
The Giles Production System Compiler

Rob King
KoreLogic Security, Inc.

Abstract

Production rule systems have found widespread use in
event correlation, automated planning, expert systems,
and other areas of artificial intelligence. This paper de-
scribes Giles, a compiler that is used to create produc-
tion rule systems. Its defining feature is that its com-
pilation target is not machine code, but instead a mod-
ern relational database management system (RDBMS).
While there has been much research into using produc-
tion rule systems internally to improve RDBMSs, and
in using RDBMSs as storage backends for production
rule systems, Giles has a different goal. The compiler
utilizes these systems’ ability to embed procedural logic
(“triggers”) to implement a production rule system en-
tirely within a normal database for these systems. In
other words, Giles can implement an entire production
rule system in an unmodified RDBMS, working with ex-
isting database constructs.

This approach conveys numerous benefits, such as
allowing the programmer to use existing ubiquitous
database access interfaces, to reduce runtime software
dependencies, and to give transactional and data relia-
bility guarantees to the production rule system. It also
creates production rule systems that are well suited for
working with large amounts of data over long periods of
time, and that are easily embedded inside other projects.

This paper discusses the usage of the Giles compiler
and the systems it creates, as well as the implementation
of the compiler. A strong focus is made on the techniques
used to ensure the resulting production rule systems are
efficient and work well with modern query optimizers.

1 Introduction

Giles1 is a compiler that creates production systems (or
“engines” in Giles parlance), with a special focus on
using these engines for event correlation, forensic be-
havior detection and log analysis, and expert systems.

Giles’s defining feature is that the output of the com-
piler is not a runnable production system, but rather a
schema for modern, unmodified, SQL-based2 relational
database management system (RDBMS). This schema
utilizes modern databases’ ability to embed reactive pro-
cedural logic (“triggers”) to implement the described
production system as a normal database. Databases cre-
ated using this schema are production systems, with no
additional software required at runtime.

This approach has immediate advantages. Perhaps
the most important is that programmers can use nor-
mal database access interfaces, which are ubiquitous;
this immediately makes Giles engines accessible to far
more programmers than those of traditional systems.
The engines are also able to take advantage of modern
databases’ data safety and reliability guarantees, as well
as their transactional semantics. This means that Giles
engines are capable of dealing with huge amounts of data
safely, even in the face of system crashes, and over long
periods of time. These benefits are important given the
expected use cases of Giles engines: pre-defined produc-
tion systems that are built into and provide intelligence
for larger, potentially long-running and unattended, sys-
tems.

Much research has been performed in modifying
databases to use production systems internally (i.e. in-
visibly to the user) for query optimization, view mate-
rialization, and other such topics; see for example [5].
Likewise, there has been considerable research in using
relational databases to store state for production systems
(e.g. [7]). The problem addressed by Giles is some-
what different: to implement an entire production system
solely in an unmodified RDBMS, meaning it must work
with the constructs available to a normal user of such a
system. Giles does not require the underlying RDBMS
to be modified, and does not require any external “driver”
or “logic” program. The schema output by the compiler
implements the entire production system, in any compat-
ible RDMBS.

This paper is divided into two parts. The first part de-
scribes the usage of the Giles compiler and of the engines
it creates. The second part describes the compiler’s out-
put in detail, with a special focus on the techniques used
to make the compiled engines work well with database
query optimizers.

1.1 Overview of Production Systems
Production systems (or production rule systems) are soft-
ware systems that consist of facts and rules (or produc-
tions, hence the name).

A fact is a single datum describing a discrete piece of
information in the problem domain of the system. Some
example facts might be:

• Suzanne is an astronaut.

• Train #447 arrived at platform 9 3
4 at 08:00.

• User ’jdoe’ logged in via terminal #16 at 12:33.

The set of all known facts is referred to as the working
memory of the system.

Facts are generally represented as structured pieces
of information consisting of some number of fields. In
Giles, every fact belongs to exactly one class, and classes
determine what fields that fact has. Fields are identified
by name.

Productions are simple “if-then” rules. The “if” part,
known as the predicate, describes a pattern of facts.
The predicate can specify an arbitrary number of pat-
tern clauses matching an arbitrary number of facts, and
the facts to be matched can be related to one another by
various relational operators. The “then” part, referred to
as the action, describes an action to take when a set of
facts in working memory matches the associated predi-
cate. Different systems define different possible actions,
but essentially all (Giles included) define at a minimum
assert (add a new fact to working memory) and retract
(remove an existing fact from working memory) as ac-
tions. When a production’s action is taken, the produc-
tion is said to have fired.

