of inputs to handle
morphologies and to put forward a dataset for as-
sessing misinformation.

The next two sections describe the data and ex-
periments; Section 4 discusses our results, and
Section 5 concludes the work summarising the
main findings and pointing towards future work.

2 Materials and methods

2.1 Data
We used a dataset containing tweets related to the
2016 presidential election in the United States.
The sample was collected between the months of
November 2016 and March 2017 using Twitter’s
publicly available API and the following search
terms: #MyVote2016, #ElectionDay,
#electionnight, @realDonaldTrump
and @HillaryClinton. This collection
yielded 57,379,672 tweets. To make the data
manageable, we removed retweets and kept only
original tweets that achieved more than a 1000
retweets. These transformations reduced the data
to 9001 tweets, which were manually labelled
as misinformation if its text could be considered
within any of the categories described in Rubin
et al. (2015) and regular information otherwise.
This final dataset contained 1729 tweets labelled
as misinformation and 7272 others labelled as
regular information3. We considered only the
textual field of each of the tweets for our study.

Previous analyses of this dataset found there are
differences in the way misinformation and regular
information are crafted (Amador et al., 2017). As
an example, Table 1 from Amador et al. (2017)
presents differences in the way strings are built for
each category for the textual field of the tweets.
Specifically, Table 1 shows differences in usage
of digits, capitalization, exclamations and non-
standard characters.

Statistical significant differences between mis-
information and others underscore the presence of
language leakages within the category misinfor-
mation. In other words, if language usage within
the category misinformation did not present leak-
ages, one would expect morphologies between the
two categories to be the same. This result should
allow models that consider morphologies more
able to identify misinformation. The choice of

3The dataset can be found at
https://zenodo.org/record/1048820.XT9abJNKjOQ



p-value t-stat Mean Misinformation Mean Other
Digits 8.02e-09 0.084 2.676% 2.104%
Caps 1.41e-08 0.082 14.016% 12.665%
Exclamations 4.40e-03 0.047 0.222% 0.309%
Non-standard 1.00e+00 0.008 0.458% 0.447%

Table 1: Features about the text of tweets. Rows are ordered by statistical significance; significant variables are
above the line.

character-level inputs passed through a CNN was
based on results in Table 1 as we expect convolu-
tional layers within the bi-LSTM character CNN
operate on each of the characters to achieve invari-
ance, thus making the architecture robust to differ-
ent morphologies.

The dataset was split into training (70%), devel-
opment (20%) and test (10%) sets. Moreover, the
data was balanced using random undersampling.
Out of the balanced training set, two other sets
were created. The first one contained indices for
every word in every tweet in the training set; we
call this the word-level set. The second one con-
tained indices for every character in every tweet
in the training set, and we will refer to it as the
character-level set. For the word-level training
set, we considered only the first 30 words within
a tweet (as this was the average number of words
within the training set) and padded with zeros. For
the character-level training set, we considered 120
characters within the tweet and padded with ze-
ros4.

2.2 Models

Character Convolutional Neural Networks (char-
acter CNNs) (Kim et al., 2016) are networks
consisting of input, output and multiple hidden
layers. Specifically, the character CNN relies on
character-level inputs and employs a convolutional
neural network and pooling over characters that
are then passed to a Recurrent Neural Network
language model. Outputs can vary depending
on the task at hand. Kim et al. (2016) showed
that character CNNs are particularly well-suited
at building representations for morphologies and
syntax.

4Considering the first 30 words for word embeddings pro-
duces a vocabulary of 26147 tokens, whereas considering all
characters produces 584 tokens. Using every word in the case
of word embeddings would overly-increase the vocabulary
and also could potentially lead to overfitting in the case of the
model using word embeddings randomly initialised.

Recurrent Neural Networks (RNNs) are net-
works aimed at processing sequential data by
computing a result from an input sample and
previous states. Usually, RNNs process and
input sequence to produce an output sequence.
Within RNNs, Long Short Term Memory (LSTM)
networks (Horchreiter and Schmidhuber, 1997)
are particularly suited to deal with sequences.
Formally, an LSTM unit is composed of input,
output and forget gate. The cell acts as memory,
capable of remembering values over arbitrary
time intervals. The LSTM cell combines values
from the input gate and its memory, through its
forget gate, to calculate output values.

