

[Public] [Public]

White Paper | SOFTWARE TECHNIQUES FOR
MANAGING SPECULATION ON
AMD PROCESSORS

REVISION 5.09.23

2 REVISION 5.09.23 WHITE PAPER: SOFTWARE TECHNIQUES FOR MANAGING SPECULATION ON AMD PROCESSORS

[Public] [Public]

Date Revision Description

5/09/2023 5.09.23 Add paragraph on CMPS/SCAS

3/08/2022 3.8.22 Update V2-2 and G-5 Mitigation

9/17/202 9.17.20 Update G-5 Mitigation

2/19/2019 2.19.19 Add G-5 Mitigation

7/10/2018 7.10.18 Initial Document

3 REVISION 5.09.23 WHITE PAPER: SOFTWARE TECHNIQUES FOR MANAGING SPECULATION ON AMD PROCESSORS

[Public] [Public]

INTRODUCTION
Speculative execution is a basic principle of all modern processor designs and is critical to support high performance
hardware. Recently, researchers have discussed techniques to exploit the speculative behavior of x86 processors
and other processors to leak information to unauthorized code*. This paper describes software options to manage
speculative execution on AMD processors** to mitigate the risk of information leakage. Some of these options require
a microcode patch that exposes new features to software.

The software exploits have recently developed a language around them to make them easier to reference so it is good
to review them before we start discussing the architecture and mitigation techniques.

VARIANT DESCRIPTIONS
A software technique that can be exploited is around software checking for memory references that are beyond
the software enforced privileged limit of access for the program (bounds checking). In a case where the maximum
allowed address offset for a data structure is in memory, it can take a large number of processor cycles for the
processor to obtain the maximum allowed address. This opens up the window of time where speculative execution
can occur while the processor is determining if the address is within the allowed range. If the out of range
address is not constrained in the speculative code path based on the way the code is written, the processor may
speculate and bring in cache lines that are currently allowed to be referenced based on the privilege of the current
mode but outside the boundary check. This is referred to as variant 1 (Google Project Zero and Spectre) and an
example of the code can be observed in mitigation V1-1.

This speculative behavior is not limited to loads and can occur with speculative store instructions that can
speculatively store information beyond the bounds check memory address. This data can then be speculated
on by subsequent load instructions that happen to match the out of bounds address. This store variant adds the
possibility of injecting attacker-controlled data into the speculative control flow leading to a potential increased
exposure to speculative gadgets. For all flavors of variant 1, the AMD mitigation recommendation is software
only solutions which need to be evaluated in a wide range of software including kernel software, JITs, browsers,
and other user applications.

Another technique that can be exploited by software is indirect branches. Indirect branches are supported in x86
with the ability for software to branch to instruction targets that are loaded in a register, a value loaded directly
from memory, or a return instruction from a previous subroutine call. The branch prediction structures vary per
processor implementation and therefore the techniques allowing lesser privileged code to interfere with the
indirect branch predictor also vary. In an architecture where the processor can predict an incorrect target and it can
take a large number of cycles to determine the correct target, this opens up a window for a speculative execution
attack. This is referred to as variant 2 (Google Project Zero and Spectre) and an example can be seen in mitigation
V2-1. For variant 2, there are both software and software plus hardware mitigations.

A third technique is based on a software performance optimization. Software running in a lesser privilege mode
typically has page table mappings for more privileged code present in the page table context that is running. This
allows for high performance switching between the two modes and the software uses extra page table attributes
enforced by the hardware to restrict access to the privileged data when in lesser privileged modes. However, on
some processors it has been observed that if software accesses the more privileged data when the processor
is in a lesser privileged mode, the architectural fault may be delayed. This opens up a window for a speculative
execution attack where privileged data is then forwarded to subsequent instructions for speculative execution.
This is referred to as a variant 3 (Google Project Zero and Meltdown). No AMD processor has been designed with
this behavior and so we are not discussing mitigation steps in the rest of the document for this variant but we are
including it here for completeness. Software developers should use CPUID vendor ID checks to identify AMD
processors to avoid implementing variant 3 mitigations.

* See http://www.amd.com/en/corporate/speculative-execution for more information.
** In this document the term processor refers to x86 code executing on AMD CPUs and APUs.

http://www.amd.com/en/corporate/speculative-execution

4 REVISION 5.09.23 WHITE PAPER: SOFTWARE TECHNIQUES FOR MANAGING SPECULATION ON AMD PROCESSORS

[Public] [Public]

To mitigate the above described variants, there are a variety of possible techniques software can use. Because
unique tools may be preferred for different applications, this document discusses a number of potential
mitigations on AMD processors. Due to the variety of software architectures and requirements, there is no single
one-size-fits-all solution to mitigating this type of information leakage. Throughout this document, potential
mitigations are noted as follows with a V1 or V2 prefix to indicate which variant they are targeting or a G prefix
which means they are applicable for both:

Each mitigation technique will have different performance characteristics (including potential negative impacts to
the performance of the system), and software developers must evaluate which mitigation solution(s) are the best
fits for their specific needs. Please also note that while some mitigations presented here may work on non-AMD
processor architectures, AMD has only evaluated their behavior on AMD processors.