The general mechanism of operation then in a produc-
tion system is thus:

Step 1 Determine which productions have predicates
satisfied by some set of facts in working mem-
ory. Halt if no predicates are satisfied.

Step 2 Determine which of those productions should
fire.

Step 3 Perform the actions specified by those produc-
tions.

Step 4 Go to step 1.

This loop is referred to as the recognize-act cycle.
Step 2 in this cycle is referred to as conflict resolu-

tion. Different systems have different conflict resolution
algorithms, but Giles takes the simple approach of firing
all productions whose predicates are true. Adding differ-
ent, selectable conflict resolution algorithms to Giles is
an area of active research (see [6] for a survey of differ-
ent algorithms).

Given this, the goal of a production system is to ef-
ficiently find all matching predicates as facts are added
and removed from working memory. This is more diffi-
cult than it may sound, as productions may have compli-
cated predicates correlating multiple facts and the wrong
pattern matching algorithm can result in super-linear be-
havior.

Matching sets of facts to productions is an example
of the many-to-many matching problem. Various al-
gorithms have been created to solve this problem; the
canonical one is Rete ([4], though [3] may provide a
more accessible introduction). Giles uses a variant of the
Rete algorithm designed to be efficient when used with
modern database query optmizers; much of this paper is
dedicated to describing the implementation of this algo-
rithm.

2 The Compiler and Its Output

2.1 An example engine

Engine descriptions can be presented to Giles in a vari-
ety of formats. Currently, the best-supported format uses
YAML3 files to describe engines. Valid engines must
have at least one class of facts and one rule.

The engine presented in Listing 14 below is a sim-
ple engine that provides two fact classes, IsHuman and
IsMortal, and a single rule, AllHumansAreMortal.
This engine, when given a fact asserting someone is hu-
man, will also assert a new fact stating that that person is
mortal.

The two fact classes each have a single field of
type5 STRING named Person. The only rule’s predicate
matches a single fact of class IsHuman and extracts the
contents of the matched fact’s Person field into a local
variable. The rule’s action asserts a new fact of type
IsMortal, populating its Person field with the contents
of the local variable Person.

The predicate has no complex conditions, and there-
fore will match each IsHuman fact asserted in the system.
For each set of matching facts, a new “instance” of the
rule is created with its own set of local variables. Thus,
each IsHuman will create a new instance of the rule, and
each instance’s Person local variable will be populated
with that fact’s Person field.

2

This engine could be stored in a file called
mortal.yml and compiled with Giles using a command
line similar to the following:

giles -o mortal.sql mortal.yml

The output of this compilation step is a SQL database
schema, by default for the ubiquitous and excellent
SQLite6 system. The output schema can be read into
SQLite7 to create a database:

sqlite > .read mortal.sql

The database is now a functioning production system.
To test this, we can assert that Socrates is human:

sqlite > INSERT INTO
Giles_IsHuman_Facts(Person)
VALUES('Socrates ');

and then check to see if the engine has concluded that
he is also mortal:

sqlite > SELECT * FROM
Giles_IsMortal_Facts;

Person = Socrates
id = 1

This indeed shows that there is an IsMortal fact assert-
ing that a person named Socrates is mortal. The id field
is automatically present in all fact classes, and provides
a unique identifier for every fact.

As is hopefully obvious from the example above, in-
serting a row into a table is equivalent to asserting a fact;
deleting a row is likewise equivalent to retracting a fact.
Facts asserted directly by the user are referred to as ax-
ioms or axiomatic facts.

We can ask the system to justify how its knowledge
that Socrates is mortal:

sqlite > SELECT Justification
FROM Giles_IsMortal_Justification
WHERE id = 1;

Fact 'IsMortal #1' was produced
by rule 'AllHumansAreMortal ':
All humans are mortal.
Justification:

* The named person is human.
(IsHuman #1)

This justification can be applied recursively. We could
ask for the justification of IsHuman #1, and so on until
the ultimate source of a given fact is found (that is, the
axioms and rules used to derive that fact).

If we wish, we can retract the initial assertion that
Socrates is mortal:

sqlite > DELETE FROM
Giles_IsHuman_Facts
WHERE Person = 'Socrates ';

The retraction of this initial fact will automatically
cause the retraction of any dependent facts:

sqlite > SELECT COUNT (*)
FROM Giles_IsMortal_Facts;

COUNT (*) = 0

This retraction applies no matter how many degrees
of separation (i.e. causal chains of fired rules) intervene
between the retracted fact and the dependent fact.

