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Abstract. The Three-Body Problem has been a recurrent theme of Poincaré’s
thought. Having understood very early the need for a qualitative study of “non-
integrable” differential equations, he developed the necessary fundamental tools:
analysis, of course, but also topology, geometry, probability. One century later,
mathematicians working on the Three-Body Problem still draw inspiration from
his works, in particular in the three volumes of Les méthodes nouvelles de la
mécanique céleste published respectively in 1892, 1893, 1899.
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1 Introduction

Since the time of Newton himself, the Three-Body Problem was a major source
of development of analysis: it is enough to mention the names of Euler, Clairaut,
d’Alembert, Laplace, Lagrange, Jacobi, Cauchy, . . . At the end of the nineteenth
century, Poincaré opened a new era, introducing geometric, topological and prob-
abilistic methods in order to understand qualitatively the incredibly complicated
behavior of most of the solutions of this problem. At the same time, he analysed the
methods used by the astronomers in order to understand the short-term motions
using divergent series and, as emphasized in a recent paper by J.P. Ramis [Ra1], he
foresaw many aspects for the present development of this theme. From 1883, that is
only 4 years after his thesis defense, and until his death in 1912, Poincaré published
major papers on (or motivated by) the Three-Body Problem. Already in 1881, in
the introduction to the first part of his Mémoire sur les courbes définies par une
équation différentielle [P3], he took it as motivation for a qualitative global study:

Prenons, par exemple, le problème des trois corps : ne peut-on pas se
demander si l’un des corps restera toujours dans une certaine région du
ciel ou bien s’il pourra s’éloigner indéfiniment ; si la distance de deux corps
augmentera, ou diminuera à l’infini, ou bien si elle restera comprise entre
certaines limites ? Ne peut-on pas se poser mille questions de ce genre,
qui seront toutes résolues quand on saura construire qualitativement les
trajectoires des trois corps ? Et, si l’on considère un nombre plus grand de
corps, qu’est-ce que la question de l’invariabilité des éléments des planètes,
sinon une véritable question de géométrie qualitative, puisque, faire voir
que le grand axe n’a pas de variations séculaires, c’est montrer qu’il oscille
constamment entre certaines limites. Tel est le vaste champ de découvertes
qui s’ouvre devant les géomètres.1

In 1885, introducing the third part of the same Mémoire, he was more precise and
addressed the reader in his characteristic style:

On n’a pu lire les deux premières parties de ce Mémoire sans être frappé
de la ressemblance que présentent les diverses questions qui y sont traitées
avec le grand problème astronomique de la stabilité du système solaire. Ce
dernier problème est, bien entendu, beaucoup plus compliqué, puisque les
équations différentielles du mouvement des corps célestes sont d’ordre très

1Let us take, for example, the Three-Body Problem: is it not possible to ask whether one of the bodies will remain
forever in some region of the sky or whether it will possibly get away indefinitely; whether the distance beween two
bodies will increase, or decrease indefinitely, or whether it will stay bounded between some limits? Is it not possible
to ask a thousand similar questions, which will all be solved as soon as one is able to construct qualitatively the
trajectories of the three bodies? And if one considers more bodies, what is the question of the invariability of the
elements of the planets but a true question of qualitative geometry, as showing that the great axis has no secular
variations amounts to showing that it oscillates between some limits. Such is the vast field of discoveries which opens
up to geometers.
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élevé. Il y a même plus, on rencontrera, dans ce problème, une difficulté
nouvelle, essentiellement différente de celles que nous avons eu à surmonter
dans l’étude du premier ordre, et j’ai l’intention de la faire ressortir, sinon
dans cette troisième Partie, du moins dans la suite de ce travail.2

The difficulty alluded to by Poincaré is caused by the so-called small denomina-
tors which appear in the perturbation series of the astronomers; and indeed, having
devoted the end of the Mémoire to the study of the Lindstedt series which govern
the problematic existence of families of quasi-periodic solutions3 “surrounding” a
periodic one in R3, he concluded as follows:

D’après ce qui précède, on comprendra sans peine à quel point les difficultés
que l’on rencontre en Mécanique céleste, par suite des petits diviseurs et de
la quasi-commensurabilité des moyens mouvements, tiennent à la nature
même des choses et ne peuvent être tournées. Il est extrêmement probable
qu’on les retrouvera, quelle que soit la méthode que l’on emploie.4

A landmark in Poincaré’s works on the Three-Body Problem is the famous Memoir
Sur le problème des trois corps et les équations de la dynamique [P1], winner in 1889
of the prize given on the occasion of the 60th birthday of the King of Sweden, and
even more Les méthodes nouvelles de la mécanique céleste [P2] whose three volumes,
totaling almost 1300 pages, appear respectively in 1892, 1893 and 1899. Vastly en-
larging the scope of the Memoir, this extraordinary work, which encompasses and
develops most of Poincaré’s previous researches on the Three-Body Problem, is the
source of a major part of the modern theory of Dynamical Systems: normal forms,
exponents, invariant manifolds, homoclinic and heteroclinic solutions, analytic non-
integrability, divergence of the perturbation series and exponentially small splitting of
separatrices, variational equations and integral invariants, generating functions, re-
currence theorem, surfaces of section and return maps, twisting property, all of them
are part of the present landscape and they paved the way for bifurcation studies and
the theory of singularities, symbolic dynamics, invariant measures and ergodic the-
ory, K.A.M., weak K.A.M. and diffusion, symplectic geometry . . . and also a wealth
of computer experiments. Indeed, in the realm of Dynamical Systems, “new” ideas
which are not in one way or another rooted in Poincaré’s works are few and far
between ([AKN, HK, C0]). Geometry is a key word but it is amusing to remark how
cautiously Poincaré mentions its use in higher dimensions at the beginning of the
last part of the Mémoire of 1886 [P3]:

Si l’on veut, dans le cas des équations (2), employer le mode de représentation
géométrique dont nous avons fait usage jusqu’ici, il faut regarder x1, x2, . . . , xn
comme les coordonnées d’un point dans l’espace à n dimensions.

2One cannot have read the first two parts of this Memoir without having been struck by the similarities of the
various questions studied there with the great astronomical problem of the stability of the solar system. This last
problem is, of course, much more complicated, because the differential equations of motion of the celestial bodies
are of a very high order. What is more, one shall encounter in this problem a new difficulty, which differs essentially
from the ones we had to overcome in the first-order study, and I intend to bring it out, if not in this third Part, at
least in the remainder of this work.

3More precisely, families of invariant tori defined by a conserved quantity.
4According to what was said above, one will readily appreciate to what extent the difficulties encountered in

Celestial Mechanics because of the small denominators and the quasi-commensurability of the mean motions, are
attached to the very nature of things and cannot be avoided. It is highly probable that they will come up whatever
method we use.
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La Géométrie n’est plus alors qu’un langage qui peut être plus ou
moins avantageux, ce n’est plus une représentation parlant aux sens. Nous
pourrons néanmoins être conduits à employer quelquefois ce langage.5

Most of what follows will be dedicated to Les méthodes nouvelles de la mécanique
céleste,6 that is to the perturbative case where a small parameter (of the nature of
a mass in the planetary case, the inverse of a distance in the lunar case) controls
the proximity to the integrable situation of two uncoupled Kepler Problems.

Today, the discovery of extra-solar planetary systems has raised a new interest to-
wards more “exotic”, non perturbative situations. I shall in particular mention a
short note of 1896 where Poincaré proposed using the variational principle in a
global way7 in order to find new (relative) periodic solutions of the planar Three-
Body Problem, a method which, as predicted8 by Poincaré, has turned out to be
fruitful [C2].

Warning! The descendence of Poincaré’s works around the Three-Body Problem,
and in particular The New Methods, is so vast, essentially the whole theory of dy-
namical systems, that drastic choices had to be made which, necessarily, reflect my
own taste. Another solution would have been to imitate “Pierre Menard, autor del
Quijote” [Bo]. A third one was chosen by P.J. Melchior who, announcing in the
journal “Ciel et Terre” (Vol. 74, p. 290, 1958) the reprinting by Dover (in French,
times were different then!) of The New Methods, concludes after some short lines of
presentation which essentially amount to giving the subtitles of each volume:

L’ouvrage est en fait trop célèbre et trop bien connu des spécialistes pour
que soit nécessaire ici une analyse qui ne pourrait être que fort longue.9

5If one wants to use for equations (2) the geometric way of representation which we have used up to now, one
must consider x1, x2, . . . , xn as the coordinates of a point in an n-dimensional space. In this case, Geometry is no
more than a language that may be more or less advantageous; it is no longer a representation addressing the senses.
Nonetheless, we will occasionally be led to employ this language.

6From now on, quoted as The New Methods.
7The so-called “direct method” in the Calculus of Variations.
8See the quotation in 13.2.
9The work is in fact too famous and too well-known by specialists to necessitate here an analysis which could

not be but very lengthy.



50 A. Chenciner Séminaire Poincaré

2 General problem of dynamics

2.1 Equations of the N -Body Problem

Denoting by ~ri, i = 0, . . . , N−1, the positions of the N bodies10 in the ambient Eu-
clidean space (R2 or R3) and by ||.|| the Euclidean norm, and setting for convenience
the gravitational constant equal to 1, the equations are11

mi
d2~ri
dt2

=
∑
j 6=i

mimj(~rj − ~ri)
||~rj − ~ri||3

, i = 0, . . . , N − 1.

Since one can simplify both sides by mi, the equations are still meaningful even if
some of the masses vanish (Restricted Problems). These equations define a vector
field in the phase space (whose coordinates are positions ~ri and velocities ~vi of the
bodies):

d~ri
dt

= ~vi,
d~vi
dt

=
∑
j 6=i

mimj(~rj − ~ri)
||~rj − ~ri||3

, i = 0, . . . , N − 1.

For the Three-Body Problem in R3, the problem in R2, and the Restricted Problem,
the dimensions of the phase space are respectively (18, 12 and 4) before reduction
of symmetries, (7, 5, 3) after reduction and fixing of the total energy (see 2.4):

The Hamiltonian (or canonical) form of the equations is obtained by replacing the
velocities ~vi by the momenta ~πi = mi~vi and introducing the Hamiltonian (or to-
tal energy) F . Denoting by q = (~r0, . . . , ~rN−1) the coordinates of position and by
p = (~π0, . . . , ~πN−1) the coordinates of momenta, and looking at the Non-Restricted
Problem (for the Restricted Problem, the analogue of F is the Jacobi constant which
contains a term coming from the rotation of the frame in which the problem is nat-
urally studied), we get12

dpk
dt

= −∂F
∂qk

,
dqk
dt

=
∂F

∂pk
, where F =

∑
i

1

2mi

||~πi||2 −
∑
i<j

mimj

||~rj − ~ri||
·

10Being mainly interested in the sequel in the planetary problem, we single out the mass m0 which, being that of
the Sun, will dominate the other ones.

11For a nice, and sometimes surprising, story of these equations, see [Alb1].
12The sign convention is not Poincaré’s own in his statement of the general problem of dynamics (see 2.5; actually,

Poincaré is not consistent in his naming of the variables and hence in his choices of signs: denoting by (x, y) the
coordinates in phase space, the actions are sometimes represented by x and sometimes by y).
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(Beware that the index k takes values from 1 to 9 if we are looking at the Three-Body
Problem in R3.)

The simplest case of interest in classical astronomy is the planetary problem13, or
1 + 2 body problem, where two planets revolve around a much more massive Sun (a
mass ratio mi/m0 = 1/1000 in the case of Jupiter). If moreover, as we shall suppose,
the two orbits of the planets stay far apart14, the equations may be seen as a small
perturbation of the limit equations where each planet revolves around the Sun along
a Keplerian ellipse unperturbed by the other one. Thus, the first volume of The New
Methods starts by recalling the solution of the Two-Body Problem or, what amounts
to the same, the Kepler Problem or attraction by a fixed center.

2.2 Kepler Problem: Delaunay and Poincaré coordinates

When there are only two bodies, the relative position vector ~r = ~r1−~r0 satisfies the
so-called Kepler equation15

d2~r

dt2
= −(m0 +m1)~r

||~r||3
, with Hamiltonian h =

1

2m
||~π||2 − mM

||~r||
,

where we have denoted M = m0 +m1 and the choice of the reduced mass m = m0m1

m0+m1

leaves the potential unchanged. We are only interested here in elliptic solutions, that
is motions with negative energy h. Introducing Delaunay coordinates

x = (L,G,Θ), y = (l, g, θ)

(in the case of the problem in R3, see Figure 1 and [S1] for details16) the (still
canonical) equations become simply

dxk
dt

= − ∂F
∂yk

,
dyk
dt

=
∂F

∂xk
, where F = F (x) = −m

3M2

2L2
.

Thus the only non-constant quantity is l which varies proportionally to the time
and one recovers the three Kepler laws. That the Hamiltonian does not depend
on the angles y = (l, g, θ) but only on the actions x = (L,G,Θ) means that the
Delaunay variables are action-angle coordinates for the Kepler Problem; that it does
not depend on G and Θ reflects the degeneracy of the Kepler Problem: the angles
g and θ stay constant, which means that the ellipse along which the motion takes
place has no precession (according to Bertrand’s theorem this characterizes Newton’s
equations and the harmonic oscillator equations among all laws of attraction which
are powers of the distance and even all central force laws).

Delaunay coordinates have a major defect for the planetary problem: they do not ex-
tend to Keplerian orbits whose eccentricity and inclination vanish. This led Poincaré
to introduce a symplectic system of coordinates

(
(Λ, λ), (ξ, η), (p, q)

)
, which is ob-

tained from the Delaunay coordinates by, first, making a linear change of coordinates:{
Λ = L, H = L−G, Z = G−Θ,

pλ = l + g + θ, h = −g − θ, ζ = −θ.
13There is also the lunar problem, to which I shall allude when discussing the Restricted Problem.
14This excludes in particular the Lagrange equilateral solutions for which the limit orbits share the same value of

the semi-major axis.
15which, of course, Kepler never wrote.
16Neither the sign conventions nor the constants are the same as those of Poincaré who worked in conformal

symplectic coordinates and not in symplectic ones.
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and then considering the pairs (H, h) et (Z, ζ) as planar symplectic polar coordinates:{√
2H cosh = ξ,

√
2H sinh = η,

√
2Z cos ζ = p,

√
2Z sin ζ = q.

Called today Poincaré coordinates17, these coordinates are pertinent in the neigh-
borhood of zero eccentricity (H = 0) or zero inclination (Z = 0)18. The conjugate
variables (Λ, λ) respectively describe the semi-major axis (i.e., the energy) and the
mean longitude (i.e., the position of the body on its elliptic trajectory), while the
conjugate variables (ξ, η) describe the position of the ellipse within its plane and its
eccentricity, and the set of conjugate variables (p, q) (not to be confused with the
position and momentum coordinates introduced in 2.1) describe the position of the
plane containing the ellipse and its inclination with respect to the reference plane.

Figure 1: Delaunay coordinates.

2.3 Planetary problem: heliocentric coordinates

Reducing the Galilean symmetry by the use of Jacobi coordinates (as Poincaré did
in the first chapter of The New Methods) or canonical heliocentric coordinates (that
he will introduce only in 1896, see [S1] for a detailed study of both) one writes the
planetary problem as a perturbation of two uncoupled fictitious Kepler Problems.

Let us choose for instance the canonical heliocentric coordinates:{
~Q0 = ~r0, ~Qi = ~ri − ~r0, i = 1, 2,

~P0 = ~π0 + ~π1 + ~π2, ~Pi = ~πi, i = 1, 2.

17The coordinates we have defined are adapted to solutions which turn in the positive, prograde, direction. One
can introduce in the same way Poincaré coordinates adapted to retrograde motions.

18In the first volume of the Lessons [P12], Poincaré gived a detailed proof of the analyticity of these coordinates.
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The Hamiltonian
2∑
i=0

|pi|2

2mi

−
∑

0≤i<j≤2

mimj

|qj − qi|

of the 1 + 2 body problem becomes (after setting P0 = 0, which amounts to fixing
the center of mass)

H(~P1, ~P2, ~Q1, ~Q2) = H(~P , ~Q) = H0(~P , ~Q) +H1(~P , ~Q),

H0 =
2∑
i=1

|~Pi|2
(

1

2m0

+
1

2mi

)
−

2∑
i=1

m0mi

| ~Qi|
,

H1 = H1p +H1c = − m1m2

| ~Q2 − ~Q1|
+
~P1 · ~P2

m0

.

The equations (written in a concise way which, as Poincaré would say, “ne pouvait
d’ailleurs tromper personne”19)

d~Pi
dt

= − ∂H
∂ ~Qi

,
d ~Qi

dt
=
∂H
∂ ~Pi

,

may be interpreted as describing the motion of two fictitious planets around a fixed
center. The motions corresponding to the unperturbed Hamiltonian H0 are those of
two uncoupled Kepler Problems for which the mass of the fixed center and the mass
of the planet are respectively

M̄i = m0 +mi and m̄i =
m0mi

m0 +mi

, i = 1, 2.

The perturbing function is the sum of a principal part H1p and a complementary
part H1c. It remains small as long as m0 is much larger than m1,m2 and the two
unperturbed ellipses are well separated.

Recall the conservation of angular momentum20:

~C =
2∑
i=0

mi~ri ∧
d~ri
dt

=
2∑
i=0

~ri ∧ ~πi =
2∑
i=0

~Qi ∧ ~Pi =
2∑
i=1

~Qi ∧ ~Pi.

In R3, the (invariant) plane orthogonal to ~C (when ~C 6= 0) is called the Laplace plane.
The expression of the angular momentum as the sum of the angular momenta of
the two fictitious bodies with position ~Qi and momentum ~Pi, i = 1, 2, shows that
the Laplace plane and the two planes spanned respectively by ( ~Q1, ~P1) and ( ~Q2, ~P2)
have a common intersection, called the line of nodes as in Figure 2. We may now
introduce Delaunay coordinates (L1, G1,Θ1, l1, g1, θ1), (L2, G2,Θ2, l2, g2, θ2), for each
one of the Kepler Problems21. As Poincaré explains in the first chapter of [P2]22:

19could not anyway mislead anyone (compare with the beginning of section 341 of The New Methods).
20The angular momentum is a bivector but, in R3 (resp. R2) endowed with its canonical orientation and canonical

Euclidean structure, it may be identified with a vector (resp. a real number).
21which give slightly different masses M̃1 and M̃2 to the Sun.
22Since Poincaré used Jacobi coordinates and numbers 1,2,3 the bodies, I needed to change the mass of the Sun

in the quotation which originally had m1 + m2. Astronomers used to dislike heliocentric coordinates because the
fictitious ellipses are not osculating the real trajectories, but this is not significant.
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Si alors, à un instant quelconque, les forces appliquées à la première masse
fictive venaient à disparâıtre, et qu’elles soient remplacées par l’attraction
d’une masse m0 + m1 placée à l’origine, cette masse se mouvrait sui-
vant les lois de Képler et les éléments de ce mouvement képlérien seraient
L,G,Θ, l, g et θ.23

Warning! We shall choose, as is usual (see for instance [Ti, Cha]), to define θj as the
longitude of the ascending node of the jth planet. This implies θ2−θ1 = π mod 2π.
On the contrary, in section 16, Poincaré writes that θ1 = θ2 without making explicit
the fact that there is a choice.
Setting

x = (L1, G1,Θ1, L2, G2,Θ2), y = (l1, g1, θ1, l2, g2, θ2),

the equations are still canonical with a Hamiltonian of the form

K1

L2
1

+
K2

L2
2

+R(x, y),

where K1, K2 are constants and the perturbing function R depends on all the vari-
ables.

Figure 2: The fictitious Keplerian motions at some instant.

2.4 Reduced problem

When fixing the direction of the angular momentum to be vertical in the preceding
section, we have already performed a partial reduction24 of the rotational symmetry,

23If, at some instant, the forces which are applied to the first fictitious mass happened to vanish, and if they were
replaced by the attraction of a mass m0 +m1 located at the origin, this mass would move according to Kepler laws
and the elements of this Keplerian motion would be L,G,Θ, l, g and θ.

24Partial reduction will play an important role in section 11.3.
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which amounts to restricting the dynamics to the (symplectic) invariant submanifold
of the phase space defined by

θ2 − θ1 = π, G2
2 −Θ2

2 = G2
1 −Θ2

1.

Since fixing the norm of the angular momentum is equivalent to setting Θ1+Θ2 = C,
taking the time derivative, we get that ∂F

∂θ1
+ ∂F

∂θ2
= 0, from which it follows that F

depends only on the difference θ2 − θ1. Since this difference is constant, F does
not depend on θ1, θ2 once the angular momentum is fixed, and we can perform a
complete symplectic reduction by keeping only the 8 variables

L1, L2, l1, l2, G1, G2, g1, g2

from which one recovers the remaining variables. This is the Jacobi reduction of the
node. In the case of the planar problem, the reduced problem is obtained by taking
the 6 variables

L1, L2, l1, l2, H = G1, h = g1 − g2.

2.5 General problem of dynamics

Introducing a small parameter µ and supposing that mi = µm̄i, i = 1, 2, where
m0, m̄1, m̄2 are of order 1, and dividing the Hamiltonian (reduced or not reduced)
by µ, one gets a Hamiltonian F0(x)+µF1(x, y) of the form which Poincaré, in section
13 of chapter I of [P2], calls the general problem of dynamics:

Nous sommes donc conduit à nous proposer le problème suivant:
Etudier les équations canoniques25

dxi
dt

=
dF

dyi
,

dyi
dt

= −dF
dxi

, (1)

en supposant que la fonction F (x, y, µ) peut se développer suivant les
puissances d’un paramètre très petit µ de la manière suivante ;

F = F0 + µF1 + µ2F2 + · · · ,

en supposant de plus que F0 ne dépend que des x et est indépendant des y
et que F1, F2, · · · sont des fonctions périodiques de période 2π par rapport
aux y.26

In other words, the system is a small perturbation of the completey integrable sys-
tem associated with F0(x), for which (x, y) are action-angle coordinates and whose
solutions are:

xi = x0
i , yi = n0

i t+ y0
i , where n0

i = −dF0

dxi
(x0). (2)

25Here, as I already said, Poincaré’s sign conventions are different from the ones I have chosen.
26Hence we are led to propose the following problem: study the canonical equations

dxi

dt
=
dF

dyi
,

dyi

dt
= −

dF

dxi
, (1)

while supposing that the function F (x, y, µ) may be expanded in powers of a very small parameter µ in the following
way;

F = F0 + µF1 + µ2F2 + · · · ,
with moreover the hypothesis that F0 depends only on the x variables and is independent of the y and that F1, F2, · · ·
are 2π-periodic functions of the y’s.
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For this completely integrable system, the phase space, which is the product TN× RN

(coordinates (y, x)) of a torus TN = RN/(2πZ)N = (R/2πZ)N by a vector space27

is foliated by N-dimensional invariant tori x = x0 = (x0
1, · · · , x0

N) on which the
integral curves are quasi-periodic with frequencies ni which depend only on x0. If
this dependance is effective, there is a dense subfamily of these tori bearing dense
solutions28 and another dense subfamily of these tori which are foliated by periodic
solutions. This fact lies at the root of the complexity of the perturbations of such
systems; we shall give in the next section an intuitive explanation of why it is so.

2.6 The basic intuition

The main idea underlying Poincaré’s work in The New Methods is that an invariant
torus of an integrable approximation which is the union of periodic solutions (a
so-called completely resonant torus) has no dynamical significance and hence has a
great probability of being destroyed by a general enough perturbation, giving rise
to “generic” (i.e., with non-zero exponents, see section 6.1) periodic solutions which
are the main reason for non-integrability (see section 6.2) and for the divergence of
Lindstedt series with variable frequencies (see section 6.3)

Figure 3: The breaking of a resonant torus.

In contrast, results of the KAM type dwell on the fact that, being the closure of
any one of the solutions it bears, a non-resonant quasi-periodic invariant torus has
dynamical significance and hence has some chance of resisting a small enough generic
perturbation (and indeed it does, provided the solutions are “sufficiently dense”, see
section 11).

27or, more conceptually, the cotangent bundle of a torus (the yi are angular configuration coordinates on the torus
and the xi are momentum coordinates).

28More precisely, each one of these tori is the closure of any one of the solutions it contains.
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3 Next approximation: Lagrange’s and Laplace’s secular system

Since Newton’s study of the slow motion of the Moon’s node and studies by Euler,
Clairaut and d’Alembert of the slow motion of its apogee, the long-term evolution
of eccentricities and of inclinations, perihelia and nodes is a fundamental object of
observation. Because of the degeneracy of the Kepler Problem, the time scale of their
evolution is much slower than that of the semi-major axes and mean longitudes.29

This makes it reasonable, in the first approximation, to force the decoupling of these
two kinds of variations by averaging out the fast oscillations. Doing so, one gets a
closed system, the averaged system or (first-order) secular system, which describes
the long-term evolution of the shape and position of the ellipses osculating to the
trajectories of the planets. The linearization at the circular and horizontal motions
of this system was studied with great success by Lagrange and Laplace and is at the
origin of the first “stability result” of a planetary system. On the other hand, the
numerical studies of Jacques Laskar have shown the relevance of the secular system
(in fact a higher-order version) for long-term simulations of the evolution of the
solar system (see [Las1]). In his studies of periodic and quasi-periodic solutions of
the Three-Body Problem, Poincaré had to rely on properties of the averaged system
for which he referred to Tisserand [Ti]. In this section, I give the necessary notions
on this system.

3.1 Kepler degeneracy: fast and slow variables

The very simplicity of the solutions of the Kepler Problem is one main source of
complexity of the Three-Body Problem (at least of the 1+2 body problem): indeed,
all Kepler elliptic motions with the same energy are periodic with the same period.
This corresponds to the fact that the Hamiltonian depends only on one of the action
variables x, namely L, and implies that, for the Kepler Problem in R3, the invariant
tori foliating a negative energy manifold are periodic solutions, i.e., of dimension
1 instead of being of dimension 3 as would be the case “in general”: the situation
is completely resonant. In fact, using a Poincaré return map (see section 9.3), the
dynamical study of the Kepler Problem in a given negative energy may be reduced
to the identity map. This degeneracy disappears for the Restricted Problem (see
section 9.1) where the unperturbed system is the Kepler Problem in a rotating
frame. For the planetary problem, the difficulty is solved by finding better, and in
particular non-degenerate, approximations called the secular systems which give a
first approximation to the slow variation of the variables (G1,Θ1, G2,Θ2, g1, θ1, g2, θ2)
over the time scale of centuries, hence their name of slow (or secular) variables while
(L1, L2, l1, l2) are called fast variables.