2.3 Implementation

We used Keras (Chollet et al., 2015) with Tensor-
flow (Abadi et al., 2015) backend to perform our
experiments. Finally, to calculate test statistics, we
used SKLearn (Pedregosa et al., 2011).

3 Experiments

Our main objective is to test whether a model us-
ing character-level inputs passed through a CNN
similar to the one presented by Kim et al. (2016)
achieves higher accuracies and F1-scores than
models that: (1) do not consider morphologies, (2)
consider them partially and (3) consider them in
full. Specifically, we compare the performance of
the following model:

bi-LSTM using character CNN inputs: Character
embeddings randomly initialised + 1D Con-
volution with 3 filters of size 2 and a tanh
activation + 1D Convolution with 4 filters of
size 3 and a tanh activation + 1D Convolution
with 5 filters of size 5 and a tanh activation
+ Max-pooling over time layer + 2 bi-LSTM
layers with 64 hidden units + dense layer us-
ing sigmoid activation

to the following models:



1. bi-LSTM using word embeddings: Word em-
beddings randomly initialised + 2 bi-LSTM
layers with 64 hidden units + dense layer us-
ing sigmoid activation

2. bi-LSTM using word embeddings: Word
embeddings initialised with fasttext + 2 bi-
LSTM layers with 64 hidden units + dense
layer using sigmoid activation

3. bi-LSTM using character embeddings: Char-
acter embeddings randomly initialised + 2 bi-
LSTM layers with 64 hidden units + dense
layer using sigmoid activation

For networks using character-level embeddings
–character CNN and network (3)– we used em-
beddings of size 4. For networks using word-
embeddings – networks (1) and (2), we used em-
beddings of size 300. Network (2) was initialised
with the use of fasttext (Bojanowski et al., 2016)
but, given the small size of the dataset, the em-
bedding layers were not trained. All networks
were trained using RMSprop, but networks using
character-level embeddings used gradient clipping
as they were learning longer sequences. All net-
works were trained for 20 epochs and hyperparam-
eters together with regularisation using dropout
were tuned using the development set.

It is essential to notice that the network using
character CNN should be considered as belong-
ing to the group of networks that fully considers
morphologies. Convolutional layers within this ar-
chitecture can be used as embeddings (Kim et al.,
2016), making it similar to the network (3).

4 Discussion

Table 2 confirms our hypothesis; i.e., an LSTM
character CNN out-performs other architectures
when considering the best performing run. More-
over, when taking the mean of all 20 runs for each
of the models, it is possible to see that the network
using character CNN inputs performs at least as
well as networks (1) and (2). This result is partic-
ularly remarkable when considering that networks
(1) and (2) have around 60x more parameters than
the character CNN.

Cao and Rei (2016); Cherry et al. (2018) sug-
gest that character CNNs are better equipped than
the other networks to cope with morphologies.
We put forward this characteristic would be useful
when dealing with the particularities of misinfor-
mation in online social media. A simple, yet not

definitive, way of checking our intuitions would be
to compare recalls for these models. If networks
were struggling with data labelled as misinforma-
tion, we would expect sensitivity for the category
misinformation be lower than that for the category
regular information. Table 4 presents this infor-
mation.

Results from Table 4 shows that sensitivities
for the category regular information are consid-
erably higher than for misinformation. These re-
sults, together with the fact that topic distribution
between categories is similar by the construction
of the dataset (see: Amador et al. (2017)) strongly
suggest that all networks struggle more with mor-
phologies from data labelled as misinformation
than that of data labelled as regular information.

Notice that, even if all of the models find
more difficult the category misinformation, the bi-
LSTM that uses character CNN inputs performs
better than both the bi-LSTM using fasttext and
word embeddings. However, these differences are
not statistically significant. To understand whether
the bi-LSTM using character CNN inputs was per-
forming better, we carried out error analysis. In
specific, we used the union between the devel-
opment and test sets to calculate the number of
tweets that were incorrectly classified by each of
the networks. Then, we manually inspected 50
tweets for each of the models to see whether there
appear to be any systematic errors made by the
networks5.