It is a general guarantee of Giles engines that all facts
that can be derived from the known axioms are derived
(again, regardless of degree of separation), that no un-
provable facts are derived, and that this set of derived
facts is updated automatically as axioms are asserted and
retracted. Moreover, thanks to Giles’s use of the underly-
ing database engine’s transactional semantics, asserting
or retracting facts is guaranteed to either have all con-
sequences accounted for or to fail, even in light of sys-
tem crashes and power outages. This functionality makes
Giles particularly well-suited to simulation problems and
to experimentation, as users can add and remove axioms
without fear of lost data or unjustifiable facts.

Giles’s purpose in deriving all derivable facts is a re-
flection of its original purpose in building forensic and
behavior-detection event correlation engines. In forensic
situations, investigators generally want to know all pos-
sible causes of a given set of events — something that
could be both benign and malicious should certainly not
be ignored. This guarantee also serves diagnostic expert
systems well. For example, a patient may have a single
illness that causes all of his or her symptoms, or may
have a cluster of illnesses. Deriving all possible facts
would reveal all possible combinations of diagnoses that
could explain these symptoms.

The guarantee that all derivable facts are derived ex-
tends even to automatic retraction of facts. For example,
say rule R has as its action the retraction of fact F , and
rule R fires as a consequence of fact F ′. If fact F ′ is later
retracted (either manually or as the consequence of some
rule), rule R will “un-fire” and fact F will be restored.
This implies that Giles engines must store enough infor-
mation to re-assert facts that are retracted in response to
a rule’s firing. This is the case, although the compiler
generates code that stores the bare minimum amount of
information necessary.

Note that this reassertion guarantee does not apply
to facts that are deleted manually, that is, via a user-
provided DELETE statement. Giles guarantees that all
facts derivable from a set of axioms are in fact derived; a
manual deletion removes an axiom, and thus changes the
set of derivable facts.

3

Listing 1: An example engine

Facts:
IsHuman:

Person: STRING

IsMortal:
Person: STRING

Rules:
AllHumansAreMortal:

Description: All humans are mortal.

MatchAll:
- Fact: IsHuman

Meaning: The named person is human.
Assign:

Person: !expr This.Person

Assert:
IsMortal:

Person: !expr Locals.Person

2.2 A More Complex Example
The example engine in Listing 1 shows many of Giles’s
features, but fails to show some of Giles’s more advanced
features, like multi-fact predicates, multi-rule engines,
negative matches, YAML compact syntax, etc. This sec-
tion describes a more complex engine (in Listing 2) that
illustrates some of these features. For the sake of brevity,
we will not delve too deeply into this engine’s operation;
it is instead presented and briefly explained, leaving fur-
ther investigation to the reader.

This engine infers that a user’s password has been
compromised if the following are true:

• A time window W has been specified.

• User U logs in to terminal T .

• User U logs in to terminal T ′, where T 6= T ′.

• The login to T ′ is after the login to T , but within W
seconds.

Note that the facts matched by this rule (or any
rule) can be asserted in any order; Giles engines are
completely order-insensitive. This explains the explicit
LogTime field used in this example; this field is pre-
sumably populated by the user from the log entry and is
used to provide explicit temporal ordering of the asserted
facts. Thus the rule still works and orders the facts cor-
rectly, regardless of the order with which they were actu-
ally asserted. This is useful for situations where network

delays or long-running jobs can result in out-of-order de-
livery of information from various sensors.

This engine will produce one alert per suspect login-
pair per time window. That is, if the user logs into Ter-
minal T , then T ′ and then T ′′, there will be three alerts:
one for (T,T ′), one for (T,T ′′), and one for (T ′,T ′′). If
two time window facts were added in this example, there
would be six alerts, and so on.

As the result set is updated atomically and accurately,
users could experiment with different time windows —
adding and removing time windows will be reflected in
the result set correctly. This is a useful feature, as it al-
lows engines to be “tunable” and allows real-time exper-
imentation with these tunables to, for example, test dif-
ferent configurations or generate different reports.

2.3 Efficiency

Giles engines are designed to trade space for time. It is
difficult to provide a formal analysis of the time com-
plexity of an engine, as it depends entirely on the rule set
and the facts asserted. However, in the general case for a
well-written engine, experimentation has shown that the
time needed to assert or retract n facts is on the order of
O(n) in the common case. This is opposed to a more
naive matching algorithm, where the time needed would
be a function of the total number of facts in the system.