When eccentricities and inclinations are close to 0, one replaces Delaunay coor-
dinates by Poincaré coordinates (see 2.2), the fast variables being now (Λ1,Λ2, λ1, λ2)
and the slow ones being conveniently written in complex notation{

uj = ξj + iηj =
√

2Hje
ihj =

√
Λjeje

−i(gj+θj) + · · ·
zj = pj + iqj. =

√
2Zje

iζj =
√

Λjije
−iθj + · · ·

29In fact, it can happen that “short-term” periods become comparable to “long-term” ones: an example is the
great inequality, whose period is approximately 900 years, of Jupiter and Saturn, due to a near resonance in their
mean motions (see [Las1] for the fascinating story of the explanation of this inequality).
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3.2 Averaged system

Given the Hamiltonian

F (Λ1,Λ2, λ1, λ2, u1, u2, z1, z2) = F0(Λ1,Λ2) + µF1(Λ1,Λ2, λ1, λ2, u1, u2, z1, z2)

of the planetary problem, one defines the averaged Hamiltonian (or first-order secular
Hamiltonian) by averaging with respect to the fast angles λ1, λ2:

F̃(Λ1,Λ2)(u1, u2, z1, z2) = F0(Λ1,Λ2) +
µ

(2π)2

∫
T2

F1(Λ1,Λ2, λ1, λ2, u1, u2, z1, z2)dλ1dλ2.

Once Λ1 and Λ2 are fixed, the averaged system is defined on the space of all pairs of
ellipses with the same focus and the same value of the semi-major axes. Forgetting
the fast variations around the average, the system describes the slow evolution of the
eccentricities and the longitudes of the perihelia (u1, u2) of the two ellipses on the
one hand, of the inclinations and the longitudes of their nodes (z1, z2) on the other
hand. The study of this system in the neighborhood of circular coplanar ellipses with
the same orientation played a major role in the classical studies of the problem by
astronomers and mathematicians, especially at the end of the 18th and beginning of
the 19th century with the fundamental works of Lagrange and Laplace. We shall see
how it appears naturally as an approximation to the true equations when studying
in 5.5 and 5.6 the way Poincaré handles the Lindstedt series.

In terms of the original cartesian coordinates, on checks that

F̃ = F0 −
1

(2π)2

∫
T2

m1m2

|Q2 −Q1|
dλ1dλ2.

Indeed, the reader will check that the average of the complementary part of the
perturbing function vanishes. The constant F0 does not affect the dynamics, hence
the secular Hamiltonian describes the evolution of the shapes and positions of mas-
sive ellipses whose mass would be allocated according to Kepler’s second law. By
construction, it does not depend on the angles λi and hence its flow fixes the Λi, that
is the semi-major axes of the ellipses. This is the first part of the Laplace stability
theorem. From now on, we shall consider the averaged Hamiltonian as defined on a
domain of C4 = R8 (coordinates (u1, u2, z1, z2) depending on “parameters” Λ1,Λ2

which are fixed in a “sensible” way (that is in such a way that the two ellipses never
get too close to each other, which ensures that the perturbing function is indeed a
small perturbation).

The three area integrals, that is the three components of the angular momentum,
are still first integrals of the secular Hamiltonian. If one fixes the angular momentum
in the direction of the vertical axis, they become

n∑
j=1

(
Λj −

1

2

(
|uj|2 + |zj|2

))
= a positive real constant,

n∑
j=1

zj

√
2Λj − |uj|2 −

1

2
|zj|2 = 0 ∈ C,

(the reader too lazy to do the computation may look at the first volume of the
Leçons de Mécanique Céleste ([P12] section 144).
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The Λj being constants, the first equation defines a sphere S7 in R8 = C4 surrounding
the singularity at the origin, corresponding to a pair of horizontal circles ; this is the
second part of Laplace stability theorem: at the secular level, the eccentricities and
inclinations remain small for all time if they are small initially. If the radius ε of
this sphere is chosen sufficiently small, the submanifold J5 of R8 defined by the
three equations above is diffeomorphic to the intersection of S7 with the complex
hyperplane whose equation is

∑2
i=1 zi

√
2Λi = 0, that is to S5. A quick inspection of

Poincaré coordinates shows that the groupe of rotations around Ox3 acts diagonally
on R8 = C4:

eiα · (u1, u2, z1, , z2) =
(
u1e

iα, u2e
iα, z1e

iα, z2e
iα
)
.

Hence the quotient K4 of J5 by this action (which preserves it) is diffeomorphic
to the quotient of the round sphere S5, that is to the complex projective space
P 2(C). Note that K4 is naturally a submanifold of the quotient P 3(C) of S7 on
which one can use the homogeneous complex coordinates u1 : u2 : z1 : z2, and that
the invariant submanifold defined by the motions in the horizontal plane coincides
with the subspace P 1(C) (= the Riemann sphere) obtained by setting z1 = z2 = 0
(and on which u1 : u2 are homogeneous coordinates). Finally, after reduction of the
rotation symmetry, the secular spatial (resp. planar) 1 + 2 body problem amounts
to the study of a Hamiltonian system on a submanifold K4 (resp. K2) of P 3(C)
(resp. P 2(C)) diffeomorphic to P 2(C) (resp. P 1(C)). The complement in K4 of the
P 1(C) corresponding to the horizontal motions is diffeomorphic to the complement
of P 1(C) in P 2(C), that is C2 = R4, and the mapping

Dε =
{

(u1, u2) ∈ C2, |u1|2 + |u2|2 < ε2
}
3 (u1, u2) 7→ (u1, u2, z1, z2) ∈ J5

uniquely defined by the conditions that z1 et z2 be real and z1 > 0 gives in
the quotient a symplectic diffeomorphism of Dε endowed with the sympectic form
du1 ∧ dū1 + du2 ∧ dū2 onto K4 \ P 1(C) endowed with the symplectic form coming
from the reduction. Writing the secular Hamiltonian in such coordinates amounts to
performing Jacobi’s reduction of the node: geometrically, it corresponds to the iden-
tity θ2− θ1 = π, which is satisfied when the angular momentum is vertical (compare
Figure 2). This identity implies the disappearance of the angles θ1 et θ2 from the ex-
pression of the Hamiltonian which, because of its invariance under rotations around
the vertical axis, depends only on their difference.

3.3 Quadratic part and singularities

Once the angular momentum has been fixed in the vertical direction, the secular
Hamiltonian admits two symmetries in addition to the rotations around the vertical
axis:

1) the symmetry with respect to a vertical plane, for example the plane x10x3,
which acts on the longitudes by

(g1, g2, θ1, θ2) 7→ (π − g1, π − g2, π − θ1, π − θ2) ,

and becomes in the u, z coordinates

(u1, u2, z1, z2) 7→ (ū1, ū2,−z̄1,−z̄2) ;

2) the rotation by π around the common node, which acts on the longitudes
by

(g1, g2, θ1, θ2) 7→ (−g1,−g2, θ1, θ2) ,
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and becomes, after composition with the rotation by −2θ1 around the vertical axis,

(u1, u2, z1, z2) 7→ (ū1, ū2, z̄1, z̄2) .

Composing both and then rotating by π around the vertical axis, we get that the
secular Hamiltonian is invariant by complex conjugation and by the transformation

(u1, u2, z1, z2) 7→ (−u1,−u2, z1, z2) .

It follows that the quadratic part of the Taylor expansion of the secular Hamil-
tonian at its “circular horizontal” singularity has the form

a1|u1|2 + a2|u2|2 + bRe (u1ū2) + c1|z1|2 + c2|z2|2 + dRe (z1z̄2),

which one writes classically

Q(ξ1, ξ2, η1, η2, p1, p2, q1, q2) = Q′(ξ1, ξ2) +Q′(η1, η2)

−Q′′(p1, p2)−Q′′(q1, q2),

where Q′ et Q′′ are real quadratic forms of two variables known since the 18th
century (see [Ti, Cha]):

Q′(X, Y ) = m1m2

{
1

8
B(1)

(
X2

Λ1

+
Y 2

Λ2

)
− 1

4
B(2) XY√

Λ1Λ2

}
,

Q′′(X, Y ) = m1m2

{
1

8
B(1)

(
X√
Λ1

− Y√
Λ2

)2
}
,

where the Laplace coefficients B(1) and B(1) depend only on Λ1,Λ2. Keeping only
the quadratic terms in the eccentricities e1, e2 and the inclinations i1, i2, and taking
into account that θ2 − θ1 = π (see 2.3), one finds that the dominant terms of the
secular Hamiltonian are30:

m1m2

[
1

8
B(1)

[
e2

1 + e2
2 − (i1 + i2)2

]
+

1

4
B(2)e1e2 cos(g1 − g2)

]
.

Finally, replacing the two equations which fix the direction of the angular momentum
by their linearization31 z1

√
2Λ1 + z2

√
2Λ2 = 0, and choosing in the subspace (diffeo-

morphic to C3 = R6) which they define the coordinates u1, u2, z1, the restriction of
Q becomes the quadratic form

Q0 = Q′(ξ1, ξ2) +Q′(η1, η2)−m1m2
B(1)Λ1

8

(
1

Λ1

+
1

Λ2

)2

(p2
1 + q2

1)

=
m1m2

8

{
B(1)

(
|u1|2

Λ1

+
|u2|2

Λ2

)
− 2B(2) Re(u1ū2)√

Λ1Λ2

}
−1

8
m1m2B

(1)Λ1

(
1

Λ1

+
1

Λ2

)2

|z1|2 .

30There are sign discrepancies with the formula that Poincaré attributes to Tisserand in section 48; in particular,
having different conventions for inclinations, his formula for mutual inclination is i1 − i2 instead of i1 + i2.

31These linearized equations are obviously first integrals of the Hamiltonian system defined byQ.
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It remains to understand the topology of the level hypersurfaces of the restriction
of Q0 to the ellipsoid defined by the dominant term of the equation fixing the norm
of the angular momentum (supposed to be close to its maximal value corresponding
to circular horizontal motions), that is

|u1|2 + |u2|2 +
Λ1 + Λ2

Λ2

|z1|2 = ε2.

If ε is small, the topology will be the same as for the reduced secular Hamiltonian
itself. There are exactly three critical points, corresponding to the eigenplanes of
Q0:32 two of them correspond to horizontal ellipses whose perihelia are in conjunc-
tion (Σ→) or opposition (Σ↔); the third one Σ� (u1 = u2 = 0) corresponds to a pair
of circles with non-zero inclination (see figure 4). As singular points of the reduced
secular Hamiltonian, Σ� and Σ↔ are elliptic while Σ→ is hyperbolic. But as singu-
larities of the Hamiltonian vector field in K4, the three singular points are elliptic
(i.e., the eigenvalues of their linearized part are imaginary).

Remark. For the planar problem, the averaged system is completely integrable.
Indeed, it has two degrees of freedom and two commuting integrals, the energy and
the angular momentum. For a global study and the application to the existence of
verious type of quasi-periodic solutions of the planar Three-Body Problem, see [Fe1].

4 Periodic solutions 1) Local existence by continuation

4.1 Pénétrer dans une place jusqu’ici réputée inabordable

The periodic solutions are the subject, in 1884, of the first work of Poincaré on
the Three-Body Problem ([P4], announced by a note in the “Compte Rendus de
l’Académie des Sciences” in 1883). They appear in section 36 of Chapter III of The
New Methods. As a good astronomer, Poincaré called a solution periodic if it becomes
such in some rotating frame, as is, in the first approximation, the case of the motion
of the Moon seen from the Earth. In other words, a solution x(t) is periodic in this
sense if there exists a period T such that for all t, x(t + T ) = Rx(t), where R is a
rotation, that is if it is a periodic solution of the system reduced by the rotational
symmetry.
These solutions play a key role in the whole work, and their study by continuation
methods prefigures aspects of the theory of singularities:

Le problème que nous allons traiter ici est le suivant : Supposons que, dans
les équations (1),33 les fonctions Xi dépendent d’un certain paramètre µ ;
supposons que dans le cas de µ = 0 on ait pu intégrer les équations,
et qu’on ait reconnu ainsi l’existence d’un certain nombre de solutions
périodiques. Dans quelles conditions aura-t-on le droit d’en conclure que
les équations comportent encore des solutions périodiques pour les petites
valeurs de µ ?34

32Because of the symmetries, they are the same for the Hamiltonian and for its quadratic part Q0.
33These are the equations dxi/dt = Xi(x1, · · · , xn), ; i = 1, · · · , n.
34The problem we are going to address is the following: suppose that, in equations (1), the functions Xi depend

on some parameter µ; suppose that, when µ = 0 one has integrated the equations and recognized the existence of
some periodic solutions. Under what conditions shall we be able to conclude that for small values of µ the equations
still possess periodic solutions?
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Annoncing the existence of an infinity of periodic solutions of the planar planetary
Three-Body Problem when the planetary masses are sufficiently small, Poincaré
justified his efforts as follows:

Il semble d’abord que ce fait ne puisse être d’aucun intérêt pour la pra-
tique. En effet, il y a une probabilité nulle pour que les conditions initiales
du mouvement soient précisément celles qui correspondent à une solution
périodique. Mais il peut arriver qu’elles en diffèrent très peu, et cela a lieu
justement dans les cas où les méthodes anciennes ne sont plus applica-
bles. On peut alors avec avantage prendre la solution périodique comme
première approximation, comme orbite intermédiaire, pour employer le
langage de M. Gyldén.

Il y a même plus : voici un fait que je n’ai pu démontrer rigoureusement,
mais qui me parâıt pourtant très vraisemblable.

Étant données des équations de la forme définie dans le numéro 13 et
une solution particulière quelconque de ces équations, on peut toujours
trouver une solution périodique (dont la période peut, il est vrai, être très
longue), telle que la différence entre les deux solutions soit aussi petite
qu’on le veut, pendant un temps aussi long qu’on le veut. D’ailleurs, ce
qui nous rend ces solutions périodiques si précieuses, c’est qu’elles sont,
pour ainsi dire, la seule brèche par où nous puissions essayer de pénétrer
dans une place jusqu’ici réputée inabordable.35

Then, describing Hill’s researches on the Moon, he further explains the importance
of the construction of approximating periodic solutions:

Supposons que, dans le mouvement d’un astre quelconque, il se présente
une inégalité36 très considérable. Il pourra se faire que le mouvement
véritable de cet astre diffère fort peu de celui d’un astre idéal dont l’orbite
correspondrait à une solution périodique.

Il arrivera alors assez souvent que l’inégalité considérable dont nous
venons de parler aura sensiblement le même coefficient pour l’astre réel et
pour cet astre idéal ; mais ce coefficient pourra se calculer beaucoup plus
facilement pour l’astre idéal dont le mouvement est plus simple et l’orbite
périodique.

C’est à M. Hill que nous devons la première application de ce principe.
Dans sa théorie de la Lune, il remplace ce satellite dans une première
approximation par une Lune idéale, dont l’orbite est périodique. Le mou-
vement de cette Lune idéale est alors celui qui a été décrit au no41, où nous
avons parlé de ce cas particulier des solutions périodiques de la première
sorte, dont nous devons la connaissance à M. Hill.

35It seems at first that this fact cannot be of any interest in practice. Indeed, there is zero probability that the
initial conditions of motion be precisely those which correspond to a periodic solution. But it may happen that they
differ very little, and this occurs precisely where the old methods no longer apply. We can then use the periodic
solution as a first approximation, as an intermediate orbit, to use the language of Mr. Gyldén. There is even more:
here is a fact that I could not prove rigorously, but which nevertheless seems very likely to me. Given equations of
the form defined in no 13 and an arbitrary solution of these equations, one can always find a periodic solution (with
a period which, admitedly, may be very long), such that the difference between the two solutions be arbitrarily
small. In fact, what makes these solutions so precious to us, is that they are, so to say, the only opening through
which we can try to enter a place which, up to now, was deemed inaccessible.

36that is, a deviation from the elliptic motion due to the action of the Sun.
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Il arrive alors que le mouvement de cette Lune idéale, comme celui de la
Lune réelle, est affecté d’une inégalité considérable bien connue sous le nom
de variation ; le coefficient est à peu près le même pour les deux Lunes.
M. Hill calcule sa valeur pour sa Lune idéale avec un grand nombre de
décimales. Il faudrait, pour passer au cas de la nature, corriger le coefficient
ainsi obtenu en tenant compte des eccentricités, de l’inclinaison et de la
parallaxe. C’est ce que M. Hill eût sans doute fait s’il avait achevé la
publication de son admirable Mémoire.37

Moreover, we shall see that periodic solutions play a key role in the proof of non-
integrability of the Three-Body Problem. The various objects attached to them are
of common use in dynamics: the characteristic exponents are introduced in Chapter
IV, the asymptotic solutions38 in Chapter VII, the doubly asymptotic solutions39 in
Chapter XXXIII.

4.2 The three “sorts”

In section 39, Poincaré recalls the classification of periodic solutions into three sorts40

from his 1884 paper:

. . . j’ai été conduit à distinguer trois sortes de solutions périodiques: pour
celles de la première sorte, les inclinaisons sont nulles et les eccentricités
très petites ; pour celles de la deuxième sorte, les inclinaisons sont nulles
et les eccentricités finies ; enfin, pour celles de la troisième sorte, les incli-
naisons ne sont plus nulles.41

These three sorts are continuations of periodic solutions which exist for the limit
problem F0(x) which consists in two uncoupled Kepler Problems. Namely

1) two circular motions in the same plane;
2) two elliptic motions in the same plane with resonant frequencies, perihelia in

conjunction or opposition and initial mean longitudes both equal to zero;
3) two circular motions in different planes with resonant frequencies.

In the first sort, the eccentricities of the planets are small and they have no inclina-
tion (planar problem); in the limit where the masses vanish, the orbits become circu-
lar, which is the singularity of the secular Hamiltonian: if n1, n2 are the frequencies of

37Suppose that, in the motion of some star, there is a very strong inequality. It may happen that the true motion
of this star will differ very little from the motion of an ideal star whose orbit would correspond to a periodic solution.
It will often happen that the large inequality which we just mentioned will have approximately the same coefficient
for the real star and for this ideal star; but this coefficient will be much more easily computed for the ideal star
whose motion is simpler and the orbit is periodic. It is to Mr Hill that we owe the first application of this principle.
In his Lunar theory, he replaces this satellite in the first approximation by an ideal Moon, whose orbit is periodic.
The motion of this ideal Moon is then the one described in section no 41, where we discussed of this special case of
periodic solutions of the first sort, which we know thanks to Mr Hill. It then arrives that the motion of this ideal
Moon is affected of a very large inequality, well known under the name of variation ; the coefficient is approximately
the same for the two Moons. Then Mr Hill computes its value for his ideal Moon with a large number of decimals.
In order to treat the case of nature, one would need to correct the coefficient obtained in this way by taking into
account the eccentricities, the inclination and the parallax. This is most probably what Mr Hill would have done if
he had completed the publication of his admirable Memoir.

38Today called stable or unstable manifolds, or more generally invariant manifolds.
39Today called homoclinic or heteroclinic solutions.
40in French: les trois sortes.
41I was led to distinguish three sorts of periodic solutions: for those of the first sort, the inclinations are equal

to zero and the eccentricities are very small, for those of the second sort, the inclinations are equal to zero and the
eccentricities are finite; finally, for those of the third sort, the inclinations are no longer equal to zero.
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the two circular Keplerian motions, the limit solution has period T = 2π
n1−n2

: indeed

after time T the two bodies have turned respectively by the angles 2πn1

n1−n2
and 2πn2

n1−n2

whose difference is 2π. In terms of the coordinates introduced in 3.1, the existence
proof for µ 6= 0 amounts to writing that the expressions Λ1,Λ2, u1e

iλ1 , u2e
iλ2 , λ1−λ2

take the same values at times 0 and T , which expresses that after time T the mu-
tual distances between the bodies have regained their initial value42. Writing these
as functions of the initial conditions and the period and taking into account the first
integrals, Poincaré shows that the continuation of such solutions to small values of
µ is possible provided n1 is not an integer multiple of n2 − n1 (this ensures that
the ad hoc Jacobian determinant does not vanish). He also notices that the periodic
solutions obtained in this way have necessarily the following property: the bodies
are in symmetrical43 conjunction. at some time t0, and in symmetrical opposition at
time t0 + T/2.

The most famous example of a periodic solution of the first sort (in the case of the
Restricted Problem, that is when one of the masses is infinitesimal, see 9.1) is Hill’s
intermediate orbit used in his study of the Lunar problem. Describing Hill’s result
in par. 41, Poincaré corrects a wrong guess of Hill about the global continuation
of his solution (see 4.3); see the answer sent by Hill to Poincaré at the address
http://www.univ-nancy2.fr/poincare/chp/text/hill18920120.xml.

In the second sort, the inclinations are still zero but the eccentricities are finite ;
in the limit one gets elliptic motions with the same direction of semi-major axes
and conjunctions or oppositions at each half-period. In the third sort, eccentricities
are small but inclinations are finite and the limit motions are circular but inclined.
Here we are facing a bifurcation problem: indeed, we start from the degenerate and
completely integrable situation where families of periodic solutions of the reduced
problem which exist for µ = 0 are expected to break for µ 6= 0 and give rise
to isolated periodic solutions. More precisely, we start from a resonant torus of
dimension 2, corresponding to motions along two Keplerian ellipses of the form
l1(t) = n1t + l01, l2(t) = n2t + l02, where the values of L1 and L2 are chosen so that
there exists T ∈ R and k1, k2 ∈ N with n1T = k12π, n2T = k22π.

In what he called “Examen d’un important cas d’exception”44, Poincaré shows that,
when as in the (reduced) planetary problem, the unperturbed Hamiltonian F0 de-
pends only on some of the action variables45, that is when the phase variables are
grouped into two subsets, the fast (or Keplerian) ones and the slow (or secular)
ones, the continuation for µ 6= 0 of the unperturbed periodic orbits by periodic or-
bits of the same period T , amounts to finding critical points, either non degenerate
or of odd multiplicity (in particular maximum of minimum) of the average R of the
perturbing function F1 along the unperturbed periodic solutions.

In the planar problem, R depends on the 4 initial values H0, l01, l
0
2, h

0 of the reduced
coordinates (see 2.4) (those of L1, L2 have already been fixed in order to fix the

42This is because ueiλ =
p

2(L−G)eil ; hence the given functions determine a1, a2, e1, e2 (that is the shape of
both ellipses), l1, l2 (that is the position of the bodies on the ellipses) and g1 − g2 (that is the relative position of
the ellipses).

43“Symmetrical” means that the velocities are othogonal to the line joining the bodies; this implies a symmetry
with respect to this line of the motions of the bodies at times symmetrical with respect to t0

44Consideration of an important exceptional case.
45In this case the Hessian of F0 with respect to the action variables vanishes identically, which forbids using the

trick of replacing F0 by a function ϕ(F0) of F0 whose Hessian does not vanish; introduced by Poincaré this trick
allows in some cases (see for instance 9.1) to regain the possibility of using directly the implicit function theorem.

http://www.univ-nancy2.fr/poincare/chp/text/hill18920120.xml
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unperturbed frequencies). Moreover, one can fix the phase, that is the origin of
time, by setting l01 = 0, which leaves the three variables H0, l02, h

0. In the spatial
case, it depends on the 6 initial values of the reduced coordinates which can be
reduced to the five G0

1, G
0
2, l

0
2, g

0
1, g

0
2.

At this point, Poincaré notices that, provided one makes the ansatz that at
some time (chosen to be t = 0) the bodies are in symmetric conjunction, that is if in
addition to l01 we suppose that l02 = g0

1 = g0
2 = 0, the dominant term of the expansion

in eccentricities of R is nothing but the reduced secular Hamiltonian46. Hence he is
able to relate the existence of periodic solutions of the second and third sort to the
singularities of the reduced secular system. He then appeals to the computations of
the quadratic part of the averaged Hamiltonian done by the “founders of Celestial
Mechanics” as they are reproduced in Tisserand’s treatise47 [Ti] (see 3.3) to compute
the critical points of the reduced Hamiltonian. This allows him in particular to show
the existence of periodic solutions of the third sort different from those of the second
sort, i.e., with non zero inclinations. In his characteristic style, he concludes:

Cela ne veut pas dire qu’il n’existe pas également des solutions périodiques
de la troisième sorte pour lesquelles il n’y ait pas de conjonction symétrique ;
il se pourrait en effet que, la fonction R admı̂t d’autres maxima ou minima
que ceux qui correspondent au cas de l′0 = g0 = g′0 = 0. Il y aurait donc
lieu de revenir sur cette question.48

Notice that this ansatz is crucial to make precise the link with the singularities of
the secular system ; indeed, because of the assumed resonance between the mean
motions of the planets, the secular system is not a good approximation to the actual
system.

Figure 4 is an attempt to represent the unperturbed periodic solutions from which
the second and third sort periodic solutions bifurcate: the 8-dimensional reduced
phase space of the spatial Three-Body Problem is fibered over the 4-dimensional
reduced secular space K4, diffeomorphic to the complex projective plane P2(C). In
the representation, I have replaced K4 by its “real part”, diffeomorphic to the real
projective plane P2(R), obtained by gluing along their boundary (diffeomorphic to
a circle) a Moebius band and a disc. This is not completely stupid as, because of
the symmetries of the secular Hamiltonian (invariance under complex conjugacy,
see 3.3), the critical points we are interested in are contained in this real part. The
fibers of the projection on K4 are diffeomorphic to T2 × R2. Once a resonant pair
of values of the semi-major axes (more precisely a resonant pair (Λ1,Λ2)) has been
fixed, the fibers become 2-tori, parametrized by the mean longitudes (λ1, λ2) and
each of these tori is filled by a family of periodic solutions. The ansatz amounts
to choosing one (in fact two, corresponding to opposition of conjunction) of these
periodic solutions. Among those, the ones lying over the critical points of the reduced

46More precisely, one must also avoid those mean motion resonances which give rise to periodic terms of order
≤ 2 in eccentricities, the first case being the (1,1)-resonance, that is n1 = n2, which contributes a periodic term
whose coefficient is of order 0 in eccentricities.

47Mentioning this work in the introduction of the Lessons, Poincaré writes (see 6.4):

I had not to do again what he had done and done well.

48This does not mean that solutions of the third sort for which there is no symmetric conjunction do not exist; it
could indeed be the case that the function R possesses other maxima or minima that the ones which correspond to
the case of l′0 = g0 = g′0 = 0. Hence one should come back to this question.
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secular system will be ones for wich Poincaré proves that they can be continued after
the perturbation is turned on.

Figure 4: Unperturbed solutions at the origin of 2nd and 3rd sort orbits.

4.3 and some others

For example the ones in the neighborhood of an equilibrium position, mentioned in
sections 51 and 52. This is one the few times Poincaré mentions a relative equilib-
rium, namely the Euler ones L1, L2 of the Restricted Problem (see Figure 12), where
the Moon would stay at constant distance of the Earth and always be in opposition
or conjonction. He shows the existence in the neighborhood of these equilibria of
periodic solutions (all this of course in the rotating frame, see 9) which agree with
Hill’s intuition even if Hill’s reasoning (continuation of his solution 4.2) was wrong.