We found that the character CNN was incor-
rectly classifying 734 tweets, network (1) 1156
tweets, network (2) 1013, and network (3) 1690
tweets. The character CNN appeared to strug-
gle the most with URLs, 32 tweets, with hash-
tag #ElectionNight 17 tweets, and with un-
usual characters 19 tweets. Network (1), strug-
gles the most with tweets containing URLs, 34
tweets, followed by @realDonaldTrump, 24
tweets, unusual characters 22 tweets and hash-
tag #ElectionNight 7 tweets. Network
(2) struggled with tweets containing URLs, 33
tweets, @realDonaldTrump 29 tweets, un-
usual characters 18 tweets, #ElectionNight
10 tweets and 3 tweets in other languages. Fi-
nally, network (3) struggled with tweets contain-
ing URLs, 37 tweets, @realDonaldTrump 31
tweets, unusual characters 9 tweets, and hashtag

5Time constraints did not allow us to check a more sub-
stantial sample.



Network Train accuracy Test accuracy F1-score
bi-LSTM character CNN 0.6261 0.65 0.60
(1) bi-LSTM word-embeddings 0.5872 0.64 0.58
(2) bi-LSTM fasttext-embeddings 0.6249 0.63 0.58
(3) bi-LSTM character embeddings 0.5027 0.59 0.45

Table 2: Best of 20 runs considering test accuracy for ‘character CNN’ , ‘LSTM word-embeddings’, ‘LSTM
fasttext-embeddings’, ‘LSTM character embeddings’. In boldface, the best accuracy for 20 epochs of training.

Network Train accuracy Test accuracy F1-score
bi-LSTM character CNN 0.6231 0.6155 0.5580
(1) bi-LSTM word-embeddings 0.5949 0.6205 0.5620
(2) bi-LSTM fasttext-embeddings 0.6255 0.6200 0.5575
(3) bi-LSTM character embeddings 0.5195 0.5320 0.4360

Table 3: Average accuracy (over 20 runs) for ‘character CNN’ , ‘LSTM word-embeddings’, ‘LSTM fasttext-
embeddings’, ‘LSTM character embeddings’. Differences between each and every one of the values in boldface
are not statistically significant at the 10% level of accuracy.

Sensitivity
Network Misinformation Regular information
bi-LSTM character CNN 0.298 0.873
(1) bi-LSTM word-embeddings 0.289 0.873
(2) bi-LSTM fasttext-embeddings 0.282 0.872
(3) bi-LSTM character embeddings 0.177 0.848

Table 4: Recalls for ‘LSTM character CNN’ , ‘LSTM word-embeddings’, ‘LSTM fasttext-embeddings’, ‘LSTM
character embeddings’. In boldface, the highest recall for each category. Differences between values in boldface
are not statistically significant at 10% level of accuracy.

#ElectionNight 9 tweets.

It is possible to see that the network (3) was
better able to cope with unusual characters. How-
ever, sensitivities in Table 4 lead us to think the bi-
LSTM finds it challenging to learn the sequence
of characters for both categories, thus suggesting
the problem with network (3) is related to a fail-
ure to learn the sequence. The character CNN and
network (2) cope similarly with unusual charac-
ters. This result suggests that fasttext embeddings
serve their purpose of dealing with different mor-
phologies. Nevertheless, it is essential to under-
score that the model using character CNN obtains
similar results than fasttext with 60x fewer param-
eters. Finally, network (1) struggles the most with
unusual characters. This is most likely because
tokens containing such characters are OOV. Con-
cerning @realDonaldTrump it is possible to
see that all networks but the one using character
CNN struggled with this mention. However, the
real effect of the latter is more difficult to inter-
pret as the failure to categorise these tweets maybe
since @realDonaldTrump is an OOV token or

may be due to sentiment. Even so, it is essential
to underline that the model using character CNN
did not struggle with @realDonaldTrump. Fi-
nally, incorrect classification of tweets containing
hashtag #ElectionNight was caused by sen-
timent ambiguities in all of the cases.