This temporal efficiency comes at the cost of increased
storage space. The exact storage requirements are diffi-
cult to estimate, again because the space needed depends

4

Listing 2: A more complex example

Facts:
Alert:

Message: STRING

TimeWindow:
WindowLength: INTEGER

UserLogin:
Username: STRING
Terminal: STRING
LogTime: INTEGER

Rules:
UserLoggedInToTwoTerminalsWithinWindow:

MatchAll:
- Fact: TimeWindow

Meaning: A time window has been specified.
Assign:

WindowLength: !expr This.WindowLength

- Fact: UserLogin
Meaning: A user logged in to one terminal.
Assign:

Username: !expr This.Username
Terminal: !expr This.Terminal
LogTime: !expr This.LogTime

- Fact: UserLogin
Meaning: That user logged into another terminal within a time window.
When: !expr This.Username == Locals.Username AND

This.Terminal != Locals.Terminal AND
This.LogTime >= Locals.LogTime AND
This.LogTime <= Locals.LogTime + Locals.WindowLength

Assert:
Alert:

Message: !expr ("User " . Locals.Username . " logged in twice !")

5

on the rule set and the set of asserted facts. Giles pro-
duces some code to reduce its space usage, and real-
world testing has shown that well-written rule sets can
reduce space usage by an order of magnitude or more for
some problem sets.

The matching algorithm and the space- and time-
saving optimizations are discussed in detail in the second
part of this paper.

2.4 Recursion
Rules can, as actions, assert new facts or retract existing
ones to and from working memory. As working mem-
ory is changed, new predicates may be matched and new
new rules fired, which will again change working mem-
ory, and so on. If a rule set contains assert-match cycles,
these changes could continue indefinitely.

The Giles input language therefore supports an addi-
tional primitive action: assert-distinct. This action as-
serts a new fact if and only if an identical fact does not
already exist. This mechanism can be used to break out
of a recursive loop.

Note that engines using recursion still respect the Giles
guarantee that all derivable facts are always derived. If
a fact produced by a distinct assertion is retracted by the
action of some rule (either directly or indirectly), the en-
gine will check to see if any rule would have produced
an identical fact but for the now-retracted fact. If so, that
rule is retroactively fired and the identical fact is asserted.
Any fact that can be asserted by any number of distinct
assertions is only completely retracted if no rule could
possibly produce it given the current set of axioms.

2.5 Limitations
One notable limitation faced by Giles is a byproduct of
its use of an existing RDBMS: new rules cannot be added
at runtime because, in general, RDMBS’s do not allow
trigger programs to modify the database schema. This
limits the kinds of problems for which Giles can be used;
machine learning applications are particularly impacted.
However, this is not seen as a major limitation because it
is beyond the principle use case envisioned for Giles.

Another notable limitation is a consequence of Giles’s
mandate on maintaining consistency at all costs: engine
databases grow without bound. There is no mechanism
by which a fact can be really and truly deleted without
external action; even rules with a retraction action still
must store some bookkeeping data in case the rule is ever
“un-fired”. Likewise, facts are always kept, in case they
are needed by some future instance of a rule. This limi-
tation is likewise not seen as much of a problem, as one
of the primary use cases of Giles is to perform long-term
log analysis and behavior detection where the behavior

may take a long time (perhaps several months or years)
and be made up of many smaller facts.

In practice, long-running engines often have external
scripts that delete facts older than some age, which keeps
database size limited at the cost of potentially missing
some inferences. It should also be noted that Giles en-
gines do discard facts that can be cheaply proven to never
match any rule in the engine (see Section 3.2).

2.6 Other Features
Giles has numerous other interesting features that could
not be included in this paper for lack of space; they are
mentioned only briefly here:

Foreign Function Interface Giles engines can declare
external linkage to single-valued functions present
in the host database (e.g., the standard SQL length
function). These functions can then be used in ex-
pressions in the language with full type checking.

Disjoint Negative Predicates In addition to the con-
junctive MatchAll clause (which can contain any
number of patterns), predicates can also contain
disjunctive MatchNone clauses, which will cause
a predicate to fail if any of the contained patterns
match.

Regular Expression Support If the target database
system supports it, expressions can use full regular
expressions to perform string matching.

Tunable Parameters Parameters are user-definable
special classes of facts that can have constraints on
their values, and can be guaranteed to be single-
valued or multi-valued and indexable via a string
key. They are useful to present a “tuning” interface
to a given engine (for example, an adjustable
time window or severity threshold). Parameters
are normal facts under the hood, and changing a
parameter’s value results in the appropriate changes
to the set of derived facts.