5 Quasi-periodic solutions 1) Formal aspects: Lindstedt series

Il y a entre les géomètres et les astronomes une sorte de malentendu
au sujet de la signification du mot convergence.49

The first chapter of the second volume of The New Methods is devoted to the defini-
tion of what Poincaré calls an asymptotic series. It opens with a clarification of the
different conceptions geometers and astronomers have of the notion of convergence,
the astronomers paying essentially attention to the way the first terms decrease or
increase (least term summation). Well aware of the practical side of the question,
he specifies:

49There is between geometers and astronomers some sort of misunderstanding about the meaning of the word
convergence.
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Les deux règles sont légitimes : la première, dans les recherches théo-
riques ; la seconde, dans les applications numériques. Toutes deux doivent
régner, mais dans deux domaines séparés et dont il importe de bien con-
nâıtre les frontières.

Les astronomes ne les connaissent pas toujours d’une façon bien précise,
mais ils les franchissent rarement ; l’approximation dont ils se contentent
les maintient d’ordinaire beaucoup en deçà ; d’ailleurs leur instinct les
guide et, s’il les trompait, le contrôle de l’observation les avertirait prompte-
ment de leur erreur.50

The excellent survey [Ra1] by J.P. Ramis renders unnecessary for me to further dis-
cuss Poincaré’s conceptions on divergent series. I shall just mention the introduction
of the Lessons [P12], where Poincaré studies the “ancient methods” without paying
attention to the problems of convergence. Alluding to The New Methods, he says:

D’autre part, dans ces Volumes, j’ai poussé l’approximation beaucoup
plus loin que ne l’exige la pratique ; j’ai pu ainsi faire ressortir des circon-
stances tout à fait imprévues, dont l’importance analytique est très grande,
mais qui n’ont aucun intérêt pout l’astronome praticien, et n’en acquer-
ront que le jour où la précision des observations sera beaucoup plus grande
qu’aujourd’hui, ou quand on voudra comparer des observations s’étendant
sur une longue suite de siècles.51

If one is content with replacing centuries by hundreds of millions of years and ob-
servations by numerical simulations, J. Laskar’s works (see [Las1, Las2]) attest the
relevance of this sentence.

The search for quasi-periodic solutions of the equations, while a purely mathematical
problem (behaviour of the solutions in infinite time!) has nevertheless astronomical
significance if one is interested in the behaviour on very long periods of time.52 It
is intimately linked with the method of averaging already discussed in section 3.
Indeed, averaging or (normal forms) and secular systems will appear naturally in
what follows.

Paraphrasing Poincaré, I must say that my way of exposing these chapters will differ
quite a lot from Poincaré’s exposition but that the series I shall obtain are the same
as his. Also, I shall not discuss the attributions: Newcomb? Lindstedt? Gyldén?
Delaunay? Bohlin? Let us say Poincaré for simplicity, if not completely accurate,
this does not seem to be outrageously wrong. The interested reader may look in
particular at [PC] and at the transparencies of a conference by P. Nabonnand (see
[Na]) on the correspondence between Lindstedt and Poincaré.

50The two rules are legitimate: the first, in theoretical researches; the second, in the numerical applications. Both
must reign, but within two distinct domains the boundaries of which it is important to know well. Astronomers
do not always know them very precisely, but they seldom cross them; the approximation they are satisfied with
usually maintains them much further; besides, their instinct guides them and, if it did cheat them, the control by
the observation would quickly warn them of their error.

51On the other hand, in these Volumes, I pushed the approximation much further than needed in practice; this
allowed me to put forward quite unforeseen circomstances, the analytical importance of which is very high, but which
do not have any interest for the practitionning astronomer, and will become of interest only when the precision of
observations will be much higher than today, or when one will be willing to compare observations taking place along
a long sequence of centuries.

52Because of velocities close to the velocity of light are involved, this is particularly relevant in the study of the
motion of particles in an accelerator, the relevant period of time becoming relatively short; see [M4].
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5.1 What is a Lindstedt series?

The second volume of The New Methods of Celestial Mechanics is devoted to the
the study of the perturbation series, the main tool used by astronomers in order
to “solve” the equations of motion. Immediately after a chapter dedicated to the
notion of asymptotic expansion, for the study of which I refer to [Ra1], Poincaré
shows the existence of quasi-periodic “solutions” of equations (1), of the form{

x = x0 + µΦ1(w) + µ2Φ2(w) + · · · ,
y = w + µΨ1(w) + µ2Ψ2(w) + · · · ,

(Lµ)

where the Φj and the Ψj are mappings from TN to RN and

w = (w1, w2, · · · , wN), wi(t) = wi(µ) + ni(µ)t.

Such solutions look like what a family depending on µ of solutions (2) of a family
of integrable systems (1) defined by F0(χ, µ) (the notations are those of 2.5 with
(x, y) replaced by (χ,w) and the parameter µ added) would become after a family
of “coordinate changes” (see Figure 5):

Figure 5: Families of invariant tori defined by Lindstedt series.

Using the implicit function theorem, one finds that the corresponding integral curves
are confined for each µ to a torus Tµ of the form

x = x0 + µx1(y) + µ2x2(y) + · · ·
invariant by the flow of the equations (1) defined by F (x, y, µ). In particular, they
define motions in which the bodies stay forever in past and future at finite distance
from each other without any collision ever happening. The gran of salt, which ex-

plains the brackets, is that the “solutions” and the “coordinate changes” are all given
by formal series in µ, the convergence of all of which would contradict Poincaré’s
non-integrability result. The novelty is that these series are devoid of the disturbing
secular terms, containing powers of the time t outside the sines and cosines, which,
growing without limits, did spoil the series given by the “old methods” and appear
now as mere artefacts of the Taylor expansion53. Poincaré calls these “solutions”
Lindstedt series because the fist terms had been obtained by Lindstedt, but he is
the first who proves their existence, as he himself explains :

53It is fair to quote d’Alembert who, in 1759, writes somewhat bitterly in volume 9 of the Encyclopédie [En, C6]:
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Mais il y a une autre difficulté plus grave ; on constate aisément que la
méthode est applicable dans les premières approximations, mais on peut
se demander si l’on ne sera pas arrêté dans les approximations suivantes ;
M. Lindstedt n’avait pu l’établir rigoureusement et conservait même à ce
sujet quelques doutes. Ces doutes n’étaient pas fondés et sa belle méthode
est toujours légitime ; je l’ai démontré d’abord par l’emploi des invariants
intégraux dans le Bulletin astronomique, t. III, p. 57, puis, sans me servir
de ces invariants, dans les Comptes rendus, t. CVIII, p. 21.54

5.2 Different types of Lindstedt series

In order to understand the problems of convergence of the Lindstedt series, one
needs to understand the choice one has when defining them. Consider again the
case when

F (x, µ) = F0(x) + µF1(x) + · · ·
does not depend on the angles y. For any value of µ, the phase space Tn × Rn is
foliated by invariant tori of the form x = cst. A Lindstedt series is obtained in
this case by chosing for each µ one of these invariant tori, depending nicely on µ.
This leads to three main types: series with variable frequencies, series with fixed
frequencies, or series with fixed energy and fixed projective frequencies. All this
is implicit in Poincaré who, nevertheless choses as does Lindstedt, the series with
variable frequencies because they are those which are the most opposed to those
with fixed frequencies which are given by the old methods. We shall write

ω(x, µ) =
∂F

∂x
(x, µ) = ω0(x) + µω1(x) · · ·

the frequency vector. If the initial conditions (x̄, ȳ) = (x0, y0) are fixed independently
of µ, one obtains a family of quasi-periodic solutions of the family of equations (Hµ),
whose frequencies n(µ) = ω(x0, µ) depend in general of µ. It is the most trivial
example of a Lindstedt series.

If on the contrary one wants the frequencies to be fixed, that is independent
of the parameter µ, one must chose initial conditions

(
x̄(µ), ȳ(µ)

)
satisfying the

“Je ne dois pas oublier d’ajouter 1o. que ma méthode pour déterminer le mouvement de l’apogée, est très-élégante
& très-simple, n’ayant besoin d’aucune intégration, & ne demandant que la simple inspection des coefficients du
second terme de l’équation différentielle ; 2o. que j’ai démontré le premier par une méthode rigoureuse, ce que
personne n’avoit encore fait, & n’a même fait jusqu’ici, que l’équation de l’orbite lunaire ne devoit point contenir
d’arcs de cercle ; si on ajoute à cela la maniere simple & facile dont je parviens à l’équation différentielle de l’orbite
lunaire, sans avoir besoin pour cela, comme d’autres géometres, de transformations & d’intégrations multipliées ;
& le détail que j’ai donné ci-dessus de mes travaux & de ceux des autres géometres, on conviendra, ce me semble,
que j’ai eu plus de part à la théorie de la lune que certains mathématiciens n’avoient voulu le faire croire”.

“I must not forget to add 1o. that my method for determining the motion of the lunar apgee, is very elegant
and very simple, needing no integration, and requiring only the simple inspection of coefficients of the second term
of the differential equation; 2o. that I was the first to prove by a rigorous method, something that no one had yet
accomplished, & that has not been accomplishd until now, that the lunar orbit equation need contain no arcs at all;
if one adds to this the simple and easy way by which I obtain the differential equation of the Lunar orbit, without
having, as other geometers, to use for that multiple transformations and integrations, and the detail given above of
my works and of the works of the other geometers, I think one will agree that I have more contributed to the Lunar
theory than some mathematicians had wanted people to believe.”

54But there is another, more serious, difficulty; one checks easily that the method can be applied in the first
approximations, but one can ask if one will not be stopped in the next approximations; M. Lindstedt had not been
able to prove it and he was even somewhat doubting it. These doubts were not founded and his beautiful method is
always legitimate; I first proved it in the Bulletin astronomique, t. III, p. 57, by using the integral invariants, then
without using them in the Comptes rendus, t. CVIII, p. 21.
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equation
ω
(
x̄(µ), µ

)
= ω

(
x0, 0

)
= ω0(x0) = n0 , x̄(0) = x0 .

The implicit function theorem grants the possibility of such a choice for small
enough µ as long as the matrix

∂ω

∂x

(
x0, 0

)
=
∂ω0

∂x
(x0) =

∂2F0

∂x2
(x0, 0)

is invertible (one says that the Hamiltonian F0 is isochronically non degenerate at
the point x0).

Finally, if one wants the energy to be independent of µ, one can only fix the
frequencies up to a common scaling factor, i.e., projectively; it is enough to choose
initial conditions satisfying {

ω
(
x̄(µ), µ

)
= λ(µ)n0,

F
(
x̄(µ), µ)

)
= constante.

This is possible as soon as (
∂2F0

∂x2 (x0) ∂F0

∂x
(x0)

tr ∂F0

∂x
(x0) 0

)
is invertible, that is as soon as, at the point x0, the Hamiltonian F0 is isoenergetically
non-degenerate.

5.3 From the old methods to the new ones and back

Let us consider now a Hamiltonian F (x, y, µ) which is still completely integrable but
without supposing that (x, y) be action-angle coordinates for F . That is, we suppose
that they come from action-angle coordinates (χ,w) through the symplectic change
of coordinates

xi = χi + µ coswi, yi = wi, i = 1, · · · , n,
which transforms F into

C(χ,w) = C0(χ) + µC1(χ) (with necessarily C0 = F0),

whose solutions are quasi-periodic, of the form

χ = χ̄ , w = w̄ +$(χ̄, µ)t = w̄ +$0(χ̄)t+ µ$1(χ̄)t.

One obtains in this way the solutions of the Hamiltonian system (Hµ) associated
with F in the form of Lindstedt series of one of the three forms:

1) Series with variable frequencies $(x0, µ) = n0 + µn1:

x = x0 + µ cos
(
y0 + n0t+ µn1t

)
, y = y0 + n0t+ µn1t.

2) Series with fixed frequencies n0 = $(x0, 0):

x = x0 + µ
(
α1 + cos(y0 + n0t)

)
+ µ2α2 + · · · , y = y0 + n0t.

3) Series with fixed energy and fixed projective frequencies:

x = x0 + µ
[
α1 + cos

(
y0 + λ(µ)n0t

)]
+ µ2α2 + · · · , y = y0 + λ(µ)n0t.
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The use of the strange notations

χ̄(µ) = x0 + µα1 + µ2α2 + · · · , w̄(µ) = y0

for the initial conditions, is motivated by the choice of staying as close as possible
to Poincaré’s notations.

All these series are of the form

x = χ̄(µ)+µ cos
(
y0+$0

(
χ̄(µ)

)
t+µ$1

(
χ̄(µ)

)
t
)
, y = y0+$0

(
χ̄(µ)

)
t+µ$1

(
χ̄(µ)

)
t.

If we expand them in series of powers of µ, one obtains “old-fashioned” series

x =x0 + µ
(
α1 + cos

(
y0 + n0t

))
+ µ2

[
α1 −

(
∂$0

∂x
(x0) · α1 + n1

)
t sin

(
y0 + n0t

)]
+O(µ3),

y =y0 + n0t+ µ

(
∂$0

∂x
(x0) · α1 + n1

)
t+O(µ2),

which contain secular terms and are developed into the fixed frequencies n0 = $0(x0).
Knowing that Lindstedt had originally tried to suppress these secular terms by let-
ting the frequencies vary but maintaining fixed the initial conditions, one could think
that it is the shift from fixed to variable frequencies which makes the difference be-
tween old and new methods but what we have just done shows that the same aim
may be attained a priori via an infinite number of ways, and in particular by keeping
expansions with fixed frequencies: it suffices to make the initial conditions depend
on µ in a well chosen way. For example, the first step must eliminate the term

∂$0

∂x
(x0) · α1 + n1,

which is the term of order 1 in µ of $
(
χ̄(µ), µ

)
.

Remark. The fact that the mapping (χ,w) 7→ (x, y) is symplectic is easily checked
directly but it is better to notice that it admits the generating function (another
invention of Poincaré) S(χ, y) = χ · y + µ

∑
sin yi, which means that

x =
∂S

∂y
(χ, y), w =

∂S

∂χ
((χ, y), that is dS(χ, y) = x · dy + w · dχ,

from which follows the identity 0 = d2S = dx ∧ dy − dχ ∧ dw.

5.4 One torus or a foliation by tori? (Poincaré’s ambiguities)

In the above examples, each solution of (Hµ) is quasi-periodic of the form (Lµ). In
the phase space D × Rn, the closure of the integral curve defined by a convergent
Lindstedt serie is, when µ is fixed, a torus Tµ whose dimension lies between 1 (peri-
odic orbit) if there exists a non zero real number T and integers pi such that for all
i one has ni(µ)T = pi, and n (quasi-periodic orbit of general type) if no resonance
exists between the frequencies ni(µ), that is is there is no relation of the form

k · n(µ) =
n∑
i=1

kini(µ) = 0 ,



72 A. Chenciner Séminaire Poincaré

in which k = (k1, k2, · · · , kn) are integers among which at least one is different from
zero. Therefore, we are naturally led to look, as Poincaré did, not for formal partic-
ular solutions of equations (Hµ), but for formally invariant tori of these equations.
Moreover, the structure of the solutions (Lµ) shows that, at the formal level, these
tori should admit angular coordinates θ = (θ1, · · · , θn) such that the restriction of
the equations becomes a constant vector field: in the non-resonant case where the
closure of the integral curve (Lµ) has dimension n, such coordinates θ are obviously
(w1, w2, · · · , wn) which satisfy

dwi
dt

= ni(µ), i = 1, · · · , n.

Together with the density in the torus of the integral curves of the flow, this last
property is a major constraint on an invariant torus of a Hamiltonian system: indeed,
we notice after Michael Herman that the form Ω induced on such a torus by the
symplectic form

dx ∧ dy =
n∑
i=1

dxi ∧ dyi,

which is invariant under the flow of equations (Hµ), is necessarily constant in the θ
coordinates:

Ω =
n∑
i=1

n∑
j=1

cijdθi ∧ dθj.

But, the standard symplectic form dx ∧ dy being the coboundary of the Liouville
form x ·dy =

∑n
i=1 xidyi, Ω itself is a coboundary and, being constant, it cannot but

vanish identically. Finally, in the non-resonant case, we are looking for a formally
invariant n-torus on which the form induced by the symplectic form vanishes. Today,
such a torus is said to be Lagrangian. The very structure of (Lµ) shows that these
tori must be looked for close to the tori {x0}×Tn, that is as the graphs of a formal
mapping Σµ from Tn to D. Being Lagrangian is then equivalent to the existence of
a mapping y 7→ Sµ(y) whose derivative is Σµ:

Σµ(y) =
dSµ
dy

(y).

The classical Hamilton-Jacobi theory tells us that the only condition which Sµ must
satisfy is to be a global solution of the Hamilton-Jacobi equation

F

(
dSµ
dy

(y), y, µ

)
= c(µ),

where c(µ) is a constant (recall that morally, µ is fixed). This is a simple translation
of the fact that such invariant Lagrangian submanifolds are nothing but geometric
solutions of the Hamilton-Jacobi equation. Unfortunately in the absence of other
hypotheses, a Lagrangian torus Tµ which is the graph of the derivative Σµ of a global
solution Sµ of the Hamilton-Jacobi equation, has no reason to possess coordinates
such that the Hamilton equations (Hµ) become a constant vector field (i.e., a quasi-
periodic one). This last property is only ensured in case the torus belongs to an
n-parameter family χ = (χ1, χ2, · · · , χn) of such tori, defined by a complete solution
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Sµ(χ, y) of the Hamilton-Jacobi equation:

F

(
∂Sµ
∂y

(χ, y), y, µ

)
= C(χ, µ). (HJµ)

This is because such a complete solution is the generating function of a symplectic
diffeomorphism Dµ

(χ,w) 7→ (x, y) ,

implicitely defined by the identity

dSµ = w · dχ+ x · dy,

and in the coordinates (χ,w) the Hamiltonian F (x, y, µ) takes the form C(χ, µ)
independent of the angles w, hence is completely integrable: Our torus being defined
by χ = χ̄ and parametrized by the angles w, the equations of motion read

dw

dt
=
∂C

∂χ
(χ̄, µ).

Of course, the only thing which we used is the existence of the family for χ in an
infinitesimal neighborhood of χ̄: it is in fact enough to be able to take a derivative
with respect to χ at the point χ̄. This remark will play a fondamental role in the
next section.

On these points, Poincaré is slightly ambiguous: looking for a non-resonant torus, he
makes it depend on parameters with respect to which he takes derivatives in order
to find the frequencies. He does not care, at least explicitely, about the possibility
of encountering denominators equal to zero in the coefficients of the series which
define the generating function55 Sµ(χ, y). Nevertheless, one can make sense of all

this thanks to Émile Borel who taught us how to take the derivative of a function
defined on a Cantor set.

5.5 Existence of the Lindstedt series in the non-degenerate case

Warning! My presentation, though close to Poincaré’s, differs in that I immediately
address the individual convergence of the coefficients of the series, while in ChapterX,
Poincaré treats them also as formal series,56 waiting Chapter XIII for all convergence
questions.
We are looking for a “function” Sµ(χ, y) = S(χ, y, µ) of the form

S(χ, y, µ) = χ · y +
∞∑
i=1

µiSi(χ, y)

whose partial derivatives ∂Si
∂χ

et ∂Si
∂y

are 2π-periodic in the variables yj, and which

satisfies formally an equation of the form

F

(
∂S

∂y
(χ, y, µ), y, µ

)
= C(χ, µ) = C0(χ) +

∞∑
i=1

µiCi(χ). (HJµ)

55This is because, contrarily to what we do in the next section, he works with formal series whose coefficients
themselves are formal series coming from the multiplication of formal series.

56which he multiplies as formal series with formal series coefficients . . .
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The choice as terms of order 0 terms in µ of χ · y, that is of a generating function of
the Identity, is dictated by the fact that, as F (x, y, 0) is independent of the angles
y, there is no need to modify this first term. Note that the word “function” must be
taken with a gran of salt as we deal with formal expressions for which no domain of
definition is given. Our goal is indeed to give all this a meaning.

The periodicity constraints imply that, up to an arbitrary function of χ (corres-
ponding to a harmless angular phase shift), the fuction Si may be written

Si(χ, y) = αi · y + si(χ, y),

where αi = (αi,1, · · · , αi,n) belongs to Rn, and si is 2π-periodic with mean value zero
in the variables yj.

The identification of powers of µ in the series expansion of (HJµ) gives then

ω0(χ) · ∂S1

∂y
(χ, y) + F1(χ, y) = C1(χ), (E1(χ))

where we have used the notation

ω0(x) =
∂F0

∂x
(x)

for the frequency vector of the unperturbed Hamiltonian F0(x).

The parameter χ = x0 being fixed, the determination of a particular invariant torus
(depending on µ) is possible as long as x0 is sufficiently non resonant, that is as long
as it belongs to one of the subsets DK,ν of D defined as follows:

DK,ν =

{
x0 ∈ D , ∀k ∈ Zn − {0} , |k · ω0(x0)| ≥ K

|k|ν

}
.

The Fourier series of s1(x0, y),

s1(x0, y) =
∑

k=(k1,···kn)∈Zn−{0}

σk(x
0)eik·y,

is uniquely determined from that of F1(x0, y),

F1(x0, y) =
∑

k=(k1,···kn)∈Zn
fk(x

0)eik·y,

by the identities

σk(x
0) =

fk(x
0)

ik · ω0(x0)
·

It is not difficult to see that, as the coefficients of the Fourier series of an analytic
function decrease quicker than any power of |k| and as the increase of the small
denominators ik · ω0(x0) is polynomial in |k|, the series so obtained defines an
analytic function of y as long as x0 belongs to one the the DK,ν .

Concerning α1 and C1(x0), they must be chosen in such a way as to satisfy

C1(x0)− ω0(x0) · α1 =
1

(2π)n

∫
Tn
F1(x0, y) dy,

where the right-hand side is the averaged system, analogue in the non-degenerate
case of the one studied in section 3.2.
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One resolves in the same way, by induction, the equations which come from the
identification of the terms in µj, j ≥ 2 in the series expansion of (HJµ): the identities
are of the form

ω0(χ) · ∂Sj
∂y

(χ, y) + Φj(χ, y) = Cj(χ), (Ej(χ))

where the term Φj(χ, y) is a polynomial in the ∂Si
∂y

(χ, y), i < j, whose coefficients

are analytic in χ, y.

Once chosen the αj, one obtains, for any x0 belonging to one of the DK,ν , a formal
series in µ, S(x0, y, µ), whose all coefficients are analytic functions of y, and a formal
series in µ, C(x0, µ). The problem is now to “differentiate” these series with respect
to χ1, · · · , χn.

Taking formally the derivative of the equation (Ej(χ)) with respect to the parameter
χk, one obtains new equations

ω0(χ) · ∂
2Sj

∂χk∂y
(χ, y) +

∂ω0

∂x
(χ) · ∂Sj

∂y
(χ, y) +

∂Φj

∂χk
(χ, y) =

∂Cj
∂χk

(χ) ,

of the same form as above. Solving inductively these equations and the ones corre-
sponding to higher derivatives, one determines, for each element x0 of DK,ν , Sj(χ, y)
and the Cj(χ) as formal series57 in (χ − x0) (that is in the (χi − x0

i ), i = 1, · · · , n)
whose coefficients are analytical in y, which satisfy the equations (Ej(χ)).

As we already noticed, this is enough 58 to ensure the quasi-periodicity of the mo-
tion on the formal Lagrangian torus defined by the equation x = ∂S

∂y
(x0, y, µ). One

deduces the existence of Lindstedt series, implicitely defined by
x = x0 +

∞∑
i=1

µiαi +
∞∑
i=1

µi
∂si
∂y

(x0, y),

y +
∞∑
i=1

µi
si
χ

(x0, y) = w = w̄(µ) +
∂C

∂χ
(x0, µ)t.

If, as Poincaré does, one choses to equal all the αi to zero, one obtains Lindstedt
series with variable frequencies. If, on the contrary, one choses the αi in such a
way59 that ∂Ci

∂χ
(x0) vanishes for all i ≥ 1, one obtains Lindstedt series with fixed

frequencies.

Remarks. 1) In [Pos], Pöschel shows that the Si(χ, y) (resp. the Ci(χ)) are C∞

functions in the sense of Whitney on each closed subset DK,ν × T n (resp. DK,ν).
This is equivalent to saying that they may be extended (in a non unique way) to
C∞ functions on the whole of D × Tn (resp. D). The first result if this type, for
mappings, is due to V. Lazutkin [Laz].

2) At the end of section 147, Poincaré notices that the construction may be
done without appealing to infinite sums at intermediary stages by truncating the
Fourier series far enough to be entitled to putting the rest in the small perturbation:

57Notice that, for j = 1, the two formal series in (χ− x0),

C1(χ)− ω0(χ) · α1 and
1

(2π)n

Z
Tn
F1(χ, y) dy

are identical. In particular, C1(χ) is defined and analytic for all χ.
58Obviously, order 1 is already enough.
59This is possible as soon as the unperturbed Hamiltonian F0 is isochronically non-degenerate (see 5.2).
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Voici donc ce qu’on sera conduit à faire : dans la série F1, tous les termes,
sauf un nombre fini d’entre eux, pourront être regardés comme du même
ordre de grandeur que µ ; mais il y en aura qui seront du même ordre de
grandeur que µ2, d’autres, plus petits encore, qui seront du même ordre de
grandeur que µ3, etc. Dans les autres séries F2, F3, on trouvera de même
des termes de ces divers ordres de grandeur.

Nous pourrons donc écrire en général

Fi = Fi,0 + Fi,1 + Fi,2 + · · ·+ Fi,k. · · · ,

Fi,k représentant ceux des termes de Fi qui peuvent être regardés comme
du même ordre de grandeur que µk. Ces termes sont en nombre fini. Cette
manière de décomposer Fi comporte évidemment un assez grand degré
d’arbitraire.60

This trick, which has the inconvenient of losing trace of the analyticity in the pa-
rameter, was used by Arnold in [A1, A3].

5.6 Coping with the degeneracies . . .

At the end of section 128, Poincaré speculates that it is the degeneracy of the Three-
Body Problem which prevented Lindstedt from discovering the possibility of writing
down series with fixed frequencies. And indeed such series cannot exist because,
as the precessions of perihelia and nodes vanish with the perturbation,61 the slow
frequencies must depend on the parameter µ, i.e., one can only expect Lindstedt
series whose frequencies are of the form

(
ω0(x′0), µ ω1(x0)

)
, where x0 = (x′0, x′′0) is

the decomposition of the action into fast and slow.