Even if there is a case to be made for the re-
sults to be driven by morphologies, error analysis
suggests that existing differences in sentiment may
be behind the result as well. We believe this may
not be the case as if the sentiment was the main
driver behind the performance, we would expect
network (1) to perform better than the network us-
ing character CNN. Despite this, exploring repre-
sentations of the character CNN and network (1)
should be useful to understand what drives this re-
sult entirely and is left as further research. In the
case of the network (3), it is easy to see that this
network struggles with the data regardless of its
category.

The poor performance of the network (3) is par-
ticularly puzzling as we would expect the model
to be able to cope with sub-strings of text as long



as the string is not entirely random; e.g., the case
of regular information. It is possible that the bi-
LSTM is not able to cope with the length of char-
acter strings and is, hence, unable to build good
representations even for regular information. At-
tention mechanisms may help in alleviating this
problem. However, implementation of attention
may render moot the use of a bi-LSTM coupled
with character-level embeddings and, hence, not
further explored.

Even if it is out of the scope of this paper, it
is important to discuss how SOTA models such as
BERT or GPT would perform. We expect these
models to struggle with misinformation from on-
line social media because their upper layers would
find it challenging to deal with syntax or mean-
ing6. However, lower-level layers dealing with
morphologies could prove useful in detecting dif-
ferences in the usage of characters between mis-
information and any other type of information.
Many SOTA language models tap into new re-
search related to character-level embeddings (Kim
et al., 2015; Zhai et al., 2018) and CNNs in the
context of NLP to deal with morphologies. More-
over, both character-level embeddings and CNNs
have been proven useful in cases where not many
data is available (Zhai et al., 2018). Furthermore,
even if we expect SOTA models to struggle with
fast-changing contexts of misinformation, the lim-
itations of our dataset would not allow us to make
a fair comparison between models. This is be-
cause the dataset is drawn from the 2016 presi-
dential election in the US and, most likely, has al-
ready assimilated in the context of these models,
thus rendering our criticism invalid.

All-in-all, the network using character CNN in-
puts can produce robust results for the task of iden-
tifying misinformation in online social media. As
discussed above, we believe its performance is due
to its ability to cope with morphologies. Networks
using character CNNs have proven a robust alter-
native when dealing with morphologies in differ-
ent tasks (Cao and Rei, 2016; Cherry et al., 2018),
and we believe this ability is of particular impor-
tance for the task at hand. Our analysis showed
that networks considering morphologies were bet-
ter able to categorise misinformation. Further-
more, our results put forward marginal advantages
in performance for the networks using character
CNN inputs. It is important to notice that such

6It suffices to remember ”COVFEFE”.

advantages were not statistically significant. Nev-
ertheless, our results suggest further studying and
using networks with character CNN inputs for de-
tecting misinformation is a promising avenue for
future research.

5 Conclusion

We studied the effectiveness of a character CNN
architecture for detecting misinformation in online
social media. There has been a long line of re-
search studying and exploiting language leakages
deceivers fall into to detect misinformations (Feng
and Hirst, 2013). For the dataset used, it has
been shown there are syntactic differences be-
tween misinformation and other types of informa-
tion (Amador et al., 2017), which raises the pos-
sibility this could be present more broadly in on-
line social media. We argue that particularities of
the way misinformation is created in online social
networks make character CNN inputs good candi-
dates to be used for identifying misinformation in
online social media.

We compared the character CNN inputs to in-
puts that disregard morphologies and to others that
consider them through the use of embeddings such
as fasttext. We show that the best performing run
of the character CNN out-performs the best per-
forming runs of networks using fasttext. We try
to understand if character CNNs are better able to
cope with morphologies. Even if we can find some
evidence supporting this hypothesis, our findings
are not conclusive and deserve further exploration.
Given the contentious nature of misinformation,
the speed and format at which misinformation is
created, and the lack of availability of training
data, exploiting language leakages of the deceiver
and further studying morphologies appears as a
promising avenue of research.

Moreover, it is essential to emphasize that find-
ing easy-to-implement, light networks such as
character CNN is essential. As interest in detect-
ing misinformation outgrows computer science,
having effective alternatives that can be imple-
mented with off-the-shelf tools becomes more crit-
ical.

References
Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S. Cor-
rado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,



Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
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