Offline Upgrades While it is not possible to add new
rules to an existing system, Giles supports offline
upgrades in which a given system’s axioms can be
loaded into a new system with a potentially different
rule set.

3 The Implementation

3.1 Rete in SQL
Giles is a compiler, but there is nothing particularly in-
teresting about its implementation. The novel features

6

of Giles are all in the code it generates, or, more accu-
rately, in the database schemas it generates. Therefore,
this part of the paper discusses the schemas constructed
by the compiler.

The basic design of a Giles engine is an implementa-
tion of the Rete algorithm in SQL. The Rete algorithm
provides its optimizations by trading space for time us-
ing extensive memoization of partial match results in a
discrimination network. Facts are inserted and retracted
from the “top” of the network, and actions sit at the “bot-
tom”. The network consists of action nodes, α- and β -
memory nodes, and join nodes.

An action node is a node activated when some rule’s
predicate matches; the node is responsible for perform-
ing whatever the rule’s action is.

Each α-memory node consists of all of the facts of
a given class. The α-memories consist of sets of facts
matching some (possibly composite) constant predicate.
In Giles there is only one predicate: “class”. Each α-
memory stores all of the facts of a given class. All of the
α-memories taken together form the working memory of
the system.

Each β -memory node consists of sets of facts that
match some conjunction of tests in a rule. Each β -
memory adds one more test, such that the final β -
memory stores those sets of facts that match a rule’s en-
tire predicate. In Giles, β -memories also store the con-
tents of local variables for a given instance of a rule;
each β -memory holds the local variables that have been
assigned by the current and previous match statements.
These nodes memoize the results of each sub-predicate,
allowing checks against smaller and smaller sets of facts
to find matches to subsequent sub-predicates, reducing
the number of comparisons that must be performed and
thus time needed. The inclusion of local variables in
these memories is an additional source of state that can
be indexed to further improve performance (see 3.6).

The join nodes are connected to one α-memory and
one β -memory as inputs, and one β -memory or one ac-
tion node as an output. Whenever one of the input memo-
ries is updated, the join node performs a join operation on
its two inputs, extracting new partial matches, and pro-
duces new outputs to be added to its output node (either
as new contents for a β -memory, or as inputs for an ac-
tion to be taken).

As a simple example, a rule that specifies the con-
joined predicate “P1(F1)∧P2(F2)∧P3(F3)” (where Px
are sub-predicates and Fx are fact classes) would result
in a Rete network like the one shown in Figure 1 (note
that α-memories are square, β -memories are ovals, and
join and action nodes are not shown).

The basic idea of a Giles engine is straightforward:
each α- and β - memory is a separate table, and each join
and action node is a trigger. When a user asserts a new

Figure 1: Rete graph for P1(F1)∧P2(F2)∧P3(F3)

∅

P1

P1 ∧ P2

F1

F2

P1 ∧ P2 ∧ P3

F3

fact, it is by inserting a new row into an α-memory table.
Upon insertion, one trigger per associated β -memory
fires and checks to see if this new fact can be joined with
any partial matches in the associated β -memory. Suc-
cessful join results are inserted into the output β -memory
or action node. Insertions into a β -memory fire another
trigger for the associated α-memory, checking to see if
any existing facts can now be joined with this new β -
memory record. Successful join results are again inserted
into the output node.

Action nodes are implemented as triggers watching
the lowest β -memory for a rule. When results are in-
serted into this memory, triggers fire that effect the des-
ignated action. For assert actions, new rows are inserted
into the appropriate α-memories and for retract actions,
rows are deleted from those memories. This action can
cause further triggers watching those α-memories to fire,
causing more activity.

Provided there are no cycles in actions and signa-
ture matches, the compiler will generate a set of triggers
forming a directed acyclic graph. That is, for any asser-
tion of a fact, no trigger will be activated twice. For rule
sets that contain cycles, a given trigger may be activated
many times — potentially infinitely many. For this rea-
son, the compiler will not accept rule sets containing cy-
cles without an explicit acknowledgement from the user.

Normal SQL foreign key references are used to han-
dle deletions of dependent facts when their support is
removed. Each non-axiomatic fact has references to a
row in a β -memory that represents the action that pro-
duced it; if that row is deleted, the fact is retracted. Like-

7

wise, each row in a β -memory contains references to
each matched fact, and will be automatically deleted if
any of its matched facts are retracted.