In order to show that Lindstedt series still exist in this case, Poincaré starts Chapter
X by noticing that their existence in the non degenerate case applies to the averaged
system in the neighborhood of circular and horizontal motions of the two planets:

On peut faire des principes du Chapitre précédent une application im-
portante à l’étude de certaines équations que les astronomes ont souvent
considérées.62

Indeed, after replacing the symplectic polar coordinates H1, H2, Z1, Z2, h1, h2, ζ1, ζ2

defined in 2.2 and 2.3, by analogue coordinates which transform the quadratic part
of the secular Hamiltonian into a sum of squares, and taking as a small parameter
ε the distance to the origin (that is to zero eccentricities and inclinations), one can
find a formal (in ε) change of coordinates which eliminates the angles at any order
provided the coefficients of the squares admit no relation with integer coefficients.
Poincaré comments:

Ainsi on peut satisfaire formellement aux équations qui définissent les
variations séculaires par des séries trigonométriques de la forme de MM.
Newcomb et Lindstedt . . . Ce résultat aurait été envisagé par Laplace
ou Lagrange comme établissant complètement la stabilité du système so-
laire. Nous sommes plus difficiles aujourd’hui parce que la convergence

60The translation is an exercise for the reader.
61what Arnold calls a proper degeneracy.
62One can make of the principles of the former chapter an important application to the study of some equations

that the astronomers have often considered.
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des développements n’est pas démontrée ; le résultat n’en est pas moins
important.63

This is nothing but putting the secular system into Birkhoff normal form (see
[AKN]), that is finding a formal64 change of coordinates transforming the Poincaré
coordinates uj = ξj + iηj, zj = pj + iqj into coordinates

τj + iσj =
√

2ρje
iωj , j = 1, . . . , 4,

such that the secular Hamiltonian depends only of their moduli and not on their
arguments:

H1 =
4∑
j=1

Aj(τ
2
j + σ2

j ) +
4∑

1≤j,k,

Bj,k(τ
2
j + σ2

j )(τ
2
k + σ2

k) + · · ·

The first step is transforming the quadratic part of the averaged system into a sum
of squares by an orthogonal change of coordinates. Remembering the special form of
the quadratic part (see 3.3) one sees that one can at this level make two independent
linear changes of coordinates, one with the horizontal part (perihelia, eccentricities)
to which correspond the horizontal frequencies A1 and A2, and the other with the
vertical part (nodes and inclinations) (to which correspond the vertical frequencies
A3 and A4).

Once the formal Birkhoff normal form is built (supposing there is no resonances
between the Aj), one eliminates the fast angles by a formal change of coordinates
similar to the one used in the non degenerate case. This is possible because replacing
F0 by F0 + µ < F1 > (where < F1 > is the result of averaging the fast angles in
F1) has removed the degeneracy. One could also have started by eliminating the fast
angles independently of the form of the secular part, a process to which is attached
today the name of Von Zeipel. In all cases, one has to stay outside a neighborhood
of the set of values of the fast actions (here the semi-major axes) for which there is a
mean motion resonance, in which case some combinations of the fast angles become
slow and cannot be eliminated by averaging; this is the domain of Bohlin series
(see 7), where resonant tori break into lower dimensional tori and their asymptotic
manifolds.
We have in fact disregarded the difficulty of very small eccentricities and inclina-
tions: indeed, the singular point of the secular system which corresponds to a pair of
horizontal and circular ellipses gives rise in the full system to 2-dimensional invari-
ant tori which after reduction become periodic solutions of the first sort (see 4.2). In
order to be able to write Lindstedt series defining formal invariant Lagrangian tori
very close to these (i.e., corresponding to quasi-periodic solutions whose eccentric-
ities and inclinations are very small) it is necessary to center the symplectic polar
coordinates one uses on these 2-dimensional tori. This is exactly what Poincaré does
in his chapter XII.

63Hence one can formally satisfy the equations defining the secular variations by trigonometrical series similar
to those of MM. Newcomb and Lindstedt . . . This result would have been considered by Laplace or Lagrange as
completely establishing the stability of the solar system. We are more demanding nowadays, because the convergence
of these expansions is not proved; the result is nevertheless important.

64For the planar Three-Body Problem, the secular system can be reduced to a 1-degree of freedom system and
hence is completely integrable; in this case, the procedure is not only formal.
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Figure 6: Invariant tori of very small eccentricities and inclinations.

Finally, if x0 = (x′0, x′′0) belongs to a suitable subset of the actions, one obtains
Lindstedt series whose frequencies are of the form

(ω0(x′0), µ ω1(x0)).

This is as close as possible to the ones with fixed frequencies obtained in the non
degenerate case.

5.7 . . . but forgetting a resonance!

The method described in the former section works perfectly for the Three-Body
Problem in the plane because the averaged system is in fact completely integrable:
after reduction by the symmetry of rotation, that is fixing the angular momentum
and quotienting by the rotation group, one finds a system with only one degree of
freedom, hence integrable. But a problem arises for the spatial problem: describing,
at the end of section 132, the application to the Three-Body Problem of the formal
integration of the secular system (what we have called “putting the system into
Birkhoff normal form”), Poincaré is well aware that, in order to prove the existence
of the formal change of variables he must know that, writing, as we have just done,
the quadratic part of the averaged system as a sum of squares

∑4
j=1Aj(τ

2
j + σ2

j ),

La seule hypothèse que nous devions faire, c’est qu’il n’y ait pas entre les
quatre constantes A1, A2, A3, A4 de relation linéaire à coefficients entiers.
La probabilité pour que cette relation existe est nulle, mais on peut encore
se demander s’il n’y a pas une relation simple de cette forme qui soit
assez près d’être satisfaite pour que les séries ne convergent plus que très
lentement. On sait que Le Verrier a discuté cette question, mais il a dû
la laisser indécise en ce qui concerne les planètes inférieures, parce que
les masses en sont mal connues et que les coefficients A dépendent de ces
masses.

Il est clair que tout ce qui précède s’applique, sans qu’on ait rien à y
changer, au cas où l’on aurait plus de trois corps.65

65The only hypothesis we had to make is that, between the four constants A1, A2, A3, A4, there be no linear
relation with integer coefficients. The probability for such a relation to exist is equal to zero, but one can still ask
whether there is no simple relation of this form which would be almost satisfied so that the series would converge
very slowly. One knows that Le Verrier discussed this question but he had to leave it unsettled for the inner planets
because the masses are not well known and the coefficients A depend on these masses. It is clear that all of the
above applies, without having to change anything, in case one would have more than three bodies.
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I must confess that I do not know of which series Poincaré says that they would
“converge” very slowly, as a priori the averaged system is not integrable in the spatial
case, but in any case, the phenomenon to which he assigned zero probability does
indeed occur for the spatial problem as one has always two resonances between the
secular frequencies Ai:

1) the invariance under rotation forces one of the vertical frequencies, say A4

to be equal to zero. This does not happen in the planar case because circles are
invariant under a rotation of their plane. But in R3, the plane containing a pair of
coplanar circles can still be rotated non trivially, which accounts for a symplectic
eigenplane with 0 frequency.

2) whatever be the masses, one has

A1 + A2 + A3 + A4 = 0.

The first resonance is harmless. Indeed, it would disappear after reduction but there
is more: the reduction is unnecessary because one can show that, precisely because of
the symmetries of the problem, the terms in the Birkhoff normal form which would
be affected by a denominator equal to zero are not present.
The second one is also harmless but in a subtler way. Discovered in full generality
(i.e., for the spatial planetary (1 +n)-body problem for any n) by Michael Herman,
and known today under the name of Herman’s resonance, it was implicitely known
in the lunar theory since the beginning of the Newtonian theory through the fact
that, if one takes into account only the terms of the first-order in the planetary
masses, the theory of perturbation gives practically the same value of 18 years for
the period of the direct motion of the lunar apogee and the retrograde motion of its
line of nodes (see [AA] where it is pointed out that Poincaré mentions this resonance
in [P7]).
Well aware of the first resonance (but somewhat forgetting it), Poincaré overlooked
the second one, which makes his proof of the existence of Lindstedt series in the
spatial case incomplete66 but, fortunately, the Herman resonance disappears after
full reduction of the rotation symmetry, and this allows to restore the proof. More
precisely (see [MRL]), in the Three-Body Problem, it spoils the Birkhoff normal
form only from terms of order at least 10 in the eccentricities and inclinations and,
even more, it does not appear at all in the full formal Birkhoff normal form after the
partial reduction which consists in fixing only the direction of the angular momentum
(we shall come back to this in section 11). Finally, it has no incidence on the dynamics
and moreover, it disappears if one extends the averaging at the second order of the
masses.67 A striking illustration of this last fact is the difference between the value
of 18 years for the period of the lunar apogee and the actual value of approximately
9 years.68 This discrepancy had casted a major doubt on the Newtonian theory until
Clairaut explained in 1750 that taking into account some terms of higher order [ in
the lunar problem, the small parameter µ is the ratio of mean motions of the Moon
and the Sun] did restore the correct value of 9 years.69

66It is this same mistake, overlooking the Herman resonance, that Arnold will make in 1963, see section 11 . . .
the Oulipo would say that Poincaré had made a mistake by anticipation.

67In some sense, sticking to the frequencies at the secular singularity to build expansions is too rigid, in a way as
rigid as were the old methods making Taylor expansions at fixed frequencies and hence introducing secular terms.

68On the contrary, the value of 18 years for the period of the node is close to the actual one.
69For a full account of this important episode, see [d’Al] and the recension [C6].
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6 Periodic solutions 2) The source of complexity

We have asserted in section 2.6 that the breaking of periodic invariant tori of the
unperturbed system was the main cause of the extreme complexity of most of the
solutions of the Three-Body Problem. This complexity is displayed on the one hand
in the non-integrability and the divergence of Lindstedt series, both originating
from the breaking of periodic invariant tori of the integrable approximations which
gives rise to periodic solutions with non-zero exponents, on the other hand in the
divergence of Bohlin’s series which signs the splitting of separatrices. In the popular
account [P6], also reproduced in [Ra1], Poincaré gives a very lucid account of the
way he understands the role of periodic solutions:

Les équations différentielles du problème des trois corps admettent un
certain nombre d’intégrales qui sont connues depuis longtemps ; ce sont
celles du mouvement du centre de gravité, celles des aires, celles des
forces vives. Il était extrêmement probable qu’elles ne pouvaient avoir
d’autres intégrales algébriques ; ce n’est cependant que dans les dernières
années que M. Bruns a pu le démontrer rigoureusement. Mais on peut
aller plus loin ; en dehors des intégrales connues, le problème des trois
corps n’admet aucune intégrale analytique et uniforme ; les propriétés des
solutions périodiques et asymptotiques, étudiées avec attention, suffisent
pour l’établir. On peut en conclure que les divers développements proposés
jusqu’ici sont divergents ; car leur convergence entrâınerait l’existence d’une
intégrale uniforme.70

6.1 Variational equations: exponents, stability, asymptotic solutions

Initiating the study of the stability of periodic orbits, Poincaré introduces their
characteristic exponents and their stable and unstable manifolds. The famous mistake
in his 1889 prize memoir [P1], where he had thought he had proved stability in the
Restricted Problem, is about the intersection of these manifolds (see [BG, Y]). We
shall come back to this topic in section 9.
Chapter IV begins with the definition of the variational equations. Given a particular
solution x(t) = (x1(t), . . . , xn(t)) of a differential equation dx

dt
= X(x) defined in some

domain of Rn, the variational equation along ϕ is obtained by writing that x(t) + ξ
is also a solution and ignoring the terms in ξ = (ξ1, . . . , ξn) of order 2 or more:

dξi
dt

=
∂Xi

∂x1

(
x(t)

)
ξ1 + · · ·+ ∂Xi

∂xn

(
x(t)

)
ξn·

In order to stress the importance of these equations, Poincaré recalls that Hill used
them in his “admirable theory of the Moon”: starting with his periodic solution
(see 4.1) which already gave a reasonable value of the inequality called variation,

70The differential equations of the Three-Body Problem possess a number of integrals which have long been
familiar; these are those of the motion of the center of mass, the area integrals, the energy. It was extremely unlikely
that they could have other algebraic integrals; it is, however only in the recent years that Mr. Bruns has proved this
rigorously. But we can go further; apart from the known integrals, the Three-Body Problem admits no analytic and
uniform integral; a careful study of the properties of periodic and asymptotic solutions is enough to establish this.
It can be concluded that the various developments proposed so far are divergent; for their convergence would imply
the existence of a uniform integral.
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the study of the variational equations allowed him to compute the motions of the
perigee and the node, and the coefficient of the evection.

Having defined the exponents αj of a linear differential equations with periodic
coefficients via Floquet’s theory71, he turns his attention to the variational equation
along a periodic solution of an autonomous differential equation: in this case, the
exponents are the logarithms of the eigenvalues of the monodromy dϕT (x(t)) at any
point of the periodic solution; one of them is always equal to zero and moreover, to
each independent first integral corresponds a zero eigenvalue and to each continuous
symmetry corresponds a zero co-eigenvalue.

In the particular case of the (Hamiltonian) equations of dynamics

dxi
dt

= −∂F
∂yi

,
dyi
dt

=
∂F

∂xi
,

he notices that, writing (ξ, η) and (ξ′, η′) two solutions of the variational equations,72

n∑
i=1

d

dt
[η′iξi − ξ′iηi] = 0,

and analogous determinantal formulæ for 4, 6, . . . , 2n solutions which are nothing
but the preservation by the flow of the symplectic form and its powers.73

Then, recalling that, if a linear transformation preserves a quadratic form, its char-
acteristic polynomial is “reciprocal”, he deduces74 that the characteristic exponents
are pairwise equal (in absolute value) and of opposite sign.75

The next step is to study the solutions which start close to the given periodic
solution by writing power series for the solutions ξ(t) of the (non linearized) equation
d
dt

(x(t) + ξ) = X(x(t) + ξ). In chapter VII, the last chapter of the second volume
of The New Methods, Poincaré shows the existence and analyticity with respect
to a parameter of what we call today stable and unstable manifolds of a periodic
solution, respectively associated with the set of exponents with negative or positive
real part (the so-called hyperbolic part of the spectrum). He does so by writing down
convergent series expansions for the families of solutions they contain. He does not

71Given a linear differential equation dx
dt

= A(t)x where the matrix A(t) is periodic of period T and a fundamental
matrix solution X(t), that is an invertible matrix whose columns are a basis of solutions of the equation, one
notices that the columns of X(t+ T ) are also solutions, hence that there exists a monodromy matrix M such that
X(t+ T ) = X(t)M. The set of exponents is the spectrum, deprived of the obvious eigenvalue 1, of the monodromy
matrix. It is well defined because a change of fundamental matrix solution leads to a conjugate monodromy matrix.
Having recalled the theory, Poincaré cannot help adding:

Je n’insiste pas sur tous ces points de détail. Ces résultats sont bien connus par les travaux de MM.
Floquet, Callandreau, Bruns, Stieltjes, et, si j’ai donné ici la démonstration in extenso pour le cas
général, c’est que son extrême simplicité me permettait de le faire en quelques mots.

I do not insist on this minor point. These results are well known by the works of MM. Floquet,
Callandreau, Bruns, Stieltjes and if if I have given here the proof in extenso for the general case, it is
because its extreme simplicity allowed me to do it in a few words.

72ξ and η being respectively the small increases of x and y.
73For more on this, see section 8.1.
74The proof is contested by A. Wintner in 1931 but it seems that Wintner forgot that the differential equation

with periodic coefficients which is considered is the variational equation along a periodic solution of an autonomous
equation.

75This theorem is rightly named by Kozlov “Poincaré-Lyapunov theorem”. Indeed, in his book [Lya], published
in 1892 by the mathematical society of Kharkov, Lyapunov proves this theorem and he explains that the result was
known to him before the publication of [P1], and that he had communicated it in February 1890 to the Kharkov
mathematical society.
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discard the central part corresponding to exponents whose real part is zero but is
aware that convergence could fail. We shall come back to these invariant manifolds
in the particular case of the Restricted Problem in section 9.

Now comes the important fact heralded in section 2.6: for the unperturbed Hamil-
tonian F0(x) of the general problem of dynamics, the variational equation along any
periodic solution is trivial and hence the exponents are all equal to zero. Showing
that after adding the small perturbation µF1(x, y) periodic solutions with non trivial
exponents will appear is at the root of the non-integrability of the problem. Indeed,
to the families of periodic solutions of the equations of dynamics, which depend
analytically on the small parameter µ, are attached families of asymptotic solutions
but, as all the exponents vanish when µ = 0, the exponents and the solutions of the
variational equations have series expansions not in powers of µ but in powers of its
square root

√
µ. Poincaré then deduces (after some work!) that the asymptotic so-

lutions may be expressed as series expansions in powers
√
µ, with coefficients given

by series in powers of variables wj = Aje
αit (where the αj are the characteristic

exponents of the periodic solution), eit and e−it; he shows that these series diverge76

but that, while divergent, they are asymptotic series in the sense he will formalize
in chapter VIII, which opens the second volume:

On peut donc dire que les séries que nous avons obtenues dans le no 108
représentent les solutions asymptotiques pour les petites valeurs de µ de la
même manière que la série de Stirling représente les fonctions eulériennes.77

The intuitive idea behind these expansions is explained on the following figure in the
case of 2 degrees of freedom: a continuous family of periodic solutions of the unper-
turbed problem gives rise to isolated elliptic and hyperbolic periodic solutions and
hence, in the first approximation, to penduli of width

√
µ (opening of a resonance).

Figure 7: Opening of a resonance.

This is nothing but enriching Figure 3 with invariant manifolds: analytically, it
corresponds to the family of integrable Hamiltonians

F0(x) + µF1(x, y) =
1

2
(x2

1 + · · ·+ x2
n)− µω2 cos y1.

We shall come back to this situation when studying Bohlin series in section 7

76Another proof, based on the divergence of the Bohlin series, will be given at the very end of volume II.
77Hence one may say that that the series that we have obtained in no 108 represent the asymptotic solutions for

the small values of µ in the same way as the Stirling series represent the Eulerian functions.
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6.2 Non-existence of uniform first integrals

Bruns had shown78 the non-existence of first integrals of the Newtonian Three-Body
Problem algebraic in the velocities, which do not arise from the ones which are con-
sequence of the symmetries of the problem: energy and angular momentum. Using
a completely different method, intimately related to the behaviour of periodic solu-
tions, Poincaré shows in chapters V and VI the non-existence of new first integrals
analytic in x, y and µ, that is which are analytic in the (sufficiently small) masses
of the planets. Comparing his result with Brun’s theorem, he writes at the end of
section 85:

Le théorème qui précède est plus général en un sens que celui de M. Bruns,
. . . Mais, en un autre sens, le théorème de M. Bruns est plus général que
le mien ; j’établis seulement, en effet, qu’il ne peut pas exister d’intégrale
algébrique pour toutes les valeurs suffisamment petites des masses ; et
M. Bruns démontre qu’il n’en existe pour aucun système de valeurs des
masses.79

If “generic” periodic solutions (i.e., solutions with non trivial exponents) were dense
in the phase space, or even only if they formed a uniqueness set,80 this would imply
analytic non-integrability. This is because the existence of a complete set of almost
everywhere independent commuting integrals81 implies that every periodic orbit on
which the integrals are independent has all its exponents equal to zero. Unfortu-
nately, even if it is likely to be true, this property is not proved, hence the necessity
of more analytic methods of proving non-integrability.

The actual proof82 rests on a delicate analysis of the abundance of non-zero coeffi-
cients in the Fourier expansion in the angles y for the perturbing function µF1 + · · · ,

78Actually, Brun’s paper contained a mistake which was noticed and corrected by Poincaré in [P9]. The conclusion
of this paper is one more characteristic example of Poincaré’s style:

Le résultat de M. Bruns se trouve confirmé; je suis heureux d’avoir pu compléter son élégante
analyse sur un point de détail.

Hence the result of Mr. Bruns is confirmed. I am pleased to have been able to complete his elegant
analysis on a small technical point.

It has nevertheless some savour to compare this modest ending with the corresponding statement in Poincaré’s
analysis of his own works:

On sait que Bruns a démontré que le problème des trois corps ne saurait admettre d’autre intégrale
algébrique que les intégrales classiques. Malheureusement dans sa démonstration subsistait une lacune
grave et particulièrement délicate à combler. J’ai été assez heureux pour mettre la belle et ingénieuse
démonstration de M. Bruns à l’abri de toute objection.

One knows that Bruns has proved that the Three-Body Problem could not admit other algebaic integral
than the classical ones. Unfortunately a serious gap remained in his proof which was very difficult to
fill. I was fortunate enough to put the beautiful and clever proof of Mr. Bruns away from any objection.

For a complete proof of Brun’s theorem, see [JT]; for a generalization (not really checked), see [Pa].
79The theorem above is in some sense more general than the one of M. Bruns, . . . But, in another sense, the

theorem of M. Bruns is more general than mine; indeed I prove only that there does not exist algebraic integrals
valid for all sufficiently small values of the masses; and M. Bruns proves that such integral exists for no system of
values of the masses whatsoever.

80i.e., a set such that an analytic function which is equal to zero on the set is identically zero.
81that is integrals G,H,K, . . . , whose Hamiltonian flows all commute and hence define a possibly singular foliation

of the phase space by invariant Lagrangian tori; this is equivalent (see [A2]) to the vanishing of all their Poisson
brackets {G,H} =

P ∂G
∂xj

∂H
∂yj
−
P ∂H

∂xj

∂G
∂yj

, {G,K},{H,K},. . .
82Comparing, in section 85, this proof to the one he had given In the Memoir (see 6.5), Poincaré writes:

Dans mon Mémoire des Acta Mathematica (t. XIII), je me suis servi pour établir le même point de
l’existence des solutions périodiques et du fait que les exposants caractéristiques ne sont pas nuls. La
démonstration que je donne ici ne diffère de celle des Acta que par la forme, mais elle se prête mieux
à la généralisation qui va suivre.

In my Memoir of the Acta Mathematica (t. XIII), in order to establish the same point, I used the
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which amounts essentially to proving the “generic” behaviour of periodic solutions,
that is the fact that their exponents are non-zero, and forbids them to form continua
filling “periodic” invariant tori as is the case when µ = 0 (see again 2.6).

In order to show how resonances do appear in the reasoning, let us examine the
non-degenerate case, where we suppose that the Hessian of the unperturbed Hamil-
tonian F0(x) does not vanish, that is when the frequency map x 7→ ∂F0

∂x
(x) is a

diffeomorphism. Supposing that there is an integral Φ = Φ0 + µΦ1 + · · · , Poincaré
develops the identity of commutation83

{F,Φ} = {F0,Φ0}+ µ ({F0,Φ1}+ {F1,Φ0}) + · · · = 0.

The first relation implies that Φ0 does not depend on the angles y. If the Fourier
expansions of F1 and Φ1 are respectively

F1(x, y) =
∑
m∈Zn

Bm(x)eim·y, Φ1(x, y) =
∑
m∈Zn

Cm(x)eim·y,

the second relation means that the Fourier coefficients of Φ1 must satisfy

∀m, Cm
∑

mj
∂F0

∂xj
−Bm

∑
mj

∂Φ0

∂xj
= 0,

that is:
∑
mj

∂Φ0

∂xj
(x) = 0 each time an action belongs to the secular set84

S =

{
x, ∃m = (m1, . . . ,mn);

∑
mj

∂F0

∂xj
(x) = 0 and Bm(x) 6= 0

}
.

Notice that, the equation above being homogeneous in m, the relevant feature of the
perturbing function is not whether an individual Fourier coefficients Bm is different
from 0 but whether a class contains a non zero coefficient, where Bm′ and Bm′′ are
in the same class if m′1/m

′′
1 = m′2/m

′′
2 = · · · = m′n/m

′′
n.

Figure 8 illustrates the definition of a class in the case of two degrees of freedom:
the level curves of F0 and Φ0 must be tangent at each point of the secular set. If
this set is big enough, for example if it is dense or if it is a uniqueness set, this will
imply that the level sets of F0 and Φ0 coincide, and hence that Φ0 is a function of
F0. In this case, after substracting Φ0 and dividing by µ one has a new integral of
the form Φ1 + µΦ2 + . . . and the rest of the proof is similar.

existence of periodic solutions and the fact that the characteristic exponents are non zero. The proof
I give here differs from the one in the Acta only by the form, but it is more apt to the following
generalization.

.
83Recall that {F,G} =

P ∂F
∂xj

∂G
∂yj
−
P ∂G

∂xj

∂F
∂yj

is the Poisson bracket.
84Poincaré says that a Fourier coefficient Bm of the perturbing function becomes secular if the actions x are such

that
P
mj

∂F0
∂xj

(x) = 0.
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Figure 8: Being tangent along the secular set.

When there are more than two degrees of freedom, the proportionnality of the gra-
dients of F0 and Φ0 at x will now take place on the Poincaré set

P =

{
x, ∃m(1), . . . ,m(n−1) ∈ Zn independent; ∀k,

∑
j

m
(k)
j

∂F0

∂xj
(x) = 0, Bm(k)(x) 6= 0

}
.

These values x of the actions define a completely resonant (i.e., filled with periodic
solutions) torus of the unperturbed system and the fact that the Bm(k) are non zero,
means that such a torus will be broken by the perturbation. Good references for
this, with many examples, are [Koz, AKN].

As usual, this simple theory applies to the case of the Restricted Three-Body Prob-
lem, the one studied in the Memoir,85 but not to the general Three-Body Problem
because of the degeneracy of the Kepler Problem. The relevant Fourier expansions
of F1 and Φ1 being

∑
Bm1,m2e

i(m1l1+m2l2) and
∑
Cm1,m2e

i(m1l1+m2l2), where l1, l2 are
the two mean anomalies (the fast angles) and Bm, Cm depend on the fast actions
and all the slow variables, the slow variables introduce new terms in the relations
between Bm and Cm and the Poincaré set must be defined in a subtler way. This is
done in chapter V, while the long chapter VI ,“Développement de la fonction pertur-
batrice”, is devoted to showing that the Fourier coefficients of the expansion in the
mean anomalies of the perturbing function86 satisfy the conditions established in
chapter V: associating to a Fourier expansion the function of complex variables ob-
tained by replacing complex exponentials by complex variables, Poincaré generalises
to functions of two complex variables a method by Darboux, first used by Flamme,
which relates the behaviour of the high rank Fourier coefficients of a periodic func-
tion

∑
n∈ZBne

inϕ to the singularities of the complex function
∑

n∈ZBnz
n. After 66

pages of virtuose use of deformations of integration contours where he stresses the
role of the coalescence of singular points of the integrand, he may conclude:

La non-existence des intégrales uniformes se trouve ainsi démontrée.87

85See section 9; the Hamiltonian F0(L,G) = − K
L2 +G is degenerate (its Hessian vanishes) but Poincaré’s trick of

replacing it by expF0 eliminates the degeneracy without modifying the integrability properties. Moeover, it follows
from the form, computed by Leverrier (see [Cha]) of he Fourier expansion of the perturbing function, that the secular
set is dense, hence the proof of the non-integrability.