MITIGATIONS

Instructions that cause the machine to temporarily stop inserting new instructions into the machine for execution
and wait for execution of older instructions to finish are referred to as dispatch serializing instructions.

MITIGATION <#>
Description: <Description of mitigation>
Effect: <Effect on CPU hardware>
Applicability: <Notes on specific AMD processors which can/cannot use this mitigation>

MITIGATION G-1
Description: Clear out untrusted data from registers (e.g. write 0) when entering more privileged modes or
sensitive code.
Effect: By removing untrusted data from registers, the CPU will not be able to speculatively execute
operations using the values in those registers.
Applicability: All AMD processors

MITIGATION G-2
Description: Set an MSR in the processor so that LFENCE is a dispatch serializing instruction and then use
LFENCE in code streams to serialize dispatch (LFENCE is faster than RDTSCP which is also dispatch serializing).
This mode of LFENCE may be enabled by setting MSR C001_1029[1]=1.
Effect: Upon encountering an LFENCE when the MSR bit is set, dispatch will stop until
the LFENCE
instruction becomes the oldest instruction in the machine.
Applicability: All AMD family 10h/12h/14h/15h/16h/17h processors support this MSR. LFENCE support is
indicated by CPUID function1 EDX bit 26, SSE2. AMD family 0Fh/11h processors support LFENCE as serializing
always but do not support this MSR. AMD plans support for this MSR and access to this bit for all future
processors.

5 REVISION 5.09.23 WHITE PAPER: SOFTWARE TECHNIQUES FOR MANAGING SPECULATION ON AMD PROCESSORS

[Public] [Public]

6 REVISION 5.09.23 WHITE PAPER: SOFTWARE TECHNIQUES FOR MANAGING SPECULATION ON AMD PROCESSORS

[Public] [Public]

Some x86 string instructions (CMPS, SCAS) are implemented internally with a conditional branch, which may be subject
to mis-speculation. If the potential effect of this mis-speculation is undesirable, software should choose to implement
the required behavior without using the CMPS/SCAS instructions and apply one of the V1 mitigations described
above. For details on the CMPS and SCAS instructions, see APM Volume 3.

In the case of RET instructions, RIP values are predicted using a special hardware structure that tracks CALL and RET
instructions called the return stack buffer. Other indirect branches (JMP, CALL) are predicted using a branch target
buffer (BTB) structure. While the mechanism and structure of this buffer varies significantly across AMD processors,
branch predictions in these structures can be controlled with software changes to mitigate variant 2 attacks.

7 REVISION 5.09.23 WHITE PAPER: SOFTWARE TECHNIQUES FOR MANAGING SPECULATION ON AMD PROCESSORS

[Public] [Public]

8 REVISION 5.09.23 WHITE PAPER: SOFTWARE TECHNIQUES FOR MANAGING SPECULATION ON AMD PROCESSORS

[Public] [Public]

MITIGATION V2-3
Description: Execute a series of CALL instructions upon entering more privileged code to fill up the return
address predictor.
Effect: The processor will only predict RET targets to the RIP values in the return address predictor, thus
preventing attacker controlled RIP values from being predicted.
Applicability: All AMD processors. The size of the return address predictor varies by processor, all current AMD
processors have a return address predictor with 32 entries or less. Future processors that have more than 32 RSB
entries are planned to be architected to not require software intervention.

MITIGATION V2-4
Description: An architectural mechanism, Indirect Branch Control (IBC), is being added to the x86 ISA to help
software control branch prediction of jmp near indirect and call near indirect instructions. It consists of 3
features: Indirect Branch Prediction Barrier (IBPB), Indirect Branch Restricted Speculation (IBRS) and Single
Thread Indirect Branch Predictors (STIBP).
Effect: These features give software another mechanism through architectural MSRs to provide mitigation
for different variant 2 exploits.
IBPB – Places a barrier such that indirect branch predictions from earlier execution cannot influence execution
after the barrier.
IBRS – Restricts indirect branch speculation when set.
STIBP – Provides sibling thread protection on processors that require sibling indirect branch prediction
protection
Applicability: As a new feature, these mechanism are available in only a limited number of current AMD
processors and require a microcode patch. These 3 features are individually enumerated through CPUID and all
processors do not support all features. These features also require software updates to write the MSR where
appropriate.