Additional node types are defined to handle re-
assertion of programatically-retracted facts. These nodes
are implemented by triggers on β -memories that copy
retracted axioms8 to shadow tables when a retraction ac-
tion is taken, and copy them back if the reason for their
retraction is removed.

3.2 Fact Pruning

The first optimization made by the Giles engine is called
α-pruning.

At compile time, the compiler examines all predicates
across all rules, and extracts all of the constant tests from
them. For example, in the Giles match predicate

This.FirstName LIKE "James%" AND
This.Age > 3 AND
This.LastName == Locals.Last

the tests on This.Name and This.Age are constant, while
the test on This.LastName is not — it references a local
variable.

The compiler gathers all of the constant tests across all
matches in all rules and builds an “α-predicate” per fact
class is true for a fact if that fact matches at least one of
the conjoined predicates (in the example above, the α-
predicate would be This.Firstname LIKE "James%"
AND This.Age > 3).

This class α-predicate is then tested before every in-
sertion of a fact; if it fails, it is proven that the given fact
can never match any rule’s predicate and the insertion is
simply ignored. This cheap, constant-time test immedi-
ately forgoes any further processing on facts that cannot
possibly affect future computation.

3.3 Query Optimization and Index Usage

Database query optimization is a complex topic
(though [2] offers an excellent survey of the subject).
However, the general goal is to make a query completely
covered by an index or, barring that, covering as many
of the query’s clauses as possible. Portions of a query
that are not covered by an index result in a linear scan
over the partial results. In the worst case, this can result
in a table scan in which the entire contents of a table are
scanned for a match.

Various SQL operations result in scans and different
database systems’ optimizers choose indexes differently.
For the purposes of this document, we focus on the opti-
mizer for SQLite9. While this optimizer may have lim-
itations, it serves as an excellent example and the tech-
niques used here apply to many other targets as well.

Indexes can be multi-column. For example, an index
might be built over multiple columns like this:

CREATE INDEX idx ON Table (
ColA , ColB , ColC

);

This would create an index that allowed rapid querying
of Table if the columns used in the query were some
subset of ColA, ColB, and ColC. However, in the SQLite
query optimizer, there are additional constraints. An in-
dex will be used if and only if all of the following condi-
tions are true:

• The list of tested columns is a prefix of the list of
indexed columns.

• The order of the tested columns matches the order
of the (prefix of the) indexed columns.

• At most one of the tests is an inequality.

• If any of the tests is an inequality, it must be the last
test.

This means that the following query cannot fully use
the index created above:

SELECT * FROM Table WHERE
ColA != 'foo ' AND
ColB = 1 AND
ColC = 2;

because the first test is not an equality. Only the first test
(ColA) will use the index.

This query likewise cannot use the index:

SELECT * FROM Table WHERE
ColB = 1 AND
ColC = 2 AND
Col1 = 1;

because the columns are tested in a different order10 from
how they were indexed.

The following query cannot make full use of the index:

SELECT * FROM Table WHERE
ColA = 'bar ' AND
ColC = 2;

In this case, only the first column of the index (ColA) can
be used, because ColB is skipped.

Another common pattern in queries that prevents in-
dex usage is querying a table for a computed value,
where the row of the table is used as an input to the com-
putation. For example:

SELECT * FROM Table WHERE
LENGTH(ColA) = 1;

This cannot use the index created above because it does
not use any of the indexed values. Recall that the values
of ColA were indexed, but the value of the computation

8

LENGTH(ColA) was not indexed anywhere. In this case,
the RDBMS must instead perform a table scan, extract-
ing the each value of ColA, applying LENGTH, and com-
paring the result.

The compiler has numerous strategies to ensure that
all of the generated queries are as covered by indexes as
possible.

3.4 Query Rewriting
Recall that all predicates in rule matches are conjunctions
of tests on facts. Because conjunction is commutative, it
means that the tests can be reordered in any way. Giles
takes advantage of this to rewrite tests to better make use
of indexes.

For example, this Giles predicate:

This.Age > 3 AND
This.Name = 'James ' AND
This.Height < 96 AND
This.City = 'Austin '

would be rewritten

This.City = 'Austin ' AND
This.Name = 'James ' AND
This.Age > 3 AND
This.Height < 96

All of the constant tests would be moved to the front of
the query and then lexically sorted. This ensures that the
longest possible prefix of tests are equality tests, which
is a prerequisite of optimal index usage. The lexical sort-
ing is a simple tactic that helps with index minimization,
discussed below.