86In particular the principal part, that is the inverse distance beween the two planets (see section 2.3).
87The non-existence of uniform integrals is thus rigorously proved.
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6.3 Divergence of Lindstedt series

It is in chapter XIII that Poincaré proves the divergence of the series with varying
frequencies. It is essentially a consequence of the proof of the non-integrability result
which asserts the breaking of the periodic invariant tori of the unperturbed system:
if the Lindstedt series with varying frequencies did converge, this would imply the
existence of such periodic tori, hence a contradiction.

Even if he considers it very unlikely, he is aware of the possibility of the convergence
of Lindstedt series with fixed frequencies “satisfying some arithmetic conditions”;
this is the famous paragraph 149, which I quote in section 11, putting it in the light
of Arnold’s “theorem” on the stability of planetary systems.

Remark. In his proofs of non-integrability and hence of the divergence of Lindstedt
series, Poincaré does not make use of the subtler phenomena of separatrix splitting
(see the question at the end of section 10.1). A proof of analytic non-integrability
based on the existence of such transversal homoclinic intersections was done by
Jürgen Moser in an example due to Sitnikov, with two degrees of freedom [M5].

6.4 Back to the old methods: the “Lessons of Celestial Mechanics”

As already mentioned in section 5, Poincaré was well aware of the different aims of
geometers and astronomers; he knew perfectly that the divergence of the Lindstedt
series did not diminish their practical interest and that the old methods were not
to be rejected readily. In 1898, he had published in the “Bulletin Astronomique”
[P11] a long article explaining how to recover the classical series expansions of the
astronomers from the “new ones”, insisting in particular on the fact that, according
to the purpose being sought (a very precise representation of the position of the
celestial bodies during a short time or a less precise representation but during a
very long time) the dominant terms in the series are not the same. A testimony of
this attitude is the courses given in the Sorbonne and published under the name
of Lessons of celestial mechanics [P12] between 1905 and 1910. Much less known88

than the New Methods, this other great book on Celestial Mechanics is the redaction
by people in the audience of courses at the Sorbonne; directly aimed at students, it
examines the classical methods of perturbation. In the introduction, Poincaré warns
his readers:

Je n’emprunte aux méthodes nouvelles que leurs résultats essentiels, ceux
qui sont susceptibles d’une application immédiate, en m’efforçant de les
rattacher le plus intimement possible à la méthode classique de la variation
des constantes.

D’un autre côté, Tisserand s’est constamment préoccupé de reproduire
aussi fidèlement qu’il a pu la pensée des fondateurs de la Mécanique céleste
et, en effet, son Livre nous la rend tout entière sous une forme condensée.
Je n’avais pas à refaire ce qu’il avait fait et bien fait.89

As The New Methods, the Lessons have three volumes: the first one, General the-
ory of planetary perturbations (1905), starts with a thorough study of the general

88in particular to the author, which explains the brevity of this section.
89To the new methods, I borrow only the essential results, those capable of immediate application, while striving to

relate them as closely as possible to the classical method of the variation of constants. On the other hand, Tisserand
paid constant attention to reproducing as faithfully as possible the thought of the founders of Celestial mechanics
and, indeed, his book restitutes it in a compact form. I had no need to do again what he had done and done well.
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properties of the Three-Body Problem and, in particular of the various sytems of
coordinates convenient to study the planetary problem; this is followed by a remark-
able exposition of the Keplerian elliptic motion, with in particular a complete proof
of the analyticity90 of what we have called the Poincaré coordinates (see 2.2). The
chapters are: Lagrange’s method; The Restricted Problem; Theory of secular per-
turbations; Poisson theorem; Symmetries in the developments, periodic solutions;
Delaunay’s method. The second volume is divided into two parts: 1) Développement
of the perturbing function (1907), 2) Theory of the Moon (1909), while the third one
is devoted to the Theory of tides (1910).

6.5 Complexifying Poincaré’s method

The main new tool in order to prove non-integrability results was introduced by
Ziglin in [Z]: starting with some particular solution of the equations, the obstruction
to the existence of first integrals meromorphic in a neighborhood of this solution is
found in the monodromy group of the variational equation along the complexification
of the given solution. As Alain Albouy likes to say, Ziglin’s method can be viewed as
a complexification of the method originally used by Poincaré in his Memoir to prove
non-integrability: any first integral was shown to be dependent of the Hamiltonian
along any “generic” (i.e., with non trivial exponents) periodic solution. The proof
is extremely simple: Let F (x, y) be a Hamiltonian, ϕt the flow of the corresponding
Hamiltonian vector field91 XF and Φ a first integral of these equations92 If the
solution ϕt(z0) is T -periodic, i.e., if ϕT (z0) = z0, one deduces from the constancy
of F and Φ and the chain rule on the one hand, differentiating with respect to t
the identity ϕT ◦ ϕt(z0) = ϕt(z0) on the other hand, that the monodromy matrix
dϕT (z0) of the periodic solution ϕT (z0) has 2 co-eigenvectors dF (z0) and dΦ(z0) with
co-eigenvalue 1 and one eigenvector XF (z0) with eigenvalue 1:

dF (z0)dϕT (z0) = dF (z0), dΦ(z0)dϕT (z0) = dΦ(z0), dϕT (z0)XF (z0) = XF (z0).

Moreover dF (z0)XF (z0) = dΦ(z0)XF (z0) = 0, from which one deduces that either
this periodic solution has at least three exponents equal to zero, and hence is not
generic, or the derivatives dF (z0) and dΦ(z0) are dependent. After complexification,
the variational equation becomes a linear differential equation along a Riemann
surface and Ziglin’s criterion of non-integrability involves the non commutation of
some elements of the monodromy group of this equation which leads to the branching
of solutions. A great advantage of the complexification is that the periodic solution
is no more required to be generic. A differential Galois group version of this theorem
was developed by Morales and Ramis [MR], and extended to variational equations
of higher order by Morales-Ramis-Simó [MRS]. The criterion is the non-abelianity of
the Lie algebra of the differential Galois group. Specific applications of these methods
to the three (or more)-body problem were given by D. Boucher, J.J. Morales, A.
Tsygvintsev, C. Simó, S. Simon, T. Combot, J.A. Weil, . . . References will be found
in [Au] and the more recent [Com1]. See also [Com2] which helps justifying the use
of the Morales-Ramis theorem in most of the previous papers.

90An amusing story: it happenned to me to be the referee of a paper showing the analyticity of Poincaré’s
coordinates for the Kepler Problem. The result was less strong than Poincaré’s and I had simply to refer to the first
volume of the Lessons.

91If z = (x, y), XF (z) =
`
− ∂F
∂y

(x, y), ∂F
∂x

(x, y)
´

and dϕt
dt

(z) = X
`
ϕt(z)

´
. Recall that the monodromy is dϕT (z0).

92The situation is of course symmetric and amounts to the vanishing of the Poisson bracket {F,Φ}.
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7 Resonances 1) Bohlin series

Resonances play a major role in celestial mechanics; the earliest mathematical stud-
ies seem to be those of Laplace on the 4:2:1 resonance between the Jovian satellites
Ganymede, Europa and Io, and the 5:2 resonance between Jupiter and Saturn.

The neighborhood of a single resonance is, in the first approximation, well described
by the equations of the product of simple rotators by a simple pendulum;93 As
written by Tisserand [Ti]:

If a dynamical system is in a state of resonance, then there exists a linear
combination of the angle-variables, the so-called critical argument, that
behaves like the angular coordinate of the simple pendulum. Depending on
the initial conditions, it either librates about the point of stable equilibrium
or it circulates around the clock.

The fundamental fact is that this approximate system is completely integrable, which
is no more true in case of multiple resonance (see [GSV]).

7.1 Circulation, libration, separatrix: what is a Bohlin series?

Reprenons les hypothèses et les notations du no 125. Nous avons vu que
dans l’application de la méthode du no 125 il s’introduisait des diviseurs
de la forme

n0
1m1 + n0

2m2 + · · ·+ n0
nmn,

les mi étant entiers.94

Il en résulte que cette méthode devient illusoire quand l’un de ces
diviseurs devient très petit.95

This quotation opens the long chapter XIX, devoted to simple resonances. The
simplest illustration of the phenomena which are studied is the birth of a simple
pendulum from a linear rotator:

F (x1, . . . , xn, y1, . . . , yn) =
1

2
(x2

1 + x2
2 + · · ·+ x2

n) + µ cos y1 (µ ≥ 0).

Figure 9: Opening of a simple resonance.
93Too many physics students ignore the phase portrait of the simple pendulum!
94I remind you that with the notations of the general problem of dynamics (see section 2.5) and my sign conven-

tions, n0
i = ∂F0

∂x
(x0) is the frequency of the invariant torus of the perturbed system with action x = x0.

95Let us come back to the hypotheses and notations of no 125. We have seen that, in the application of the method
of no 125, small denominators came up, of the form n0

1m1 +n0
2m2 + · · ·+n0

nmn, where the mi are integers. It results
that this method become illusive when one of these divisors becomes very small.
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This is the case where x0 = (0, x0
2, . . . , x

0
n) and (m1,m2, . . . ,mn) = (1, 0, . . . , 0). In

other words, the resonant angle is96
∑
miyi = y1. Note that the actions x2, . . . , xn

are integrals of the motion. We shall fix x0 = (0, x0
2, . . . , x

0
n) and write

c0 = F0(x0) =
1

2
((x0

2)2 + · · ·+ (x0
n)2).

In this integrable model, three types of solutions coexist, depending on the value C
of the energy:

the circulation type, if C − c0 > µ;
the libration type, if −µ < C − c0 < µ,
the separatrix type if C − c0 = µ.

In the circulation range, the corresponding invariant tori are Lagrangian graphs and
hence solutions of the Hamilton-Jacobi equation (compare with section 5.4)

F

(
∂S

∂y1

(C, y),
∂S

∂y2

(C, y), . . . ,
∂S

∂yn
(C, y), y1, y2, . . . , yn, µ

)
= C.

The solutions

S(C, y) = x0
2y2 + · · ·+ x0

nyn ±
∫ √

2(C − c0 − µ cos y1)dy1

admit an expansion in series of powers of µ (i.e., Lindstedt series) of the form S =

±
√

2C
∑

k ϕk(y1) (µ/C)k but, as Poincaré notices, this expansion becomes useless
in practice if C − c0 is too close to µ and the expansion in powers of

√
µ has to be

preferred.

In the libration range, the same holds true provided we first change variables in a
way which turns the corresponding invariant tori into graphs.

For the separatrix type, which corresponds to any action x0 = (0, x0
2, . . . , x

0
n) at

which n0
1 = ∂F0

∂y1
(x0) vanishes, the situation is different. Indeed, the solution of the

Hamilton-Jacobi equation satisfies

S(c0 + µ, y) = x0
2y2 + · · ·+ x0

nyn ±
∫ √

2µ(1− cos y1)dy1

= x0
2y2 + · · ·+ x0

nyn ± 2
√
µ

∫
sin

y1

2
dy1

= x0
2y2 + · · ·+ x0

nyn ± 4
√
µ cos

y1

2
.

Notice that S is no more 2π-periodic but only 4π-periodic in y1. It is the image of
an immersed torus which covers twice the circulation tori (see Figure 9). The two
solutions are deduced from each other by a translation of 2π.

7.2 “Bohlin method” in the non-degenerate case

What Poincaré calls the Bohlin method, a conceptual improvement of the method
used by Delaunay in his study of the motion of the Moon, was discovered in 1888 by

96This choice of the resonant angle is not a restriction as one can reduce the general case to this one by a linear
symplectic change of coordinates.
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K. Bohlin [Boh] and Poincaré independently (see the introduction of the memoir; in
The New Methods, Poincaré acknowledges a slight anteriority of Bohlin). Supposing
that F0 depends on all the action variables97 and that

n0
1 =

∂F0

∂x1

(x0) = 0

is the sole linear relation between the frequencies,98 it consists, in each of the three
cases, in searching for solutions of the above Hamilton-Jacobi equation99 which are
formal series of the form

S = S0 + S1
√
µ+ S2µ+ S3µ

√
µ+ · · · , C = C0 + C2µ+ C4µ

2 + · · ·

with

∀i, ∂S0

∂yi
= x0

i and
∂Sp
∂yi

periodic.

Refering to [S3] for an analysis of some of the obscurities in Poincaré’s exposition
which I shall not discuss in depth, I shall be content with showing how the three
types of solutions appear in the equations, insisting more on the separatrix case,
which plays a prominent role in sections 10.1 and 10.2.

An immediate identification leads to the following equations:

F0

(
x0

1, x
0
2, . . . , x

0
n

)
= C0,∑

n0
i

∂S1

∂yi
= 0,∑

n0
i

∂S2

∂yi
+

1

2

∑ ∂2F0

∂xi∂xk

∂S1

∂yi

∂S1

∂yk
+ F1(x0, y) = C2,∑

n0
i

∂S3

∂yi
+

1

2

∑ ∂2F0

∂xi∂xk

∂S1

∂yi

∂S2

∂yk
+ Φ3 = 0,∑

n0
i

∂S4

∂yi
+

1

2

∑ ∂2F0

∂xi∂xk

∂S1

∂yi

∂S3

∂yk
+ Φ4 = C4,

. . .

where, following Poincaré, I have denoted by Φ3,Φ4 known functions and adopted
conventions for the summations which the reader will guess easily.

From the hypothesis that n0
1 = 0 is the sole linear relation with integer coefficients

between the frequencies, we deduce from the second equation that S1 is necessarily
of the following form:

S1 = α1y1 + α2y2 + · · ·+ αnyn + f(y1),

where the derivative f ′ of f is periodic.

Given a function U(y), all of whose derivatives ∂U
∂yi

are periodic,

U =
∑

αiyi +
∑

p=(p1,...,pn)∈Qn
ap sin(

∑
piyi) +

∑
p=(p1,...,pn)∈Qn

bp cos(
∑

piyi),

97This will be pertinent in the case of the Restricted Problem.
98By a symplectic change of coordinates one reduces any resonance relation

P
min

0
i = 0, mi ∈ Z, to n1 = 0.

99After changing coordinates in the case of libration.
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as Poincaré we let

[U ] =
∑

αiyi +
∑
p1∈Q

a(p1,0,...,0) sin(p1y1) +
∑
p1∈Q

b(p1,0...,0) cos(p1y1),

the sum of the secular and resonant terms in U . It follows from this definition that,
for any such U , ∑

n0
i

∂[U ]

∂yi
=
∑

n0
iαi

is a constant. Hence one deduces from the third equation, that (I follow Poincaré’s
notation for the constants):

1

2

[∑ ∂2F0

∂xi∂xk

∂S1

∂yi

∂S1

∂yk

]
= C ′2 − [F1](x0, y),

which, given the expression of S1, is an equation of the form

Af ′2 + 2Bf ′ +D = C ′2 − [F1](x0, y),

the coefficients A,B,D depending on the αi which we can choose as we please.
Choosing all the αi equal to 0, this implies C ′2 = C2 and the formula defining f ′

becomes:
Af ′2 = C2 − [F1](x0, y).

The three cases are respectively

circulation: C2 > max[F1], libration: C2 < max[F1], separatrix: C2 = max[F1].

In the separatrix case, the formula f ′ =
√
A−1(C2 − [F1]) defines two 4π-periodic

functions of y1.

This is only the beginning of the story which leads to proving the existence of the
Sp, whose partial derivatives are 4π-periodic in y1 and 2π-periodic in y2, . . . , yn.
Indeed, some work is needed to show that the constants C4, . . . can be chosen in

such a way that the ∂[Sp]

∂y1
remain finite; this is not obvious because in the equation

∂2F0

∂x2
1

(x0)∂S1

∂y1

[Sp]

∂y1
= · · · , the term ∂S1

∂y1
vanishes twice per period. Here is the way, at the

end of section 209, Poincaré describes the formal penduli defined by the solutions
of separatrix type that he has just found for the Hamilton-Jacobi equation:

Nous avons donc pu déterminer des fonctions satisfaisant aux conditions
que nous nous étions imposées et nous avons réalisé une véritable générali-
sation des solutions périodiques. Seulement, tandis que les séries qui défi-
nissent les solutions périodiques sont convergentes, il n’en est plus de même
de celles dont nous venons de démontrer l’existence, de sorte que cette
généralisation n’a de valeur qu’au point de vue du calcul formel.100

This divergence is crucial for the dynamics; we shall come back to this point in
section 10.1.
100We have thus been able to determine functions which satisfy the conditions we had imposed and we have

accomplished a true generalization of the periodic solutions. But, while the series defining the periodic solutions are
convergent, this is no more true of those which we have just proved to exist, so that this generalization has value
only from the point of view of formal computation.
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Being mainly interested in the sequel in the Restricted Problem, I shall not discuss
the degenerate case which occurs for the Non-Restricted Three-Body Problem. But,
without surprise, Poincaré studies it in depth in chapter XXI. Arguing that the
Lindstedt series still exist in this case, he says:

On peut donc prévoir que la méthode de M. Bohlin est encore applicable
aux cas où F0 ne dépend pas de toutes les variables de la première série
et, en particulier, au problème des trois Corps. Mais l’application soulève
quelques questions délicates et je suis obligé d’insister.101

8 Integral invariants and Poisson stability

We have already seen in section 6.1 that, when studying the exponents of periodic
solutions, Poincaré makes use of the symplectic structure of the equations. But it is
in chapter XXII, which opens the third volume of the New Methods that he displays
the full consequences of this property.

8.1 Integral invariants as integrals of the variational equations

Having proved the non-existence of first integrals besides the classical ones which
come from the symmetries of the problem, Poincaré sees the integral invariants as an
ersatz: it consists in replacing the equations of motion by the variational equations
which, indeed, admit first integrals. Explained in section 242, this filiation is largely
forgotten in modern expositions:

Reprenons le système

dx1

X1

=
dx2

X2

= · · · = dxn
Xn

= dt. (1)

Nous pouvons former les équations aux variations correspondantes telles
qu’elles ont été définies au début du Chapitre IV. Pour former ces équations,
on change dans les équations (1) xi en xi + ξi et l’on néglige les carrés des
ξi ; on trouve ainsi le système d’équations linéaires

dξk
dt

=
dXk

dx1

ξ1 +
dXk

dx2

ξ2 + · · ·+ dXk

dxn
ξn · (2)

Il y a, entre les intégrales des équations (2) et les invariants intégraux des
équations (1), un lien intime qu’il est aisé d’apercevoir.
Soit F (ξ1, ξ2, · · · , ξn) = const., une intégrale quelconque des équations (2).
Ce sera une fonction homogène par rapport aux ξ, et dépendant d’ailleurs
des x d’une manière quelconque. Je pourrai toujours supposer que cette
fonction F est homogène de degré 1 par rapport aux ξ ; car s’il n’en était
pas ainsi, je n’aurais qu’à élever F à une puissance convenable pour trouver
une fonction homogène de degré 1. Considérons maintenant l’expression∫

F (dx1, · · · , dxn),

101Hence one can predict that M. Bohlin’s method is still applicable to the case where F0 does not depend on all
the variables of the first series, and, in particular, to the Three-Body Problem. But the applications raises some
delicate questions and I am forced to insist.
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je dis que c’est un invariant intégral du système (1).102

and more specifically, in section 255:

Dans le cas des équations de la Dynamique, il est aisé de former un grand
nombre d’invariants intégraux. Nous avons en effet appris, aux nos56 et
suivants, à former un certain nombre d’intégrales de l’équation aux vari-
ations et nous avons appris dans le Chapitre précédent comment on peut
en déduire des invariants intégraux.

Une première intégrale (équation 3, t. I, p. 167) est la suivante

η′1ξ1 − ξ′1η1 + η′1ξ1 − ξ′1η1 + · · · = const.

L’invariant intégral qu’on en déduit est le suivant

J1 =

∫
(dx1dy1 + dx2dy2 + · · · dxndyn).

Il est du deuxième ordre et fort important pour ce qui va suivre.103

Then, writing determinants which amount to computing the exterior powers of the
symplectic form dx1 ∧ dy1 + dx2 ∧ dy2 + · · · dxn ∧ dyn, he concludes :

Cependant, parmi tous ce invariants, il y en a un auquel il convient
d’attacher une grande importance, c’est le dernier d’entre eux104

Jn =

∫
dx1dy1dx2dy2 · · · dxndyn.

This is of course the Liouville theorem, that is the preservation by a Hamiltonian
flow of the volume in phase space. Moreover, the interior product of the symplectic
form by a particular solution of the variational equation furnishes other invariants:
namely, if ξ = ϕ(t), η = ψ(t) is a solution of the variational equation, the constancy
of ξψ−ηϕ for any other solution (ξ, η), implies that

∫
(ψdx−ϕdy) is a (time depen-

dent) integral invariant. In addition to the ones coming from the derivation of actual
integrals of the equations of motion, Poincaré did not fail to notice that the homo-
geneity of the potential gives such a particular solution: if q(t) = (~r1(t), ~r2(t), ~r3(t))
is a solution of the Three-Body Problem, so is λ2q( t

λ3 ) for any λ > 0; taking the
derivative with respect to λ at λ = 1 gives the required solution. This invariance

102Let us take back the system (1) dx1
X1

= dx2
X2

= · · · = dxn
Xn

= dt. We can form the corresponding variational

equations as they were defined at the beginning of Chaper IV. In order to form these equations one changes xi
into xi + ξi in equations (1) and one neglects the squares of the ξi ; one finds in this way the system of linear

equations (2) dξk
dt

= dXk
dx1

ξ1 + dXk
dx2

ξ2 + · · ·+ dXk
dxn

ξn. There is, between the integrals of equations (2) and the integral

invariants of equations (1), an intimate relation which is easy to see. Let F (ξ1, ξ2, · · · , ξn) = const., be any integral
of equations (2). It is a function, homogeneous of degree 1 in the ξ and depending in an arbitrary way on the x;
indeed, if this was not the case, it would be enough to raise F to a conveniently chosen power in order to obtain
a function homogeneous of degree 1. Now, let us consider the expression

R
F (dx1, · · · , dxn), I say it is an integral

invariant of system (1).
103In the case of the equations of Dynamics, it is easy to form a large number of integral invariants. Actually,

we have learned in nos56 and the following, to form a number of integrals of the variational equation and we have
learned in the previous chapter how to deduce from them integral invariants. A first integral (equation 3, t. I, p.
167) is the following η′1ξ1 − ξ′1η1 + η′1ξ1 − ξ′1η1 + · · · = const.. The resulting integral invariant is the following
J1 =

R
(dx1dy1 + dx2dy2 + · · · dxndyn). It is of second order and very important for what follows.

104However, among all those invariants, there is one to which one should attach a great importance, it is the last
of them Jn =

R
dx1dy1dx2dy2 · · · dxndyn.
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under rescaling is at the root of the analysis of the behaviour of solutions of the
three–body problem near a triple collision, first by Sundman and then more geo-
metrically by R. McGehee thanks to the introduction of a compactification called the
collision manifold (see [McG, C7]). It is only in the case of the strong force potential,
proportional to the inverse square of the mutual distance that this scaling property
becomes a true symplectic symmetry of the equations, implying the existence of the
Jacobi integral105 (see [AC]).

But there is more: in section 261, entitled “The integral invariants and the charac-
teristic exponents”, Poincaré deepens the analogy between integrals of the equations
of motion and integral invariants, by asking:

On peut se demander s’il existe d’autres invariants intégraux algébriques
que ceux que nous venons de former.

On pourrait appliquer, soit la méthode de Bruns, soit celle dont j’ai
fait usage aux chapitres IV et V ; en effet , les invariants intégraux corres-
pondent, comme nous l’avons vu, aux intégrales des équations aux varia-
tions et l’on pourrait appliquer à ces équations les mêmes procédés qu’aux
équations du mouvement elles-mêmes.106

Even if the analysis is not complete, because of the difficult control of the genericity
of the periodic solutions, it has the interest of indicating probable bounds on the
number of integral invariants. Poincaré concludes:

Il est probable que ces invariants nouveaux, dont la discussion précédente
n’exclut pas la possibilité, n’existent pas ; mais pour le démontrer, il faudrait
recourir à d’autres procédés, par exemple à des procédés analogues à la
méthode de Bruns.107

To my knowledge, this has not been pursued explicitely, but see [Mal, Cas].

Remarks.
1) In the introduction of his first book Leçons sur les invariants intégraux [Ca],

directly inspired by the works of Poincaré, Elie Cartan writes :

En définitive, la quantité sous le signe d’intégration dans un invariant
intégral de H. Poincaré n’est autre chose qu’une forme différentielle invari-
ante tronquée. Le caractère invariant de l’intégrale complétée est conservé
si elle est étendue à un ensemble quelconque d’états, simultanés ou non.108

The paradigmatic example of what Cartan calls a “completion” is the transformation
of the Poincaré integral invariant

∫
pdq into the Poincaré-Cartan integral invariant

or impulsion-energy tensor
∫

(
∑

i pidqi − H(p, q, t)dt); both are relative invariants,
which means that they have to be integrated on closed loops: the first integral does
not change by transport of the loop along the flow lines, either between two fixed

105Poincaré had read Jacobi’s Vorlesungen über Dynamik.
106One could ask whether there exists algebraic invariants different from those which we have just formed.
One could apply, either Bruns’s method, or the one which I used in Chapters IV and V; indeed, as we saw, the

integral invariants correspond to the integrals of the variational equations and one could apply to these equations
the very method we applied to the equations of motion themselves.
107It is likely that these new invariants, whose possibility is not excluded by the preceding discussion, do not exist;

but in order to prove it, we need to resort to other methods, e.g. processes similar to the method of Bruns.
108Ultimately, the quantity under the sign of integration in an integral invariant of H. Poincaré is nothing but a

truncated invariant differential form. The invariant character of the completed integral is preserved if it is extended
to any set of states, simultaneous or not.
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instants or at fixed energy; the second one is invariant by any transport of the
loop along graphs of flow lines in the (q, p, t) space. But in fact, this was already
understood by Poincaré. In section 336 which opens chapter XXIX, studying the
variations of the integral109 J =

∫ t1
t0

(
−F +

∑
yi
dxi
dt

)
, he writes:

Nous avons supposé jusqu’à présent que les deux limites t0 et t1 sont
données ; qu’arrive-t-il si les limites sont regardées comme variables ?110

Supposing the Hamiltonian is autonomous and noticing that the partial derivative
of the action with respect to a boundary of the time interval is, up to sign, the
energy, he concludes:

Si cette constante [l’énergie] est nulle, l’action J est encore minimum si
l’on regarde les valeurs initiales et finales des variables xi comme données
et quand même on ne regarderait pas comme données les valeurs initiales
et finales du temps, t0 et t1.111

Some pages later, in section 341, he will correct this statement in his quite charming
characteristic style:

Jusqu’ici, quand j’ai dit, telle intégrale est minimum, je me suis servi d’une
façon de parler abrégée, mais incorrecte, qui ne pouvait d’ailleurs tromper
personne ; je voulais dire, la variation première de cette intégrale est nulle ;
cette condition est nécessaire pour qu’il y ait minimum, mais elle n’est pas
suffisante.112

Finally, recall that the property of the impulsion-energy tensor of being a relative in-
tegral invariant characterizes the equations of Hamilton (see the introduction of [Ca]
or [A2]): it means that the graphs of the flow lines are tangent to the 1-dimensional
kernel of the exterior derivative of pdq −Hdt.