After a RIP value is predicted, the new RIP value is sent through a TLB and table walker pipeline before instruction
bytes can be fetched and sent for execution.

The load-store unit is a key area for controlling speculation because information leakage comes from the residual
nature of cache lines after a speculative fill.

MITIGATION G-3
Description: Enable Supervisor Mode Execution Protection (SMEP).
Effect: The processor will never speculatively fetch instruction bytes in supervisor mode if the RIP address
points to a user page. This prevents the attacker from redirecting the kernel indirect branch to a target in
user code.
Applicability: All AMD processors that support SMEP (Family 17h, Family 15h model >60h)

[Public] [Public]

Some AMD processors when they first encounter a branch do not completely stall instruction dispatch. Therefore,
they will speculatively dispatch some sequential instructions after the branch. This happens for near return
instructions where it is not clear what code may exist sequentially after the return instruction. This behavior
also occurs with JMP/CALL instructions with indirect targets and relative direct offsets. Software should place a
LFENCE, INT3, or another dispatch serializing instruction after the return or jmp/call instruction to prevent this
sequential speculation.

CONCLUSION
There are a variety of techniques software can use for managing processor speculation, each with different
properties and trade-offs. Some techniques involve managing what addresses the processor can use for
speculative instruction fetch, stopping the dispatch or execution of speculative instructions, or managing what
data addresses the processor can calculate. In addition, newer and future AMD products support additional
security features (such as SMEP, SMAP, IBC) which are particularly useful in controlling speculation across kernel/
user privilege boundaries.

AMD is aligned with the x86 community that V1-1 (lfence) is the preferred variant 1 software solution and that
the V2-1 (retpoline) is the preferred variant 2 software solution. AMD continues to evaluate opportunities for new
mitigations in both the x86 ISA and micro-architecture for future AMD processors.

REFERENCES:
APM Volume 2: http://support.amd.com/TechDocs/24593.pdf
 Processor Programming Reference (PPR) for family 17h:
 https://developer.amd.com/wp-content/resources/55803_B0_PUB_0_91.pdf
APM Volume 3: https://www.amd.com/system/files/TechDocs/24594.pdf

REVISION 5.09.23

AMD.com/speculative-execution

DISCLAIMER: THE FOREGOING GUIDANCE IS PROVIDED "AS IS" WITHOUT ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND INCLUDING WARRANTIES OF
MERCHANTABILITY, NONINFRINGEMENT OF INTELLECTUAL PROPERTY, OR FITNESS FOR ANY PARTICULAR PURPOSE. AMD CONTINUES TO INVESTIGATE THESE AND OTHER
MITIGATION TECHNIQUES AND MAY MODIFY OR UPDATE THE INFORMATION IN THIS DOCUMENT WITHOUT NOTICE. AMD, AND THE AMD LOGO, ARE TRADEMARKS OF
AMD, INC. OR ITS SUBSIDIARIES IN THE U.S. AND OTHER COUNTRIES.
© 2023 Advanced Micro Devices, Inc. AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in
this publication are for identification purposes only and may be trademarks of their respective companies. September 2023. PID# 231954658-A

MITIGATION G-4
Description: Enable SMAP (Supervisor Mode Access Protection)
Effect: The processor will never initiate a fill if the translation has a SMAP violation (kernel accessing user
memory). This can prevent the kernel from bringing in user data cache lines. With SMEP and SMAP
enabled the attacker must find an indirect branch to attack in the area marked by SMAP that is allowed to
access user marked memory.
Applicability: All AMD processors which support SMAP (family 17h and greater).

MITIGATION G-5
Description: Place an INT3 (RET, JMP) or LFENCE (CALL) after a branch instruction (RET, JMP reg/mem/
offset, CALL reg/mem/offset) to help prevent possible sequential speculation.
Effect: The LFENCE or INT3 will help prevent the processor from dispatching the sequential instructions
after the branch.
Applicability: For RET instructions, this mitigation applies to all AMD processors. For JMP and CALL
instructions, this mitigation applies to all families with a family number lower than family 19h.

http://support.amd.com/TechDocs/24593.pdf
http://www.amd.com/system/files/TechDocs/24594.pdf

	Description
	Revision
	Date
	Add paragraph on CMPS/SCAS
	5.09.23
	5/09/2023
	Update V2-2 and G-5 Mitigation
	3.8.22
	3/08/2022
	Update G-5 Mitigation
	9.17.20
	9/17/202
	Add G-5 Mitigation
	2.19.19
	2/19/2019
	Initial Document
	7.10.18
	7/10/2018
	INTRODUCTION
	VARIANT DESCRIPTIONS
	MITIGATIONS
	CONCLUSION
	REFERENCES:
	AMD.com/speculative-execution