3.5 Index Minimization
Whenever a table (i.e. an α- or β -memory) is used in a
query, Giles makes note of the columns queried. At the
end of processing, the compiler will output a minimal list
of indexes such that all of the queries are covered by at
least one index, and such that no index is a perfect prefix
of a longer index. “Covered” in this case means that the
(rewritten) expression has all of its equality tests (plus
one inequality if present) covered by an index.

For example, the queries:

SELECT * FROM Table WHERE
ColA = 'foo ' AND
ColB = 1 AND
ColC < 3;

and

SELECT * FROM Table WHERE
ColA = 'foo ' AND
ColB = 1 AND
ColC = 3 AND

ColF = 7 AND
ColZ > 10;

would result in an index being created on Table:

CREATE INDEX idx ON Table (
ColA , ColB , ColC , ColF , ColZ

);

This index covers both queries, because the first query
uses a set of columns that form a prefix of those used by
the second. However, given the following queries:

SELECT * FROM Table WHERE
ColA = 'foo ' AND
ColC = 3 AND
ColB < 1;

and

SELECT * FROM Table WHERE
ColA = 'foo ' AND
ColB = 1 AND
ColC = 3 AND
ColF = 7 AND
ColZ > 10;

the compiler would build two indexes:

CREATE INDEX idx1 ON Table (
ColA , ColC , ColB

);

and

CREATE INDEX idx2 ON Table (
ColA , ColB , ColC , ColF , ColZ

);

because the first query tests the table’s columns in a dif-
ferent order (enforced by the mix of equalities and in-
equalities in the query).

3.6 Synthetic Assignments
Take the example engine in Listing 3.

This (rather contrived) engine detects potential mem-
bers of families by matching last names. Pay particular
attention to the predicate on lines 26–29. This predicate
has on its right hand side a computed value that uses local
variables in the computation.

This might be compiled into a query similar to:

SELECT * FROM Alpha , Beta
WHERE

Alpha.Family =
UPPER(

SUBSTR(Beta.Last , 1, 1))
||
LOWER(

SUBSTR(Beta.Last , 2, 100))

As was shown in Section 3.3, this query cannot be cov-
ered by an index and results in a table scan, because the

9

Listing 3: An example of a difficult optimization problem

1 Facts:
2 KnownFamilies:
3 Family: STRING
4
5 PersonIsNamed:
6 First: STRING
7 Last: STRING
8
9 MightBelongToFamily:

10 First: STRING
11 Family: STRING
12
13 Rules:
14 PersonMightBelongToFamily:
15 Description: A named person might belong to a known family.
16
17 MatchAll:
18 - Fact: PersonIsNamed
19 Meaning: A person has been named.
20 Assign:
21 First: !expr This.First
22 Last: !expr This.Last
23
24 - Fact: KnownFamilies
25 Meaning: A family with a matching name exists.
26 When: !expr This.Family == UPPER(SUBSTR(Locals.Last , 1, 1))
27 .
28 LOWER(SUBSTR(Locals.Last , 2, 100))
29 Assign:
30 Family: !expr This.Family
31
32 Assert:
33 MightBelongToFamily:
34 First: !expr Locals.First
35 Family: !expr Locals.Family

Listing 4: The previous example’s assignments after the synthetic assignment optimization

20 Assign:
21 First: !expr This.First
22 Last: !expr This.Last
23 _Synthetic_1: !expr UPPER(SUBSTR(This.Last , 1, 1))
24 .
25 LOWER(SUBSTR(This.Last , 2, 100))

10

query tests against a computed value in which a column
takes part. To avoid situations like this, Giles automati-
cally detects these sorts of predicates and builds synthetic
local variables.

The compiler detects when the right hand side of
a predicate has computed values based on local vari-
ables, and rewrites the assignments in the previous match
clause to include “synthetic assignments” that precom-
pute the values. In other words, the assignments on lines
20–22 in the example are augmented as if they had been
written as shown in Listing 4.

The predicate is then compiled to something like this:

SELECT * FROM Alpha , Beta
WHERE

Alpha.Family = Beta._Synthetic_1

which can easily be covered by an index (that the com-
piler will automatically generate).

4 Conclusions and the Future

The primary goal of Giles has been to create a tool that
makes the creation of production systems that can be
used from many languages simple. We believe that goal
has been met. Giles has been used in our organization
for over two years to create engines that are embedded in
production software, and these engines have proven reli-
able and efficient. The engines themselves have been dis-
tributed (as part of a larger product) to third parties, and
have functioned without issue even when presented with
millions of facts for correlation. Several rule sets con-
sisting of hundreds of rules have been written and tested
in real-world environments and worked perfectly.