2) Continuing with the introduction of [Ca], one finds the strong link between
the integral invariants in the sense of Poincaré and Cartan and the ones in the sense
of Lie, directly relevant to the theory evoked in 6.5:

La notion d’invariant intégral peut être envisagée d’un point de vue un
peu différent du point de vue habituel qui est celui de Poincaré, et qui est
en somme celui où on s’est plaçé dans ces Leçons. Au lieu de considérer
une intégrale multiple attachée à un système d’équations différentielles vis-
à-vis duquel elle jouit d’une propriété d’invariance, on peut la considérer
comme attachée à un groupe de transformations par rapport auquel elle
est invariante. Les deux points de vue sont du reste connexes. Le dernier
est celui auquel s’est placé S. Lie et qui lui a paru pendant quelque temps
le seul vrai. Là encore la notion d’invariant intégral joue un rôle important
puisque, comme l’auteur l’a montré [Sur la structure des groupes infinis de

109that is, up to sign, the integral of
P
pidqi −Hdt.

110Up to now, we have supposed that both limits t0 and t1 are given; what happens if these limits are considered
as variable?
111If this constant [the energy] is equal to zero, the action J is still minimum if one considers the initial and final

values of the variables xi as given and even if one would not consider as given the initial and final values of the
time, t0 and t1.
112So far, when I said, this integral is minimum, I used a shorthand, but incorrect, way of talking, but one which

could not mislead anyone; I meaned, the first variation of this integral is zero; this condition is necessary for being
a minimum, but it is not sufficient.
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transformations, Annales de l’E.N.S. 1904 1905], tout groupe de transfor-
mations peut, au besoin par l’adjonction de variables auxiliaires, être défini
comme l’ensemble des transformations qui admettent un certain nombre
d’invariants intégraux linéaires.113

8.2 Poisson stability

Le mot stabilité a été entendu sous les sens les plus différents, et la
différence de ces divers sens deviendra manifeste si l’on se rappelle l’histoire
de la Science. Lagrange a démontré qu’en négligeant les carrés des masses,
les grands axes des orbites deviennent invariables. Il voulait dire par là
qu’avec ce degré d’approximation les grands axes peuvent se développer
en séries dont les termes sont de la forme A sin(αt + β), A,α et β étant
des constantes.114

The title of chapter XXVI is not innocent. Having wrongly stated in the original
version of the memoir in 1889 a very strong stability theorem in the Planar Circular
Restricted Three-Body Problem, Poincaré needs a stability result which, if much
weaker, will turn of considerable importance.115 Indeed, based on the recurrence
theorem, it is the forerunner of ergodic theory. The Poisson stability alludes to the
absence of purely secular terms (i.e., of terms which grow without limits when times
goes on) in the planetary semi-major axes at the second order of the classical theory
of perturbations (i.e., when neglecting the cubes of the planetary masses) which,
at this order of approximation, implies a recurrent behaviour of these semi-major
axes (Spiru Haret will show that this property is not shared any more by the ap-
proximations of higher orders.) Using an argument of conservation of the volume
in a container of finite volume, Poincaré shows that, in the case he is considering,
the conservation of the integral invariant implies that a “generic” solution of the
Restricted Problem will come back infinitely often in an arbitrarily small neighbor-
hood of a given point of the phase space. In the following quotation (chapter XXVI
section 296) Poincaré legitimates his new use of the word “stability”:

En résumé, les molécules qui ne traversent U0 qu’un nombre fini de fois
sont exceptionnelles au même titre que les nombres commensurables qui ne
sont qu’une exception dans la série des nombres, pendant que les nombres
incommensurables sont la règle. Si donc Poisson a cru pouvoir répondre
affirmativement à la question de la stabilité telle qu’il l’avait posée, bien
qu’il eût exclu les cas où le rapport des moyens mouvements est commen-
surable, nous aurons de même le droit de regarder comme démontrée la

113The notion of integral invariant can be envisaged from a somewhat different point of view of the usual one which
is the one of Poincaré, and which is basically the one which we have taken in these lessons. Instead of considering a
multiple integral attached to a system of differential equations with respect to which it enjoys an invariance property,
it can be considered as attached to a group of transformations with respect to which it is invariant. Indeed, the
two views are related. The latter is the one of S. Lie who, for a while, considered it as the only true one. Here too,
the notion of integral invariant plays an important role since, as the author showed [On the structure of infinite
groups of transformations, Annals of the ENS 1904 1905], any group of transformations may, after adding auxiliary
variables if necessary, be defined as the set of transformations that admit some linear integral invariants.
114The word stability has been taken in very different meanings, and the difference between these meanings will

become obvious if one remembers history of Science. Lagrange has proved that if one neglects the squares of the
mases, the major axes of the orbits become invariable. He wanted to say that with this degree of approximation the
major axes can be expanded in series whose terms are of the form A sin(αt+ β), where A,α and β are constants.
115In the first version of the Memoir, Poincaré deduced this weaker stability from the actual stability that he

thought he had proved.
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stabilité telle que nous la définissons, bien que nous soyons forcés d’exclure
les molécules exceptionnelles dont nous venons de parler.116

Titled Probabilities, this section 296 has a striking visionary character: disregarding
the fears of Joseph Bertrand about the “paradoxes” of continuous probabilities,
Poincaré understands clearly that any choice of a regular density will lead to the
same notion of negligible sets; in other words, he understands that the notion of
zero measure set does not depend on such a choice:

Mais il faut d’abord que j’explique le sens que j’attache au mot prob-
abilité. Soit ϕ(x, y, z) une fonction quelconque positive des trois coor-
données x, y, z ; je conviendrai de dire que la probabilité pour qu’à l’instant
t = 0 une molécule se trouve à l’intérieur d’un certain volume est propor-
tionnelle à l’intégrale

J =

∫
ϕ(x, y, z)dxdydz

étendue à ce volume. . . . Nous pouvons choisir arbitrairement la fonction ϕ
et la probabilité se trouve ainsi complètement définie. · · · Nous retombons
donc sur les mêmes résultats qui sont ainsi indépendants du choix de la
fonction ϕ.117

A beautiful analysis of this part of Poincaré’s text can be found in the thesis of
Anne Robadey [Ro]. See also the pleasant paper [G] to get acquainted with possible
misinterpretations of the recurrence theorem.

8.3 From the recurrence theorem to ergodic theory

The recurrence theorem is a weak stability result but it tells us nothing on the way
the solution will come back indefinitely often close to its initial point. It could be in
an integrable way, staying on an invariant torus and hence exploring a very small
part of the energy hypersurface or else in an ergodic way, filling a dense subset in the
energy surface. The ergodic theorem makes this difference quantitatively precise.
The notion of ergodicity originates from the works of Boltzmann in statistical me-
chanics, namely his famous theorem H (1872) which asserts the monotonicity of the
entropy in a system formed by a great number of interacting particles, as for exam-
ple the atoms in a gaz. As noticed by Poincaré and Zermelo, this appears to be in
contradiction with Poincaré’s recurrence theorem. Here is what Poincaré writes in
a short paper titled Le mécanisme et l’expérience, which appeared in 1893 in the
Revue de métaphysique et de morale:
116Summarizing, the molecules which pass through U0 only a finite number of times are exceptional in the same

way as the rational numbers which are but an exception in the series of numbers, while the irrational numbers are
the rule. Hence if Poisson considered that he could reply affirmatively to the question of the stability as he had set
it, although he had excluded the case when the mean motions are commensurable, we shall have in the same way
the right of considering the stability as proved, although we are forced to exclude the exceptional molecules that we
have just mentioned.
117But I must first explain the meaning I give to the word probability. Let ϕ(x, y, z) any positive function of the

three coordinates x, y, z ; I shall agree to say that the probability for a molecule to be at time 0 inside a certain
volume is proportional to the integral

J =

Z
ϕ(x, y, z)dxdydz

extended to this volume. . . . We may choose arbitrarily the function ϕ and the probability is then completely defined.
· · · So doing, we get again the same results which hence are independent of the choice of the function ϕ.
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Un théorème facile à établir nous apprend qu’un monde limité soumis aux
seules lois de la mécanique, repassera toujours par un état très voisin de son
état initial. Au contraire, d’après les lois expérimentales admises (si on leur
attribue une valeur absolue et qu’on veuille en pousser les conséquences
jusqu’au bout), l’univers tend vers un certain état final dont il ne pourra
plus sortir. Dans cet état final, qui sera une sorte de mort, tous les corps
seront en repos et à la même température.. . .

. . . Cet état ne sera donc pas une mort définitive de l’univers, mais
une sorte de sommeil, d’où il se réveillera après des millions de millions
de siècles. A ce compte, pour voir la chaleur passer d’un corps froid à un
corps chaud, il ne serait plus nécessaire d’avoir la vue fine, la présence
d’esprit, l’intelligence et l’adresse du démon de Maxwell, il suffirait d’un
peu de patience.

On voudrait pouvoir s’arrêter à cette étape et espérer qu’un jour le
télescope nous montrera un monde en train de se réveiller et où les lois de
la thermodynamique seront renversées.

Malheureusement d’autres contradictions surgissent. . .118

Boltzmann replies that the time of recurrence being a priori greater than, say, the
age of the solar system, this close return is never witnessed in practice for a system
as complex as a gaz.

For the apparent contradiction, raised by Poincaré and Zermelo, between Boltz-
mann’s theorem or Landau damping and the recurrence theorem, see [V] section
10. The main arguments are the infinite number of degrees of freedom and the infi-
nite limit of the recurrrence time when the number of particles goes to infinity, the
importance of the preparation of the initial condition, . . .

The mathematical theory, named ergodic theory, comes to maturity in 1930, with
the ergodic theorems of Von Neumann, Birkhoff and Koopman, which are strong
dynamical forms of the strong law of large numbers. It goes beyong Poincaré’s re-
currence theorem in that it makes precise the relation between averages in the phase
space and time averages in a dynamical system preserving a measure whose total
mass is finite (which one can normalize to a probability measure, that is one with
total mass equal to 1). More precisely, a system is said to be ergodic if the measure
of any invariant subset is necessarily equal to 0 or 1, and a consequence of Birkhoff’s
ergodic theorem is that the mean recurrence time of almost every point in a mea-
surable subset A is inversely proportional to the measure of A. A good introduction
is the little book by Sinai [Sin].

118A theorem, easy to establish, tells us that a bounded world, only subject to the laws of mechanics, will always
revert to a state very close to the original one. Instead, according to the admitted experimental laws (if one assigns
to them an absolute value and if we want to push through the consequences), the universe tends toward a final state
from which it will not be able to escape. In this final state, which is a kind of death, all bodies are at rest and at
the same temperature.. . .

... This condition will not be final death of the universe, but a kind of sleep, from which it will wake up after
millions of millions of ages. If so, in order to see the heat move from a cold body to a hot body, it would no longer
be necessary to have the sharp view, the presence of mind, the intelligence and the address of Maxwell’s demon, a
little patience would suffice.

One would wish to be able to stop at this point and hope that, one day, the telescope shows us a world waking
up and where the laws of thermodynamics will be overturned.

Unfortunately other contradictions arise.. . .
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9 Stroboscopy 1) Planar Circular Restricted Three-Body Problem

9.1 The simplest Three-Body Problem

En ce qui concerne le problème des trois corps, je ne suis pas sorti du
cas suivant : Je considère trois masses, la première très grande, la seconde
petite mais finie, la troisième infiniment petite ; je suppose que les deux
premières décrivent un cercle autour de leur centre de gravité commun
et que la troisième se meut dans le plan de ces cercles. Tel serait le cas
d’une petite planète troublée par Jupiter, si l’on négligeait l’eccentricité
de Jupiter et l’inclinaison des orbites.119

This vivid description of the so-called Planar Circular Restricted Three-Body Prob-
lem in the planetary case introduces the main theme of the memoir On the Three-
Body Problem and the equations of Dynamics which, as we already mentioned, wins
in 1889 the prize of the King of Sweden, and makes its 35 years old author known
in large circles. The small parameter µ is ratio of the mass of Jupiter to the mass
of the Sun, that is approximately 1/1000. Similar equations rule the motions of the
couple Earth-Moon perturbed by the Sun, the small parameter being now the ratio
of the distance Earth-Moon to the distance Earth-Sun, that is approximately 1/400.
G.W. Hill’s works on this last problem strongly influenced Poincaré. In a rotating
frame fixing the couple Sun-Jupiter in the planetary case, the couple Earth-Sun in
the Lunar case, the equations have the same canonical form as above, F being now
the Jacobi constant. With the geodesic flow on an almost spherical surface, which
Poincaré studies at the end of his life, these are natural examples of non-integrable
Hamiltonian systems with N = 2 degrees of freedom.

PLANETARY CASE LUNAR CASE

Figure 10: The Restricted Three-Body Problem.

In canonical heliocentric120 coordinates, the Hamiltonian (= Jacobi constant) takes
the form

F (L,G, l, g) = −K
L2

+G+ µF1(L,G, l, g − t),
119Concerning the Three-Body Problem, I did not venture away from the following case: I consider three masses,

the first one very big, the second one small but finite, the third one infinitesimal; I suppose that the two first describe
a circle around their common center of mass and that the third moves in the plane of these circles. Such would
be the case of a small planet disturbed (I hope this word may convey the charm of the eighteen century flavoured
“troublé”) by Jupiter if one was neglecting Jupiter’s eccentricity and the inclination of the orbits.
120in the planetary case, canonical geocentric in the lunar case.
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where K is a constant and g − t is the argument of the perihelion of the Keplerian
ellipse in the frame which rotates with angular velocity 1 (as assumed by Poincaré).

Figure 11

One nice feature is that, if still degenerate (the Hessian of the integrable part
F0(L,G) = K

L2 +G vanishes), F is easily transformed into a non-degenerate Hamil-
tonian by Poincaré’s trick of replacing it by its exponential expF , which has the
same integrability and stability properties. This replacement affects only the law of
time; in particular,

the return map (see below section 9.3) is the same and hence non-degenerate.

Finally, as we already said, Delaunay coordinates are not defined in the neighborhood
of circular motions and Poincaré replaces them by

x1 = L+G, x2 = L+G, y1 =
1

2
(l − g + t), y2 =

1

2
(l + g − t),

which are in reality 2-1 (a fact noticed by Poincaré in the Memoir but forgotten
by him in The New Methods). A last step, considering these as symplectic polar
coordinates, leads to the Poincaré coordinates (see section 2.2)

√
2x1e

iy1 ,
√

2x2e
iy2 ,

which are regular at the circular direct or retrograde Kepler orbits. There are still
problems near the collision orbits but Poincaré is only interested in the neighborhood
of the circular ones.

9.2 Hill stability

Stability is the main question addressed by Poincaré in his Memoir (but not the
main question asked for the prize, which was to find convergent series expansions of
the coordinates of the bodies in case no collision occurs [BG]).

For the 2 degrees of freedom Restricted Problem, this is a question a priori sim-
pler than for the general Three-Body Problem (see the paragraphs on K.A.M. and
diffusion). Indeed, Hill had already proved that some kind of stability ocurs when
the Jacobi constant is large enough, as shown on Figure 12 where an energy hyper-
surface and its projection on the configuration space (delimiting the so-called Hill’s
regions) are drawn, for such values of the Jacobi constant: escape of the infinitesimal
mass from the Hill region is impossible but collisions with the closest primary are
not excluded.
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Figure 12: Hill stability.

9.3 Return map

In a rotating frame, the planar circular Three-Body Problem becomes an autonomous
Hamiltonian system with two degrees of freedom. Fixing the energy (= Jacobi con-
stant) to a high enough value and keeping only the part of the three-dimensional
energy hypersurface above the bounded Hill region around the Sun (planetary case)
or the Earth (Lunar case), one gets after regularization of the collisions,121 a man-
ifold diffeomorphic to SO(3), that is to the real projective space RP 3. Poincaré
writes down explicit coordinates in the 2-fold covering, diffeomorphic to S3 of such
a hypersurface deprived of one point, which makes it diffeomorphic to R3.

Figure 13: Coordinates in the compactified energy surface.
121The regularization, due to Levi-Civita [LC] (using a complex transformation anticipated by Goursat [Go] in the

same year 1889 as the printing of Poincaré’s Memoir), amounts to compactifiying the energy submanifold by the
addition of a circle corresponding to every possible direction of the velocities of the colliding bodies (see [Co]).
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Being interested only in motions of the 0-mass body close to circular (direct or
retrograde), Poincaré does not care about the fact that his coordinates are not
smooth at collisions.122

In the section 305 of chapter XXVII, Poincaré embeds in this R3 a half-plane with
the property that all integral curves, except the retrograde Hill orbit,123 cut it trans-
versely an infinite number of times. Such a halph-plane thus becomes a stroboscope;
describing the sucession M0,M1, . . . of points of intersection of a single trajectory,
Poincaré writes:

Le pointM1 sera dit le conséquent deM0. Ce qui justifie cette dénomination,
c’est que, si l’on considère le faisceau des courbes qui satisfont aux équations
différentielles (1) ; si, par le point M0, on fait passer une courbe et qu’on la
prolonge jusqu’à ce qu’elle rencontre de nouveau le demi-plan (y = 0, x >
0), cette nouvelle rencontre aura lieu en M1.124

Figure 14 shows the surfaces of section and the return maps, both in the unperturbed
(F0(L,G) = − K

L2 + G) and perturbed (F0(L,G) = − K
L2 + G + µF1(L,G, l, g − t))

cases.

Figure 14: Poincaré retun map.

Hence the whole dynamics of the Restricted Problem with high Jacobi constant in
a bounded Hill region is reduced to the study of the orbits under iteration of a
mapping (the Poincaré return map) on a surface of section (here a half-plane but
more accurately an annulus as described below; this return map may be loosely
interpreted as describing the successive positions of the perihelium (or aphelium,
which makes easier drawing, see Figure 14) of the osculating Keplerian ellipse of the
zero mass body.
122because l must be defined from the eccentric anomaly u by Kepler formula l = u− e sinu.
123The direct and retrograde Hill orbits which constitutes its boundary, are periodic solutions of the first sort

which respectively continue the circular, direct and regrograde, Kepler orbit which still exist in the rotating frame.
124The point M1 will be called the consequent of M0. The justification of this denomination is that, if one considers

the set of curves satisfying the differential equations (1); if, through the point M0, passes a curve and if we extend
this curve until it meets again the half-plane (y = 0, x > 0), this new encounter will take place in M1.
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In other words, stroboscopy in an energy manifold has turned the continuous dynam-
ical system defined by the equations of motion into a discrete dynamical system, i.e.,
the continuous time into a discrete time. Doing so, one looses the time parametriza-
tion of the solutions but not their asymptotic behaviour: periodic solutions become
periodic orbits of the return map, quasi-periodic solutions dense in invariant tori
become quasi-periodic orbits dense in invariant curves, . . . Finally, the question of
stability can be wholly understood on the return map.

Remark. Topologically, it is nicer to put the direct and retrograde Hill orbits on
equal footing, and work in the Birkhoff annulus of section depicted on Figure 15. It
is obtained from Poincaré half-plane by blowing up the fixed point corresponding to
the direct Hill orbit and adding the missing point on the retrograde Hill orbit. It is
embedded in S3, which is a two-fold cover of the regularized energy manifold; it cuts
transversely every solution, except the Hill orbits which are its boundary. Actually,
the flow lines defined in a regularized energy surface by the (non-rotating) Kepler
Hamiltonian FKep = − K

L2 coincide with the fibers of a Hopf fibration: S3 → S2,
where the basis is the space of oriented ellipses (possibly degenerate) with a fixed
value of the semi-major axis. Blowing up two fibers (here the Hill orbits) is the
simplest ersatz of a global section for this non-trivial fiber bundle. For more details,
see [Co, C5]

10

Figure 15: Birkhoff’s annulus of section.

10 Resonances 2) Homoclinic and heteroclinic tangles

10.1 Divergence of the Bohlin series and exponentially small splitting

Let us stick to the Restricted Problem. The periodic solutions of the second sort
result from the breaking of invariant tori of the unperturbed system F0 filled with
periodic solutions. In the surface of section, they correspond to periodic orbits bi-
furcating from invariant curves of the unperturbed return map filled with periodic
orbits; they are in general born in pairs elliptic-hyperbolic when the parameter µ
takes a non-zero value. At first order, the formal Bohlin series describe separatrices
of the hyperbolic ones forming penduli and it was precisely the error of Poincaré
to have considered these penduli as real (i.e., the Bohlin series to be convergent)
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and hence separating in the three-dimensional energy hypersurface. In the corrected
version of the Memoir and in the second and third volume of the New Methods,
Poincaré studies the actual phenomenon: if the stable and unstable invariant mani-
folds coincide formally (i.e., at any order of the theory of perturbations), as shown
by the existence of formal Bohlin series in the separatrix case, they do not actually
coincide in general.

In chapter XXI (volume II), Poincaré shows by a direct computation the divergence
of the Bohlin series in the case of a periodically forced pendulum. The equation is
turned into a two degrees of freedom Hamiltonian by introducing the symplectic
pair of energy-time (E, τ) coordinates:

F(x,E, y, τ) = E + F (x, y, τ), F (x, y, τ) = x2 − 2µ sin2 y

2
− µεϕ(y) cos τ.

The same trick of decoupling the pendulum term and the perturbation term by the
introduction of a second parameter will be used by Arnold in his famous example
of diffusion [A4] to overcome the so-called “big gap” problem. For ε = 0, the 2π-
periodic solution x = E = 0, y = 0, τ = t has asymptotic solutions of the form

E = 0, x = ±
√

2µ sin
y

2
, tan

y

4
= Ce±t

√
2µ.

Seeking solutions S(y, τ) = S0 + εS1 + ε2S2 + · · · of the Hamilton-Jacobi equation

F (
∂S

∂y
, y, τ) = C = εC1 + ε2C2 + · · · ,

we find
S0 = ∓2

√
2µ cos

y

2
,

while S1 must satisfies the equation

∂S1

∂τ
+
∂F0

∂x

(
∂S0

∂y

)
∂S1

∂y
− µϕ(y) cos τ = C1,

that is
∂S1

∂τ
+ (2

√
2µ sin

y

2
)
∂S1

∂y
− µϕ(y) cos τ = C1,

which is easily integrated by variation of the constants. Writing S1 as the real part of
a complex function and choosing complex paths to compute the relevant integrals,
Poincaré finds two solutions S1(y, τ) and S ′1(y, τ) with the property that S1 vanishes
for y = 2π and S ′1 vanishes for y = 0. Moreover, he evaluates the difference S ′1 − S1

by a simple residue computation; in the case where ϕ(y) = sin y, the computation
is explicit; it shows that

S ′1 − S1 = O

(
1
√
µ
e
− π

4
√

2µ

)
,

while exponentially small with respect to µ, is different from 0, which shows the
divergence of the Bohlin series obtained by expanding S in powers of

√
µ. For an

interpretation in terms of the so-called Poincaré-Melnikov integral whose non van-
ishing is equivalent to the non vanishing of S ′1 − S1, see for example the chapter 7
of [AKN].
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At the very end of the second volume of The New Methods, making the link with
his study of the asymptotic solutions in chapter VII (see section 6.1), Poincaré gives
a more geometric interpretation of this exponentially small difference in terms of
the stable and unstable manifolds of the family of unstable (hyperbolic) periodic
solutions which are the continuation of the one for ε = 0. These invariant manifolds
do not coincide but they share a common formal asymptotic expansion in powers of√
µ and this expansion is precisely the Bohlin series. For a thorough study of this

example in the light of Ecalle’s theory of resurgent functions, see [Sau]; for a more
general survey, see [Ra2].

10.2 “. . . cette figure, que je ne cherche même pas à tracer”

Poincaré’s mistake in the first version of the Memoir (see [BG, Y]) was asserting
that the Bohlin series did converge and hence that these asymptotic curves formed
penduli and hence true barriers to the dynamics:

Donc les surfaces asymptotiques sont des surfaces fermées. Mais au début
de ce travail, nous avons montré que pour établir la stabilité, il suffit de
démontrer l’existence de surfaces trajectoires fermées.125

Figure 16: The error in the first version of the Memoir.

The discovery by Poincaré of the geometrical complexity caused by the non-conver-
gence of the Bohlin series shapes our present understanding of the qualitative be-
haviour of solutions of a differential equation. In the following description, I combine
chapters XXVII and XXXIII. Here are the main steps:

1) Showing that the preservation of the symplectic form implies the preservation
by the return map of a measure with a smooth density with respect to Lebesgue

125Hence the asymptotic surfaces are closed surfaces. But at the beginning of this work, we have shown that in
order to establish the stability, it is enough to prove the existence of closed surface-trajectories.
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and finite total mass.126 This is done by using explicit formulæ in the coordinates
described in Figure 13.

2) Proving that the asymptotic curves which are the intersection with the surface
of section of the stable and unstable manifolds of the newborn periodic solutions
must intersect (in Figure 17: A0A5 and B0B5 must intersect); the argument is a
beautiful combination of invariance of the measure, topology of the plane and clever
use of the fact that the asymptotic curves are exponentially close with respect to
the parameter in a certain region, more precisely, that the segments A0B0 and A5B5

in Figure 17 are exponentially small.

Figure 17: The intersection property (this situation cannot occur).

The upshot is that the asymptotic curves must intersect and at the intersection
points, they make exponentially small angles. It seems at first sight that piecing
together segments of asymptotic curves, one defines closed curves which could form
barriers implying stability of the dynamics as penduli would have done (see Figure
16) but it is not so. Such curves are not invariant and if iterated, they become an
incredibly complicated tangle which is not an hermetic barrier but which nevertheless
slows down the dynamics: one can get through but only very slowly, hence there is
a priori no stability but the instability needs a very long time to be detectable.