This is not to say there is not room for improvement.
Giles has several issues that we are in the process of ad-
dressing.

The rule specification language is needlessly verbose,
and especially wasteful of vertical space. Alternative
syntaxes and input formats are being investigated, in-
cluding XML and LISP-like S-expressions.

The lexical sorting on query rewriting helps minimize
the number of indexes that must be created and main-
tained, but a more sophisticated algorithm would proba-
bly do considerably better in common cases.

We are also investigating other algorithms (e.g. [1])
that could be used by Giles to perform pattern matching.

However, the most important area of further work is
the targeting of new RDBMSs. To date, Giles has only
been used in a production capacity with SQLite. Re-
search is underway to determine how easily and how well
other systems could be targeted; the most active area of
research is focusing on PostgreSQL11.

All in all, Giles has proved a remarkably useful tool
in the niche for which it was created. It grew from a

proof-of-concept to a full-fledged tool very quickly and
underwent at least two major rewrites. We are excited to
see how it may grow in the future.

Availability

Giles has been released under a permissive, open source
license and is freely redistributable. For more informa-
tion, see http://www.korelogic.com.

References
[1] ACHARYA, A., AND TAMBE, M. Collection oriented match. In

Proceedings of the Second International Conference on Informa-
tion and Knowledge Management (New York, NY, USA, 1993),
CIKM ’93, ACM, pp. 516–526.

[2] CHAUDHURI, S. An overview of query optimization in rela-
tional systems. In Proceedings of the Seventeenth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems
(New York, NY, USA, 1998), PODS ’98, ACM, pp. 34–43.

[3] DOORENBOS, R. B. Production matching for large learning sys-
tems. Tech. rep., Pittsburgh, PA, USA, 2001.

[4] FORGY, C. L. Expert systems. IEEE Computer Society Press,
Los Alamitos, CA, USA, 1990, ch. Rete: A Fast Algorithm for the
Many Pattern/Many Object Pattern Match Problem, pp. 324–341.

[5] HANSON, E., AND WIDOM, J. An overview of production rules in
database systems. The Knowledge Engineering Review 8 (1992),
121–143.

[6] MCDERMOTT, J., AND FORGY, C. Production system conflict
resolution strategies. SIGART Bull., 63 (June 1977), 37–37.

[7] SELLIS, T., LIN, C. C., AND RASCHID, L. Implementing large
production systems in a dbms environment: Concepts and algo-
rithms. In Proceedings of the 1988 ACM SIGMOD International
Conference on Management of Data (New York, NY, USA, 1988),
SIGMOD ’88, ACM, pp. 404–423.

Notes
1Giles is named after the character Rupert Giles from the Buffy the

Vampire Slayer television and comic book series. The names are pro-
nounced identically, with a soft G.

2This paper assumes the reader has some familiarity with SQL.
If needed, https://www.sqlite.org/lang.html provides a good
overview of the dialect of SQL used for the examples in this paper.

3http://www.yaml.org/
4The example listings in this paper are all YAML documents. Of

particular note is the !expr annotation. This is an example of a YAML
tag. The compiler uses the !expr tag to signal that a dynamic expres-
sion follows. Without such a tag, values are interpreted from syntax
rules as strings or numeric literals.

5Giles has a simple but sound type system of four types: BOOLEAN,
INTEGER, REAL, and STRING. Unlike SQL itself, the Giles system does
not allow NULL values, and the type system enforces this.

6http://www.sqlite.org/
7These example SQLite sessions have been slightly edited to better

fit in the space provided.
8Note that only axioms are copied to shadow tables, because all

derived facts can be recalculated when the axioms are re-asserted.
9https://www.sqlite.org/optoverview.html

10Note that many query optimizers will automatically detect this case
and reorder the queried columns.

11http://www.postgresql.org

11

http://www.korelogic.com
https://www.sqlite.org/lang.html
http://www.yaml.org/
http://www.sqlite.org/
https://www.sqlite.org/optoverview.html
http://www.postgresql.org

	Introduction
	Overview of Production Systems

	The Compiler and Its Output
	An example engine
	A More Complex Example
	Efficiency
	Recursion
	Limitations
	Other Features

	The Implementation
	Rete in SQL
	Fact Pruning
	Query Optimization and Index Usage
	Query Rewriting
	Index Minimization
	Synthetic Assignments

	Conclusions and the Future