126Of course, Poincaré does not use these words because Measure theory does not exist yet.
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Understanding the extreme complexity of the intersections of these two asymptotic
manifolds which must fold and stretch more and more when approaching the periodic
point, Poincaré writes (one shoud rather say “exclaims”):

Que l’on cherche à se représenter la figure formée par ces deux courbes et
leurs intersections en nombre infini dont chacune correspond à une solution
doublement asymptotique, ces intersections forment une sorte de treillis,
de tissu, de réseau à mailles infiniment serrées ; chacune des deux courbes
ne doit jamais se recouper elle-même, mais elle doit se replier sur elle-même
d’une manière très complexe pour venir recouper une infinité de fois toutes
les mailles du réseau.

On sera frappé de la complexité de cette figure, que je ne cherche même
pas à tracer. Rien n’est plus propre à nous donner un idée de la compli-
cation du problème des trois corps et en général de tous les problèmes de
Dynamique où il n’y a pas d’intégrale uniforme et où les série de Bohlin
sont divergentes.127 (chapitre XXXIII, section 397).

Figure 18: A tangle computed by Carles Simó.

127Let us try to represent the figure formed by these two curves and their intersections in infinite number, each
corresponding to a doubly asymptotic solution, these intersections form a kind of mesh, of fabric, of infinitely tight
network; each of the two curves must never intersect itself, but it must fold back on itself in a very complex way in
order to cross an infinite number of times all the meshes of the network.

One will be struck by the complexity of this figure, which I do not even try to draw. Nothing is more likely to
give us an idea of the complexity of the Three-Body Problem and in general of all the problems of dynamics where
there is no uniform integral and where the Bohlin series are divergent.



108 A. Chenciner Séminaire Poincaré

At the origin of that what some have called (in my opinion, quite inappropriately)
“chaos theory”, the complexity of the lattice of homoclinic or heteroclinic intersec-
tions of stable and unstable manifolds was partly analysed by Smale (see [Sm1, Sm2,
C0]), thanks to the methods of symbolic dynamics developed by Hadamard, G.D.
Birkhoff, M. Morse, G. Hedlund, . . . But, even if the computers give a refined picture
(as in Figure 18), understanding all the detals remains difficult.

Now comes a question: what is the relation between the divergence of Lindstedt
series and the one of Bohlin series? Does the abundance of Fourier coefficients of
high order imply both divergences, which would make the link, emphasized by Ramis
in [Ra1], between divergence, non-integrability and ambiguity stronger? The proof
of non-integrability given in volume I and the proof of the divergence of Lindstedt
series which is a consequence, are based on the breaking of periodic tori which
gives rise to hyperbolic (i.e., with non-zero exponents) periodic orbits. The splitting
of separatrices, linked to the divergence of the Bohlin series, plays no role in this
proof. Would it be possible that in a system similar to the Three-Body system
but more degenerate, the analogue of the Lindstedt series would diverge while the
analogue of the Bohlin series would converge? Looking at the complex singularities
of the equations of separatrices this looks unlikely but how to prove it? A way
to reformulate the question is asking whether Poincaré could have deduced the
divergence of the Bohlin series from the divergence of the Lindstedt series.

Finally, the error of the first version of the Memoir was extraordinarily fruitful.
Phragmen’s questions led Poincaré to discover one of the prominent features not
only of the non-integrable Hamiltonian systems, but also more generally of many
dissipative generic systems. In his study of the way Poincaré was dealing with diver-
gent series, J.P. Ramis [Ra1], besides explaining how much of the present studies on
resummation of divergent series was foreseen by Poincaré, rightly insists on the fact
that the discovery of the homoclinic tangle due to the splitting of the separatrices
turns the divergence of the series into a positive phenomenon generating a whole
geometry. For a first approach, in the non conservative case, of such structures, in
particular Smale’s horseshoe128 and its connexion with the game of heads and tails,
that is in mathematical terms with the Bernouilli shift and symbolic dynamics, I
refer to [C0]. For an example of analysis of symbolic dynamics type in a Three-Body
Problem (namely the Sitnikov problem) see the beautiful book by Jurgen Moser
[M5]. For a survey of some symbolic dynamics analysis of complicated motions in
the planar Three-Body Problem associated with homoclinic and heteroclinic phe-
nomena near triple collision, see the not less beautiful paper by Rick Moeckel [Moe].
Finally, it may seem appropriate to conclude this part with a sentence by René
Thom in [Th] page 132:

Ce qui limite le vrai, ce n’est pas le faux, c’est l’insignifiant.129

128The horseshoe was not discovered at first in the homoclinic tangle. Smale explains that he discovered this
paradigmatic model while trying to understand geometrically a paper by Cartwright and Littlewood which showed
that a dynamical system could have persistently an infinite number of periodic orbits. This refuted the conjecture
he had made that generically a dynamical system would have only a finite number of such orbits. Note that if true,
this would have been a complete contrast with the conservative case and the dream of Poincaré that maybe periodic
orbits could be generically dense in the phase space.
129That which limits the true is not the false, it is the insignificant.
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11 Quasi-periodic solutions 2) Analytic aspects: K.A.M. stability

11.1 New methods, chapter XIII, section 149

It is in the famous section 149 of chapter XIII that Poincaré addresses the issue of
convergence, distinguishing the series “with variable frequencies”from the ones with
“fixed frequencies”. For the first ones, the divergence originates from the “generic”
behaviour of the periodic solutions (a priori, but not a posteriori, independently of
the non-integrability), About the second ones, he writes:

Il nous reste à traiter la deuxième question ; on peut encore, en effet, se
demander si ces séries ne pourraient pas converger pour les petites valeurs
de µ, quand on attribue aux x0

i certaines valeurs convenablement choisies
· · · Supposons, pour simplifier, qu’il y ait deux degrés de liberté ; les séries
ne pourraient-elles pas, par exemple, converger quand x0

1 et x0
2 ont été

choisis de telle sorte que le rapport n1

n2
soit incommensurable, et que son

carré soit au contraire commensurable (ou quand le rapport n1

n2
est assujetti

à une autre condition analogue à celle que je viens d’énoncer un peu au
hasard) ?

Les raisonnements de ce Chapitre ne me permettent pas d’affirmer que
ce fait ne se présentera pas. Tout ce qu’il m’est permis de dire, c’est qu’il
est fort invraisemblable.130

The existence of solutions of equations (1) which are quasi-periodic with frequencies
satisfying Diophantine conditions was announced131 for the first time by A. N. Kol-
mogorov in 1954 [K] in the non-degenerate case where the unperturbed Hamil-
tonian depends effectively on all the actions. Kolmogorov’s proof was written by
V. I. Arnold [A3] and extended by him to degenerate cases of the type of the planar
Three-Body Problem [A1]; a different proof, suitable to the differentiable (i.e., non
analytic) case was given by J. Moser [M2], hence the acronym “K.A.M. theory” (see
[AKN]); Finally, the convergence of Lindstedt series with Diophantine fixed frequen-
cies,132 which follows if one knows the analytic dependence of these solutions with
respect to the parameter µ, was proved by Moser in [M2]. The invariant tori have a
Whitney C∞ dependence on the frequencies [Laz, Pos]; asked by Kolmogorov, their
monogenic dependence on a complex domain containing the Diophantine frequencies
has been proved in the particular case of the Standard map (see [CMS]).

Kolmogorov’s theorem or Moser’s invariant curve theorem apply directly to the
Planar Circular Restricted Three-Body Problem to prove the existence of a Cantor
set of 2-dimensional invariant Lagrangian tori in each 3-dimensional fixed energy
submanifold or equivalently a Cantor set of invariant curves of the Poincaré return
map in a surface of section as defined in section 9.3. For the (non restricted) Three-
Body Problem, the degeneracy of the Kepler Problem seriously complicates the
situation.
130It remains to deal with the second question; we can still, in fact, ask whether the series can not converge for

small values of µ, when the x0
i are given certain suitably chosen values . . . · · · Suppose, for simplicity, that there are

two degrees of freedom; could, for example, the series converge when x0
1 and x0

2 have been chosen so that the ratio
n1
n2

is non commensurable, and its square is on the contrary commensurable (or when the ratio n1
n2

is subject to a

condition similar to the one I have just stated somewhat at random? The arguments of this chapter do not allow
me to affirm that such a case will not arise. All I can say is that it is highly unlikely.
131and, according to Sinai, fully proved in his seminar.
132Recall (see 5.6) that such a convergence is possible only in the non-degenerate case.
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11.2 Arnold’s theorem for the planar problem

Arnold’s extension [A1] in 1963 of Kolmogorov’s theorem was a major breakthrough133

in the Three-Body Problem, even if applying only to microscopic values of the plan-
etary masses: for the first time, one had a rigourous proof of the existence in the
phase space of the planar Three-Body Problem of a set of positive measure of quasi-
periodic motions similar to the ones existing in the completely integrable secular
system near its singularity, namely, motions of the planets along almost circular and
almost coplanar ellipses slowly precessing along the centuries and whose semi-major
axes, eccentricities and inclinations remain close to their initial values.

The strategy is close to Poincaré’s strategy for constructing Lindstedt series: using
the fact that far from mean motion resonances, the averaged system provides a
good approximation to the actual system, Arnold reasons as follows: consider the
completely integrable system obtained by averaging the fast angles and truncating
at fourth order the Birkhoff normal form134 of the secular part at the singularity
corresponding to circular and horizontal motions. The Hamiltonian, defined on a
subset of R2 × T2 × C2 (coordinates Λ̃, λ̃, ũ = (ũ1, ũ2)), is of the form

H = H0(Λ̃) + µH1(Λ̃, ũ),

H1 =
∑

1≤j≤2

Aj(Λ̃)|ũj|2 +
2∑

j,k=1

Bjk(Λ̃)|ũj|2|ũk|2.

The fast actions Λ̃ and the slow ones |ũj|2 are first integrals of this system and fixing
them defines 4-dimensional Lagrangian invariant tori in the 8-dimensional phase
space. Recall (see 5.6) that the restriction of the flow of the averaged system to the
subset defined by the condition that Λ̃ avoids a neighborhood of the secular set S,
can be embedded in the phase space of the planetary problem so as to approximate
the actual flow. Provided the frequencies of the invariant tori of this integrable
approximation depend in a sufficiently non-degenerate way on the actions, that is if

det
∂2H0

∂Λ̃2
(Λ̃) 6= 0 and detBjk 6= 0,

(one then says that there is torsion) one can apply refined KAM techniques to prove
the persistence – if µ, that is the planetary masses, is small enough and we stay
close enough135 to the secular singularity i.e., if the eccentricities and inclinations
are small enough – of “sufficiently non resonant” invariant tori of the averaged
system. The first determinant is easily seen to be different from zero. For the second
one, Arnold checks this in the limit of a vanishing ratio of the semi-major axes
and argues that analyticity grants the non vanishing of the determinant except for
isolated values of this ratio. In this way, he proves the existence of quasi-periodic
solutions with 4 frequencies: the two mean motions which are of order O(1) and the
secular frequencies of the two perihelia which are of order O(µ).

133It was also a remarkable introduction to the theory of perturbations using “the frightening formal apparatus of
dynamics” and even containing some exercises.
134which exists provided one avoids a finite number of secular resonances; Arnold used the Birkhoff normal form

up to order 6 but this is not necessary (see [CP]).
135but not too close, unless we center the Poincaré coordinates on a periodic solution of the first sort as explained

in 5.6.
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11.3 Dealing with the spatial problem

We have seen in section 5.7 that two resonances do complicate the spatial Three-
Body Problem which fortunately disappear both after complete reduction of the
rotational symmetry. Arnold, well aware of the first one, A4 = 0, proposed indeed
to perform Jacobi’s reduction (called elimination of the node because it amounts
to eliminating the vertical variables) but he did not check himself accurately the
presence of torsion. This was done for the first time in 1995 by Philippe Robutel
[Rob], using the dedicated computer algebra system TRIP developed by Jacques
Laskar [LasRob] to compute the torsion, and also showing theoretically that it is
not zero in the limit of an infinitesimal ratio of the semi-major axes.

For an arbitrary number of planets in R3, two strategies were used in order to
rigorously prove Arnold’s claim in spite of the resonances (see [Chi, Fe2, Fe3] for
surveys):

1) Herman and Féjoz’s proof, which Herman explained in detail in his seminar
during the late nineties. Due to his untimely death he could not write it fully and
the proof was completed and written by Jacques Féjoz [Fe4]. The main novelty was
to use only the quadratic part of the secular system (i.e., the linearized system) joint
with a trick, due to Poincaré and amounting to a reduction, which was to add to the
Hamiltonian a small perturbation commuting with it, for example a perturbation
proportional to a component of the angular momentum, in order to ensure with
a minimum of computations a weak form of non degeneracy136. The existence of
invariant tori followed from a beautiful normal form theorem,137 subsuming the
degenerate and non degenerate cases as well as the case of invariant tori of non
maximal dimension. Finally, an argument of Lagrangian intersection ensured that
ergodic138 invariant KAM tori of the modified Hamiltonian were still invariant by
the original one (but not necessarily ergodic any more: one could just assert that
they were ergodic after full reduction).

2) Chierchia and Pinzari’s proof [CP] which is in a sense closer to Arnold’s
one. Using a modification of Delaunay coordinates due to Deprit, they notice, fol-
lowing [MRL], that both resonances do not imped the construction of a Birkhoff
normal form after the partial reduction consisting in the fixation of the direction
of the angular momentum, that is restricting the (1 + n)-body Hamiltonian to an
invariant symplectic submanifold of codimension 2 (and hence dimension 6n − 2)
of the phase space. Restricting to such a submanifold is the natural way to reduce
the non commutative symmetry group SO(3) to one of its maximal tori SO(2), and
hence coming back in some sense to the situation of the planar problem. And indeed,
the authors show the existence of torsion in the Birkhoff normal form after such a
partial reduction. The Arnold KAM mechanism (more accurately a refined version)
then gives ergodic invariant KAM tori of dimension 3n− 1.

To summarize, for the spatial Three-Body Problem, one has the existence of
5-dimensional ergodic KAM tori. The five frequencies are easily identified, coming

136namely, the non planarity of the frequency map, a condition introduced by Arnold and studied by Pyartli, which
is sufficient to ensure that the set of actions whose frequency is Diophantine has a positive Lebsegue measure. In
agreement with Arnold’s law that, in general, a theorem or a notion is not due to the person whose name it bears,
this condition is usually called the Rüsmann condition.
137which was in fact already present in Moser’s 1967 paper [M2] in the more general setting of non necessarily

conservative systems.
138More precisely ”bearing linear flows with dense orbits”.
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from the mean motions, the precessions of both perihelia and the precession of the
common node in the Laplace plane (see 2.3).
Applying the rotation group, that is rotating the direction of the angular momentum,
one finds invariant submanifolds of the full phase space which are diffeomorphic to
the product S2 × T5 of a sphere by a torus, foliated by the 5-dimensional invariant
tori: in other words, the non-commutative part of the symmetry group acts in a
trivial way at the dynamical level. This is not the case of the commutative part: if
one reduces completely the rotational symmetry (i.e., if one goes to the quotient
by the remaining SO(2)-symmetry), one shall find ergodic invariant KAM tori of
dimension 4 in the reduced phase space (as in Herman-Féjoz’s proof). When lifted
to one of the partially reduced submanifolds, one finds again 5-dimensional tori but
such tori may be either ergodic or present a resonance between the reduced flow and
the rotation.139

12 Stroboscopy 2) What we understand of the dynamics of the return map

12.1 Bifurcations: subharmonics

All of Poincaré’s studies of periodic solutions show a remarkable insight which prefig-
ure the theory of singularities and the studies of bifurcations. He proceeds in general
from the “general case” to more and more degenerate ones140 and he does not hesi-
tate mixing quantitative and qualitative tools. For example, in order to be sure that
the solutions exist he uses the fact that a zero of the derivative at a maximum point
of a holomorphic function is necessarily of odd order, relying for that on a theorem
proved at the beginning of his thesis which is exactly the Weirerstrass preparation
theorem.141 He then can apply the result of an earlier paragraph asserting that a zero
of odd order cannot disappear under small perturbation. Here is a typical sentence,
in section 37:

Une solution périodique ne peut donc disparâıtre qu’après s’être confondue
avec une autre solution périodique.
En d’autres termes, les solutions périodiques disparaissent par couples à
la façon des racines réelles des équations algébriques.142

The solutions of the second kind (second genre, which are born from those of the first
kind (themselves divided into the three sorts studied in 4.2), are called today sub-
harmonics. Their study is the object of chapters XXVIII, XXX and XXXI. Poincaré
describes them as follows in the analysis of his works:

Nous avons encore les solutions périodiques du deuxième genre ; si l’on fait
varier de manière continue un des paramètres dont dépend le problème, par
exemple l’une des masses, on voit une solution périodique du premier genre
se déformer d’une façon continue, sa période restant égale à T . A un certain

139In the same way, ergodic KAM tori of dimension 3 in the reduced phase space of the planar Three-Body Problem
(the three frequencies being the two mean motions and the frequency of the difference of perihelia) give rise in the
non reduced phase space to 4-dimensional invariant tori which could be resonant.
140The thesis of Anne Robadey [Ro] contains a beautiful study of the notion of “general case” in Poincaré’s works

on dynamical systems.
141Weierstrass has written that he had taught this theorem repeatedly in his courses since 1860 but he published

it in 1886. Poincaré defended his thesis in 1879.
142Therefore, a periodic solution can disappear only after merging with another periodic solution. In other terms,

the periodic solutions disappear by couples as do the real roots of algebraic equations.
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moment, cette solution se dédouble pour ainsi dire, ou plutôt se détriple, je
veux dire qu’à un certain moment on a trois solutions périodiques très peu
différentes ; l’une d’elles a encore pour période T , les deux autres ont pour
période un multiple de T . Ce sont les solutions périodiques du deuxième
genre (Analyse des travaux).143

In the case of a two degrees of freedom system, taking a surface of section transverse
to the periodic solution of period T under study reduces the problem to the existence
of periodic points of an area preserving map in the neighborhood of an elliptic
fixed point. In Chapter XXX, the study of these solutions is clearly presented as
a companion to the study of asymptotic solutions, in today’s vocabulary, it is the
study of the dynamics attached to an elliptic periodic solution while the asymptotic
solutions were attached to a hyperbolic one (see Figure 19, in a surface of section):

Figure 19: 3T -subharmonics around a periodic solution of the second sort.

Dans l’étude des solutions asymptotiques, nous avons supposé que les αk
étaient réels et nous avons annulé une des constantes A sur deux.
Pour appliquer ce même résultat à l’étude des solutions périodiques du
second genre, nous supposerons au contraire que les exposants αk sont
purement imaginaires.144

Introducing a parameter µ which controls the exponents of the periodic solution (in
the surface of section, a fixed point wich one can suppose to be always at the origin),
he shows that kT -subharmonics can bifurcate from the T -periodic solution, only in
case one exponent of this solution is a multiple of 2iπ

kT
(This happens for µ = µ0 in

Figure 20, drawn in the product of the surface of section and the parameter line).

Figure 20: The birth of a pair of subharmonics of period 3T .

Moreover, he proves that
143We have still the periodic solutions of the second kind; if we vary continuously one of the parameters of which

depends the problem, for example one of the masses, we see a periodic solution of the first kind deform in a continuous
way, the period remaining equal to T . At some point, this solution splits into two, or rather three solutions, I mean
that at some point we have three periodic solutions which differ only slightly; one of them still has period T , the
period of the other two is a multiple of T . Those are the periodic solutions of the second kind (Analysis of the
works).
144In the study of asymptotic solutions, we have supposed that the αk were real and we have set half of the

constants A equal to zero. In order to apply this result to the study of the second kind periodic solutions, we shall
suppose on the contrary that the exponents αk are purely imaginary.



114 A. Chenciner Séminaire Poincaré

il disparâıt toujours autant de solutions stables que de solutions insta-
bles.145

and, on the other hand, that

Donc si, pour une certaine valeur de µ, une solution périodique perd la
stabilité ou l’acquiert (et cela de telle façon que l’exposant α soit nul) c’est
qu’elle se sera confondue avec une autre solution périodique, avec laquelle
elle aura échangé sa stabilité.146

The very existence of the subharmonic solutions is reduced to the existence of crit-
ical points of a generating function: as the flow is symplectic, if we fix T and call
respectively (ξi, ηi) and (Xi, Yi) the values at t=0 and t = T of

(
xi(t), yi(t)

)
,

dS =
∑

((Xi − ξi)d(Yi + ηi)− (Yi − ηi)d(Xi + ξi)

is an exact differential. Indeed, being somewhat anachronic, we write

d2S = 2(dXi ∧ dYi − dξi ∧ dηi) = 0.

One concludes if S may be considered as a function of the Xi + ξi and Yi + ηi. After
a chapter (XXIX, see 13.1) dedicated to the principle of least action (see section
13), Poincaré comes back to the subharmonics :

Je ne puis passer sous silence les rapports entre la théorie des solutions du
deuxième genre et le principe de moindre action ; et c’est même à cause
de ces rapports que j’ai écrit le chapitre XXIX147 (see 13.1).

He analyses the way the subharmonics wrap around the T -periodic solution and
identifies subharmonics with extrema of the action. The rotation number is not far.

But let us come back to the (Planar Circular Restricted) Three-Body Problem and
more precisely to section 381 where Poincaré analyses a paper published in 1897
by George Darwin148 in the Acta Mathematica which follows numerically a family
of periodic solutions of a Restricted Problem (the Sun, an enormous Jupiter and
a small body): as he had done with the continuation of Hill’s orbit (see 4.2), but
arguing on the necessity of an exchange of stabilities, and pushing at the limit the
examination of the different possibilities, he concludes

Donc, je conclus que les satellites A instables ne sont pas la continuation
analytique des satellites A stables. Mais alors que sont devenus les satellites
A stables ?

Sur ce point, je ne puis faire que des hypothèses et, pour pouvoir faire
autre chose, il faudrait reprendre les quadratures mécaniques de M. Dar-
win. Mais si l’on examine l’allure des courbes, il semble qu’à un certain
moment l’orbite du satellite A a dû passer par Jupiter et qu’ensuite il est
devenu ce que M. Darwin appelle un satellite oscillant.149

This is of course a global problem for which there is a lack of tools, but not com-
pletely, as the next section shows.
145It always disappears as many stable solutions than unstable solutions.
146Therefore, if for some value of µ, a periodic solution looses or acquires stability (and this in such a way that

the exponent α be equal to zero) it is because it will have merged with another periodic solution with which it will
have exchanged stability.
147I cannot omit to mention the relations between the theory of second kind solutions and the principle of least

action; it is even because of these relations that I wrote chapter XXIX.
148A well-known astronomer, the son of sir Charles Darwin.
149Hence I conclude that the unstable satellites A are not the continuation of stable satellites A. But then what
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12.2 The last geometric theorem and twist diffeomorphisms of the annulus

J’ai démontré il y a longtemps déjà, l’existence des solutions périodiques
du problème des trois corps ; le résultat laissait cependant encore à désirer ;
car si l’existence de chaque sorte de solution était établie pour les petites
valeurs des masses, on ne voyait pas ce qui devait arriver pour des valeurs
plus grandes, quelles étaient celles de ces solutions qui subsistaient et dans
quel ordre elles disparaissaient.150

Poincaré published in 1912, the year of his death, an incomplete proof of what is
called today the Poincaré-Birkhoff fixed point theorem [P15]. In a both lucid and
moving introduction, he explains that he struggled during two years but could not
reach a complete proof. Nevertheless, having proved the theorem in all the special
cases he had examined and due to its paramount importance, he decided to submit
the problem to geometers.

In 1905, he had already addressed more globally the question of periodic solutions
on a problem similar to the Restricted Three-Body Problem but “stripped from
the secondary difficulties”, namely the geodesics on a convex surface [P14, Ro].
Comparing this question with the one completely understood by J. Hadamard [Ha]
in the case of negative curvature,151 he writes:

J’ai donc abordé l’étude des lignes géodésiques des surfaces convexes ; mal-
heureusement, le problème est beaucoup plus difficile que celui qui a été
résolu par M. Hadamard. J’ai donc dû me borner à quelques résultats par-
tiels, relatifs surtout aux géodésiques fermées, qui jouent ici le rôle des
solutions périodiques du problème des trois corps.152

The fixed point theorem will be proved by Birkhoff during the year following Poinca-
ré’s death [Bi1] (for a radically different proof, see [BH]); it asserts the existence of at
least two fixed points of an area preserving twist diffeomorphism153 of the annulus
S1 × [0, 1]. The application to the Restricted Three-Body Problem with a large
Jacobi constant, comes from the fact that, the return map in the Birkhoff annulus
of section154 is a monotone twist map,155 which allows application of the theorem to
its iterates in order to get periodic orbits. But in fact, the full force of the theorem is
not needed in this case or in the companion case of an area preserving diffeomorphism
of the plane in the neighborhood of a generic elliptic fixed point. The main features
which are understood are represented on Figure 21 (see [Ze, C9, Le]):

happened with the stable satellites A? About this, I can only make hypotheses and, in order to get something else
one shoud continue the mechanical quadratures of M. Darwin. But, if one examines the shape of the curves, it seems
that at some moment the orbit of the satellite must have passed near Jupiter and that after that he became what
M. Darwin calls an oscillating satellite.
150I showed long ago, the existence of periodic solutions of the Three-Body Problem; nevertheless, the result was

still unsatisfactory; for, if the existence of each type of solution was established for small values of the masses, one
did not see what would happen for larger values, which ones of these solutions remained and in what order they
disappeared.
151in which case, the periodic geodesics are indeed dense in the phase space and moreover a full description of the

flow with symbolic dynamics is available.
152So, I approached the study of geodesic lines of convex surfaces; unfortunately the problem is much more difficult

than the one solved by M. Hadamard. Hence I had to content myself with some partial results, mainly concerning
closed geodesics, which play here the role of periodic solutions of the Three-Body Problem.
153i.e., a diffeomorphism of S1 × [0, 1] which admits a lift to a diffeomorphism of R× [0, 1] which is increasing on

one boundary and decreasing on the other.
154See Figure 15 and [Co].
155i.e., there exists an identification of the annulus of section to S1 × [0, 1] such that the image by the return map

of any “vertical” segment θ0 × [0, 1] is a graph over a part of the circle (see[C9, Le]).
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Figure 21: The Planar Circular Restricted Three-Body Problem in the case of a
high Jacobi constant (Birkhoff global annulus of section).

1) The KAM invariant curves156 on which the return map is analytically con-
jugate to a rotation of angle 2απ with α an irrational satisfying a Diophantine
condition. They imply STABILITY! Generically, the union of these invariant curves
is a set whose transversal struture is Cantor-like. The annuli in between two invari-
ant curves (and not containing in their interior any invariant curve homotopic to the
boundary) are called Birkhoff zones of instability. The dynamics in such a zone is
quite complicated and certainly not completely understood. The main features are

2) “well-ordered” periodic orbits,157 obtained by minimization of a generating
function; the homoclinic and heteroclinic tangles associated with the invariant man-
ifolds of the hyperbolic periodic orbits (see [Ze]);

3) the Aubry-Mather invariant Cantor sets and the invariant manifolds attached
to them, part of which make the weak KAM solutions. These sets, whose existence
was initially obtained by S. Aubry and J. Mather, in each case by minimizing the
action functional, were shown by A. Katok to be limits of periodic orbits, thanks to
the Birkhoff a priori Lipschitz estimates resulting from the monotone twist condition;

156which, in the case of a return map, are the trace of the KAM tori on a surface of section.
157i.e., circularly ordered as a periodic rotation; thanks to the monotone twist condition, one gets periodic orbits

much better controlled than the ones given by the Poincaré-Birkhoff fixed point theorem applied to iterates of the
return map.
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4) diffusing orbits found by Birkhoff and refined by Mather using a variational
apporach, which go from one component of the boundary to the other one and may
be imposed to pass through the Aubry-Mather sets in a prescribed way;158

5) and the same phenomena repeated around the subharmonics, etc etc. But
we still do not know whether periodic points are dense or if hyperbolic behaviour
(that is non-zero Lyapunov exponents) exist on a set of positive Lebesgue measure.

The Poincaré-Birkhoff fixed point theorem, which makes more global part of the
above results, has played a very important role in the development of symplectic
topology, in particular through the proofs of various instances of the Arnold conjec-
ture relating the number of fixed points of Hamiltonian diffeomorphisms of compact
manifolds and Morse theory. The breakthrough was the paper [CZ] by Charles Con-
ley and Eddy Zehnder, followed by a reduction to the finite dimension of their proof
by Marc Chaperon [Chap], well in the spirit of Poincaré’s use of generating func-
tions. Describing this would lead us too far astray, hence I refer to [Au2] for this
part of the story and the references.

12.3 Computer experiments and the geometrization of phase space

In the twentieth century, an extensive search for families of periodic solutions in the
Restricted Three-Body Problem was accomplished, first by mechanical quadratures
at the Copenhagen Observatory (Stromgren), later using computers by Hénon at
the Nice Observatory, Broucke, and others. The books by Szebehely [Sz], Hénon
[He], Bruno [Br] describe the Planar Circular Restricted Three-Body Problem both
theoretically and numerically.

Particularly interesting for mission design are the Halo orbits in the spatial Re-
stricted Problem, which bifurcate from a planar Lyapunov family originating from
a collinear relative equilibrium. Other much studied special cases are the collinear
problem with the remarkable periodic (regularized) solution discovered by Schubart
(see an animation in [C4]) and the isosceles problem, where one body moves on a line,
while the two others, with the same mass, move symmetrically on the orthogonal
line (resp. plane in the spatial case).

Today, the power of computers allows us to get a pretty good understanding of au-
tonomous 2 degrees of freedom systems like the Restricted Problem or its simplified
version called the Hill problem. For example, an extensive study of the phase space
of the related Hill’s problem was completed by Simó and Stuchi [ST]; computer
assisted proofs of the existence of KAM tori (and hence of stability) for realistic
(Sun-Jupiter-Ceres or Sun-Jupiter-Victoria), but truncated to a trigonometric poly-
nomial, Restricted Three-Body Problems, were given by Alessandra Celletti and
Luigi Chierchia in [CC1, CC2].

Finally, results of C. Simó and his colloborators show the important role played by
invariant manifolds or, more generally, of center manifolds of (families of) periodic
solutions, in determining the domains of practical stability of celestial bodies. See
for instance [Si, SST]. In some sense, this shows that Poincaré was not completely
wrong when trying to prove stability from the behavior of these invariant manifolds.

158The variational techniques having led to these results are currently used in order to prove the generic existence
of diffusion in 2.5 or 3 degrees of freedom Hamiltonian systems.
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13 A great principle of physics and some collisions

In The value of Science [P13], Poincaré puts the Principle of least action on the
same footing as the great conservation principles (energy, mass, action-reaction),
the principle of degradation of energy and the relativity principle. Due to its global
character it may appear at first sight closer to theology than to physics and indeed,
in chapter VIII of Science and Hypothesis Poincaré wonders:

L’énoncé même du principe de moindre action a quelque chose de choquant
pour l’esprit. Pour se rendre d’un point à un autre, une molécule matérielle
soustraite à l’action de toute force mais assujettie à se mouvoir sur une
surface, prendra la ligne géodésique, c’est-à-dire le chemin le plus court.

Cette molécule semble connâıtre le point où on veut la mener, prévoir le
temps qu’elle mettra à l’atteindre en suivant tel et tel chemin, et choisir en-
suite le chemin le plus convenable. L’énoncé nous la présente pour ainsi dire
comme un être animé et libre. Il est clair qu’il vaudrait mieux le remplacer
par un énoncé moins choquant, et où, comme diraient les philosophes, les
causes finales ne sembleraient pas se substituer aux causes efficientes.159

In [Fey] (volume I, Chap. 26, par. 5: A more precise statement of Fermat’s principle),
Richard Feynman asks the same question, but with this time the answer given by
quantum electrodynamics, that is by the principle of stationary phase:

Instead of saying it is a causal thing, that when we do one thing, something
else happens, and so on, it says this: we set up the situation, and light
decides which is the shortest time, or the extreme one, and chooses that
path. But what does it do, how does it find out? Does it smell the nearby
paths, and check them against each other? The answer is, yes, it does in
a way.

13.1 Least action and instability

Chapter XXIX of The New Methods opens with a crash course in elementary Calculus
of variations applied to the action integrals

∫ ∑
i pidqi (the Maupertuisian action)

when fixing the energy and
∫

(
∑

i pidqi −Hdt) (the Hamiltonian action) when fixing

the time interval.160 Of course, in the case of the Three-Body Problem,
∑
pi
dqi
dt
−H is

simply the Lagrangian in the disguise provided by the Legendre transformation and
I suppose that, if there is a single notion which need not be explained to physicists,
it must be the Lagrangian action

∫
Ldt.

Then, developing the note [P10] which was based on a simple geometric reason-
ing, he proves that a periodic solution which locally minimizes the action must be
dynamically unstable:

159The very statement of the principle of least action has something shocking to the mind. To go from one point
to another one, a material molecule, taken away from the action of any force, but constrained to move on a surface,
will follow the geodesic line, i.e., the shortest path. It seems that this molecule knows the point where one wants it
to go, that it anticipates the time needed to reach it along such or such path, and then chooses the most convenient
path. In a sense, the statement presents this molecule as a free animated being. It is clear that it would be better
to replace it by a less shocking statement where, as philosophers would say, the final causes would not appear to
replace the efficient ones.
160See Remark 1 at the end of section 8.1.
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En résumé, pour qu’une courbe fermée corresponde à une action moindre
que toutes les courbes fermées infiniment voisines, il faut et il suffit que
cette courbe fermée corresponde à une solution périodique instable de la
première catégorie.161

In particular, a “generic” closed geodesic on a surface locally minimizes the length
among nearby closed loops if and only if it is hyperbolic (and hence unstable), i.e.,
if its non-trivial exponents are real. For example, on a torus of revolution around
the z axis, the intersections of the torus with the horizontal plane of symmetry are
respectively unstable for the short one, along which the curvature is negative, and
stable for the long one, along which the curvature is positive: along the first one
there are no conjugate points while they exist on the second one.

Such assertions hold only for mechanical systems with two degrees of freedom. In-
deed, examples studied by Marie-Claude Arnaud in [Ar] show that in higher dimen-
sions, a locally action minimizing periodic solution may possess only two directions
of instability transverse to the flow in its energy level.

13.2 Minimizing the action: the note of 1896

In 1896, Poincaré publishes the short note [P5], titled On the periodic solutions and
the least action principle. The note of 1897 which was quoted in section 13.1 will
have almost the same title, but this one is much more ambitious, even if not directly
applicable to the Newtonian force. Indeed, in the analysis of his works, Poincaré
writes:

Je suis revenu sur ces solutions périodiques et je les ai étudiées en détail.
Les procédés dont je me suis servi pour démontrer leur existence sont très
simples et se ramènent au calcul des limites.

Mais on peut arriver à cette démonstration par une voie toute différente,
qu’il pourra être souvent utile d’adopter, mais dont je n’ai pas encore
tiré tout le parti possible. Supposons par exemple que l’on recherche les
géodésiques d’une surface indéfinie présentant la même forme générale
qu’un hyperbolöıde à une nappe. On sera certain alors qu’il doit y avoir
une géodésique fermée (correspondant à une solution périodique) parce
que, parmi toutes les courbes fermées que l’on peut tracer sur la surface
et qui en font le tour, il doit y en avoir une qui est plus courte que toutes
les autres.

Les mêmes principes sont susceptibles d’être appliqués à divers pro-
blèmes de Mécanique, grâce au principe de moindre action que l’on peut
employer soit sous la forme que lui a donnée Hamilton, soit sous celle que
lui a donnée Maupertuis. Je n’ai fait qu’esquisser cette méthode dont il y
a sans doute encore beaucoup à tirer.162

161In short, for a closed curve to correspond to a lesser action than all closed curves which are infinitely close, it
is necessary and sufficient that the closed curve corresponds to an unstable periodic solution of the first category.
162I came back to these periodic solutions and I studied them in detail. The methods I used to prove their existence

are very simple and can be reduced to the calculus of limits. But one can arrive to this proof by a completely different
path, which it will often be useful to follow, but which I did not fully exploit. Suppose, for instance, that one is
looking for the geodesics of an indefinite surface whose general shape is the one of a one-sheeted hyperboloid. One
can be sure that there exists a closed geodesic (corresponding to a periodic solution) because, among all the closed
curves going around the surface which one can draw, one must be shorter than the others. Thanks to the Principle
of Least Action, used in the form given by Hamilton or in the form given by Maupertuis, the same principles can
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Referring to [C2] for more details and references, I quickly describe what Poincaré
does: he is looking for relative periodic solutions of the planar Three-Body Problem,
i.e., solutions which after the period T are such that the triangle formed by the
three bodies is the same up to a rigid rotation around the center of mass (which one
can suppose to be fixed). Given a relative loop of configurations of the three bodies
in the plane (i.e., a family parametrized by the interval [0, T ] of triangles changing
their shape and position but keeping their center of mass fixed and coming back to
the same triangle up to a rotation θ mod 2π), he calls respectively θ, θ + 2kπ, θ +
2lπ, k, l ∈ Z the total (i.e., not mod 2π) angles described by the three sides of the
triangle during one period. Then, looking for the simplestpossible solutions in this

class, he minimizes the Lagrangian action
∫ T

0

[
1
2

∑
imi

∣∣|d~ri
dt

∣∣ |2 +
∑

i<j
mimj
||~ri−~rj ||

]
dt of

the Three-Body Problem in the subspace of those relative loops for which the integers
k and l are fixed. In fact this was fixing the homology class of the loop of relative
configurations. It is interesting to recall that the year before, Poincaré had defined
the fundamental group. Choosing k and l different from zero implies coercivity i.e.,
forbids a minimizer to be “at infinity”. Actually, it is only around 1930 that the
existence of an absolutely continuous minimizer was proved by Tonelli provided
coercivity holds, its regularity following from Weierstrass theory; but Poincaré does
not even mention the question. He does not mention either the major problem, the
possibility for a minimizer of having collisions and hence not being a true solution: it
is an important result of Sundman around 1913 that, in a motion of n point masses
under Newtonian attraction, if two or more bodies collide at a certain instant t0, their
mutual distances and mutual velocities satisfy the same estimates as do colliding
bodies in the Two-Body Problem

||~ri − ~rj|| = O(|t− t0|
2
3 ) and ||d~ri

dt
− d~rj

dt
|| = O(|t− t0|−

1
3 ).

This relative weakness of the Newtonian attraction implies that the action stays
finite even if a collision occurs and leaves the possibility that minimizers have col-
lisions. Well aware of the problem, Poincaré avoids it by supposing from the start
a strong force attraction, that is a force function U which is a sum of terms of the
form kmm′

rn
, with n at least equal to 2. He may then argue later on:

Je dis maintenant que, si a et c se rencontrent, l’action est infinie.
En effet, l’action sera du même ordre de grandeur que

∫
2Udt, ou que∫

2
√
Udr, ou que 2kmm′

∫
dr

r
n
2

, c’est-à-dire infinie si n ≥ 2. Or, on a n = 2

si, comme nous le supposons, l’attraction s’exerce en raison inverse du
cube des distances.163

This is cheating of course (and also forgetting the possibility of triple collisions), but
at the same time very typical of Poincaré’s bold exploration of a new domain: going
further at a quick pace, while being well aware of the questions to which he should
come back . . . if time permits.

be applied to various problems of Mechanics. I have only sketched this method from which there is still probably
much to get.
163I say now that , if a and c meet, the action is infinite. Indeed, the action will be of the same order of magnitude

as
R

2Udt, or as
R

2
√
Udr, or as 2kmm′ R dr

r
n
2

, that is infinite if n ≥ 2. But, one has n = 2 if, as we suppose, the

attraction is proportional to the inverse cube of the distances.
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As we know, there was no time for Poincaré to come back to this question and this
note was forgotten during a century. For instance, it is not mentioned by William

B. Gordon who, in 1977, shows that minimizers of the action
∫ T

0

(
1
2
||d~r
dt
||2 + k

||~r||

)
dt

of the Kepler Problem in the plane (Newtonian attraction by a fixed center at the
origin of R2) among loops of index k around the origin, are the Kepler ellipses of
period T if k = ±1 while if |k| ≥ 2, they lie on the boundary of the chosen set
of loops, being the ejection-collision solutions of period T , whose action is strictly
smaller than the one of the elliptic solutions of period T/k described k times!

Indeed, constraining the homology of the loop of configurations (be it relative or
absolute) most of the time leads to minimizers with collisions (there are exceptions
found by A. Venturelli, K.C. Chen,. . .). But, if one replaces the homology constraint
by a symmetry constraint, the method becomes remarkably efficient, leading in
particular to new classes of periodic or quasi-periodic solutions, the choreographies
and the Hip-Hops (see the references in [C2, Mont1, Mont2],). The important fact
behind this success is Marchal’s theorem [Ma2, C8, C5] which asserts that, for the
N -body problem in the plane or in space, minimizers of the action in given time
between two fixed configurations have no collision.

13.3 Solutions of the second species

In spite of the fact that, in Poincaré’s sketch of the existence of these solutions, there
is no appeal to the principle of least action, a recent proof by Bolotin and Negrini
[BN] is based on it, hence the choice to put this section at the end of the one on the
principle of least action. Being interested mainly in planetary systems of the type
of the solar system, Poincaré was not much concerned with collisions.164 In the note
[P5] that was discussed in the previous section, he even surreptitiously changed the
law of attraction in order to avoid them. In The New Methods, there is only one
chapter, which indeed displays a quite remarkable intuition, where he copes with
solutions approaching collisions, in fact only two-body collisions. The idea is simple
and beautiful: in the limit of zero masses, the planets follow Keplerian orbits till
they have a close encounter (i.e., in the limit, a collision) and then shift to another
pair of Keplerian ellipses:

A full symbolic dynamics of such almost collision orbits has been constructed by
Bolotin: it implies the existence of solutions with an erratic diffusion of the angular
momentum and a much slower one of the Jacobi constant. Existence in the full Three-
Body Problem is proved in [BN] where one can find references to the previous works
in the Restricted (Circular or Elliptic) Problem.

If one replaces almost double collision by almost triple collision, the situation be-
comes tremendously richer. The way to analyse it is to compactify by adding the
so-called McGehee collision manifold (see [McG, C7]). A description of some of the
complexity it implies in the phase portrait of the planar Three-Body Problem can
be found in the beautiful survey paper by Rick Moeckel [Moe].

164Nevertheless, as we saw in section8.1, he understood the scaling invariance of the equations, fundamental in the
studies of collisions.
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14 Resonances 3) diffusion

14.1 Arnold diffusion

Kolmogorov’s result implies a very strong stability result in the (planar circular) Re-
stricted Problem. Indeed invariant curves are barriers, playing the role that Poincaré
had wanted to assign to the separatrices of the hyperbolic periodic orbits in the first
version of his Memoir of 1889. Indeed, as noticed by Arnold in the russian version of
Poincaré’s works, in the case of 2 degrees of freedom, the existence of KAM invariant
tori implies the existence of non trivial C∞ integrals.

As is well-known today, the situation is much more complex in the non restricted case
where, the number of degrees of freedom being strictly greater than 2, Lagrangian
invariant tori do not separate an energy manifold. This leaves room for a very slow
diffusion of the trajectories not belonging to the invariant tori: remaining a long
time around the KAM tori which are quite sticky, they could a priori escape very
far. The first (highly non generic) example of this phenomenon was given by Arnold
in 1964 [A4].
Lower bounds on diffusion time for close to integrable Hamiltonian systems were first
given by Nekhoroshev [Ne]. An example of application to the Three-Body Problem
is [Nie]. Proving that this phenomenon occurs in a specific (and not ad hoc) problem
or even generically is very hard; recent examples for the Three-Body Problem are
[GK] and [FGKR] for the Planar Elliptic Restricted Three-Body Problem. For the
long-term evolution of the full solar system, see [Las1].

14.2 The oldest open question in dynamical systems

In the 1998 International congress of mathematicians, which took place in Berlin,
Michael Herman [Her] ended his beautiful survey of open problems with the following
question:

For the n-body problem in space, we will suppose n ≥ 3.
• The center of mass is fixed at 0.
• On the energy surface we C∞-reparametrize the flow by a C∞ func-

tion ϕe (after reduction of the center of mass) such that the flow is com-
plete: we replace H by ϕe(H − e) = He so that the new flow takes an
infinite time to go to collisions (ϕe is a C∞ function outside collisions).
Following G.D. Birkhoff [Bi] (who only considers the case n = 3 and the
angular momentum 6= 0) (see also A.N.Kolmogorov [K]), we ask:
Question. Is for every e the non-wandering set165 of the Hamiltonian
flow of He on H−1

e (0) nowhere dense in H−1
e (0)?

In particular, this would imply that the bounded orbits are nowhere dense
and no topological stability occurs.
It follows from the identity of Jacobi-Lagrange that when e ≥ 0, every
point such that its orbit is defined for all times, is wandering.
The only thing known is that, even when e < 0, wandering sets do exist
(Birkhoff and Chazy, see Alexeyev [Ale]).

165A point is wandering if some neighborhood of it, when propagated by the flow of the differential equation, never
comes back to intersect itself
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The fact that the bounded orbits have positive Lebesgue-measure when
the masses belong to a non empty open set, is a remarkable result an-
nounced by V.I. Arnold [A1] (Arnold gives only a proof for [the] planar
3-body problem and if the author is not mistaken, Arnold’s claim is cor-
rect).

In some respect Arnold’s claim proves that Lagrange and Laplace, against
Newton, are correct in the sense of measure theory and that, in the sense
of topology, the above question, in some respect, could show Newton to
be correct.166

In order to know the answer of astronomers to this question, the best is to read
the report by Jacques Laskar in this seminar [Las1]. Indeed, as he told me in front
of a chinese tea, for realistic masses of the planets, instability seems likely, even in
the sense of measure!

One may contrast this with the words of Poincaré at the beginning of [P8].

Les personnes qui s’intéressent aux progrès de la mécanique céleste,
mais qui ne peuvent les suivre que de loin, doivent éprouver quelque
étonnement en voyant combien de fois on a démontré la stabilité du système
solaire.

Lagrange l’a établie d’abord, Poisson l’a démontrée de nouveau, d’autres
démonstrations sont venues depuis, d’autres viendront encore. Les démons-
trations anciennes étaient-elles insuffisantes, ou sont-ce les nouvelles qui
sont superflues ?

L’étonnement de ces personnes redoublerait sans doute, si on leur disait
qu’un jour peut-être un mathématicien fera voir, par un raisonnement
rigoureux, que le système planétaire est instable.

Cela pourra arriver cependant ; il n’y aura là rien de contradictoire, et
cependant les démonstrations anciennes conserveront leur valeur.167

In fact, in his conclusion, greatly overestimating the importance of dissipative for-
ces,168 in particular of the tides, he concludes that their action makes illusory, at the
astronomical level, any further progress in the mathematical analysis of the abstract
problem of stability.

166It is in the Opticks [N] that Newton says that God must from time to time set the solar system back into order:

For while Comets move in very excentrick Orbs in all manner of Positions, blind Fate could never
make all the Planets move one and the same way in Orbs concentrick, some inconsidereable Irregularities
excepted, which may have risen from the mutual Actions of Comets and Planets upon one another, and
which will be apt to increase, till this System wants a Reformation.

while, as we saw in 3.3, Lagrange and Laplace show stability at first order by studying the secular system linearized
at circular and coplanar motions.
167The persons interested in the advances of celestial mechanics but who can only follow them from far, must

be somewhat astonished when seeing how many times the stability of the Solar System was proved. Lagrange first
proved it, then Poisson, other proofs followed, other are still to come. Were the ancient proofs no sufficient, or is it
that the new ones are superfluous? The astonishment of these persons would certainly increase, if they were told
that it may happen that some day a mathematician will show, by a rigourous reasoning, that the planetary system
is unstable. Nevertheless, this might well happen; and yet there will be no contradiction, and the ancient proofs will
keep their value.
168Indeed, according to [Las2], in the solar system (but not in some extrasolar systems) the conservative diffusion

of trajectories greatly dominates the dissipative forces.
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15 Surprises of a eulogy

On December 15th 1913, Gaston Darboux pronounces at the Paris Academy of
Science the eulogy of Henri Poincaré [D]. I do not resist the pleasure of reproducing
the beginning of his section VII:

Poincaré ne pouvait pas ne pas avoir conscience de la haute valeur de
ses écrits ; d’autres auraient réclamé des récompenses, lui ne demandait
rien. Nous le regardions tous comme le plus fort d’entre nous. Il n’a jamais
cherché à nous devancer. Nul ne pouvait prévoir les vides nombreux que
la mort allait faire dans la section de Géométrie. Pour le faire arriver
plus vite, pour lui ménager une place dans la section d’Astronomie, on
lui signalait les applications que les théories par lui découvertes pouvaient
avoir en Mécanique céleste. Il suivait docilement ces indications, s’occupait
du problème des trois corps, des figures des corps célestes, et trouvait tout
naturel de laisser passer devant lui tous les anciens.169

16 A seminar

From 1988 to 1990, Jacques Laskar and the author held in the Bureau des Longitudes
(of which Poincaré had been a member since 1893 and three times president, a three-
year-long seminar dedicated to reading the three volumes of The New Methods of
Celestial Mechanics. Being attended by astronomers and mathematicians, the semi-
nar was at the origin of the creation of ASD (Astronomie et Systèmes Dynamiques),
a group in which we try to perpetuate the collaboration between astronomers and
mathematicians. We knew that Poincaré’s researches on differential equations, and
in particular on the Three-Body Problem, had created whole chapters of today’s
mathematics: dynamical systems, differential forms, ergodic theory, topology, . . .,
but we have discovered in the course of these three years the visionary precision
with which these three volumes exposed ideas which we had thought recent. The
items [S1, S2, S3] were published at that time.

17 Thanks

to Alain Albouy, Jacques Féjoz, Jacques Laskar, Philippe Robutel, and all mem-
bers of the group ASD (Astronomy and Dynamical Systems) for years of illuminat-
ing discussions on these matters and others. Thanks to Daniel Bennequin, Alexey
Borisov, Thierry Combot, Sylvio Ferraz-Mello, Yanning Fu, Hugo Jiménez-Pérez,
Yvette Kosmann-Schwarzbach, Christian Marchal, Jessica Massetti, Rick Moeckel,
Carles Simó, Jacques-Arthur Weil, Lei Zhao, for precisions, documents, references,
corrections. Special thanks to Jacques Féjoz, Bertram E. Schwarzbach, Tadashi Tok-
ieda, Scott Walter, for everything which sounds like good English.

169Poincaré could not be unaware of the high value of his writings; others would have claimed awards, he asked
nothing. We all considered him as the strongest of us all. He never attempted overtaking us. No one could foresee
the many gaps that death woud cause in the Geometry section. In order to make him arrive faster, to secure for
him a seat in the Astronomy section, we pointed to him the applications that the theories he had discovered could
have in Celestial Mechanics. He was obediently following these indications, handling the Three-Body Problem, the
figures of celestial bodies, and finding it quite natural to let pass before him the elders.
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18 Regret

Celui de vivre à une époque où la belle langue de Poincaré est de moins en moins
audible, comme en témoigne l’écriture en anglais de ce texte, demandée par les
organisateurs du “séminaire Poincaré”, que je remercie néanmoins pour leur souhait
de rendre à Poincaré l’hommage des physiciens d’aujourd’hui (sorry, the tribute of
contemporary physicists).

19 Note on the references

While writing this text, I have made free use of parts of my former papers on
Poincaré’s works on the N -body Problem: [S1, S2, C1, C2, C3]. The last three are
available on my page of preprints:
http://www.imcce.fr/Equipes/ASD/person/chenciner/chenciner.html
Giving all the sources for the concepts involved was of course beyond the scope of this
paper, hence I have often given priority to easier-to-read expositions and in particular
to the ones I understand best, that is my own. Nice general descriptions respectively
of the Two-body and Three-Body Problem are [Alb2, Ma1], as well as the classical
reference [Wi] which has very interesting historical notices. Some of the figures are
taken from the slides of a lecture given on The New Methods at Paris Observatory
on July 9 of this year (hence the annotations in French). These slides are available at
http://www.imcce.fr/poincare2012/ or at my address above under the heading
“Quelques conférences”. Finally, for those who are able to read French, I remind you
that many of Poincaré’s papers and letters are available, with many other documents,
at the address http://www.univ-nancy2.fr/poincare/documents/bd1.html.
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batrice, note technique S026 du Bureau des Longitudes, 1989.
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service de la science” (Y. Kosmann-Schwarzbach ed.), éditions de l’École poly-
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[BG] J. Barrow-Green, Poincaré and the Three-Body Problem AMS, History of
Mathematics, vol. 11, (1997).

[Bi] G. D. Birkhoff, Dynamical Systems, Chapter IX, AMS, (1927).
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Franceschelli, M. Paty & T. Roque ed., Hermann (2007).

[C2] A. Chenciner, Une note de Poincaré, Proceedings Curs Poincaré Barcelona,
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[C9] A. Chenciner, La dynamique au voisinage d’un point fixe elliptique conservatif :
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[P15] H. Poincaré, Sur un théorème de géométrie, Rendiconti del Circolo matematico
di Palermo, t. 33, p. 375-407 (1912).

[PC] La Correspondance de Henri Poincaré, Vol. 3 : La Correspondance entre Henri
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