Defeating Machine Learning

What Your Security Vendor is Not Telling You

BLUVECTOR

www.bluvectorcyber.com

Bob Klein
Data Scientist
Bob.Klein@bluvectorcyber.com

Ryan Peters

Data Scientist

Ryan.Peters@bluvectorcyber.com

Agenda

- Security industry advances and the role of ML
- [DEMO] Attacker's perspective: How to defeat ML
- Solution: Defense through diversity
- Implementation discussion and results
- [DEMO] Attacker's perspective revisited
- Conclusions and paths forward

Evolution of the security industry

Signatures,
Packet Filters

- (+) Recognize known threats
- (-) Very brittle

Heuristics, Sandboxes, Stateful Filters

- (+) Recognize malicious indicators
- (-) Rely on known indicators

Machine Learning

(+) Unstoppable (-) None

Evolution of the security industry

Signatures,
Packet Filters

- (+) Recognize known threats
- (-) Very brittle

Heuristics, Sandboxes, Stateful Filters

- (+) Recognize malicious indicators
- (-) Rely on known indicators

Machine Learning

- (+) Robust
- (-) ??

The perils of a shared defense

- (+) Recognize known threats
- (-) Very brittle
- (-) Shared signatures

The perils of a shared defense

Heuristics, Sandboxes, Stateful Filters

- (+) Recognize malicious indicators
- (-) Rely on known indicators
- (-) Shared ruleset / engine

The perils of a shared defense

Machine Learning

- (+) Robust
- (-) Shared models (?)

Machine Learning in cybersecurity

ML solutions for malware detection fail to break from the flawed deployment paradigm

Experimental Setup

Tools:

Metasploit 4.11.1

Payloads:

windows/meterpreter/reverse_tcp windows/messagebox

Encoders:

x86/shikata_ga_nai x86/call4_dword_xor x86/jump_call_additive etc.

Experimental Setup

AV Software:

ClamWin 0.98.7

Machine Learning Model:

Training list: 20,000 benign + 20,000 malicious samples

Test list holdout performance

Filetype	False Positives	False Negatives
PE32	3.5%	3.8%

Assumptions:

Attacker has copy of AV and ML software Attacker is unable to reverse engineer the software

Demo: Lessons Learned

So what happened?

Demo: Lessons Learned

Attacker's Advantages:

- Confident model has not changed
- Confident all targets have the same model

All it takes is persistence

How can we do better?

Traditional Defense

Moving Defense

Why hasn't this been done before?

- Logistical difficulty
- Cost to vendors
- Perceived risk to vendors

blackhat Machine Learning: A Moving Defense

Feature Space

Learning Algorithm

Classifier Generation and Use

Classifier Generation and Use

Instantiating a Moving Defense Using Machine Learning

Data Sources

- Vendor: Model Randomization
 - Randomly select among available data provided by vendor
 - X No additional diversity in datasets

User Environment

Instantiating a Moving Defense Using Machine Learning

Data Sources

- Vendor: Model Randomization
 - Randomly select among available data provided by vendor
 - X No additional diversity in datasets
- Local: Model Reinforcement
 - Feed back classifier-labeled samples into training set
 - X Only reinforces what the classifier already "thinks" it knows

User Environment

Instantiating a Moving Defense Using Machine Learning

Data Sources

- Vendor: Model Randomization
 - Randomly select among available data provided by vendor
 - X No additional diversity in datasets
- Local: Model Reinforcement
 - Feed back classifier-labeled samples into training set
 - X Only reinforces what the classifier already "thinks" it knows
- Local: Model Correction ("In-Situ")
 - Feed back errors, correctly-labeled samples
 - ✓ Introduce new local knowledge to learner

User Environment

Considerations for Implementing In-Situ

Addition (unbalanced)

Addition (unbalanced)

	Training Set	Size	Test Set Performance				
	benign	malware	local data	lab	data		
	(lab + local)	IIIaiwaie	False Positives	False Positives	False Negatives		
base	20000 + 0	20000	100.0%	2.1%	3.3%		
1%	20000 + 200	20000	14.4%	2.0%	3.8%		
2%	20000 + 400	20000	8.3%	1.5%	4.2%		
5%	20000 + 1000	20000	7.1%	2.5%	3.1%		
10%	20000 + 2000	20000	3.8%	1.2%	3.9%		
20%	20000 + 4000	20000	3.1%	1.9%	3.4%		

Test Set Performance

	local data	lab data				
	False Positives	False Positives	False Negatives			
base	100.0%	2.1%	3.3%			
r1	6.9%	2.0%	3.3%			
r2	7.1%	2.5%	2.9%			
r3	6.7%	2.2%	3.6%			
r4	5.8%	1.7%	3.8%			
r5	5.9%	2.4%	3.2%			
r6	6.3%	2.3%	3.1%			
r7	5.4%	1.6%	3.8%			
r8	6.8%	2.4%	2.9%			
r9	8.4%	3.5%	2.2%			
r10	7.2%	2.0%	2.9%			
MEAN:	6.7%	2.3%	3.2%			
STDEV	0.9%	0.5%	0.5%			

Generated 10 random in-situ classifiers using 5% addition (unbalanced)

All in-situ classifiers showed similar overall performance

Averaging across 10 in-situ models, compared to their base classifiers...

29%

Utilized feature space commonality

Averaging across 10 in-situ models, compared to their base classifiers...

46%

Overlapping misclassifications

Misclassification = False Positive **or** False Negative

In-situ classifiers are very diverse from their base classifiers

Overlapping Misclassifications

In-Situ	r1	r2	r3	r4	r5	r6	r7	r8	r9	r10
r1	100%	47%	46%	47%	43%	44%	42%	46%	40%	44%
r2		100%	48%	46%	51%	51%	45%	51%	50%	49%
r3			100%	48%	47%	44%	45%	42%	45%	46%
r4				100%	46%	48%	47%	46%	40%	48%
r5					100%	47%	47%	49%	44%	45%
r6						100%	45%	47%	44%	49%
r7							100%	41%	37%	44%
r8								100%	46%	45%
r9									100%	44%
r10										100%

In-situ classifiers show large diversity relative to other retrained classifiers

Overlapping Misclassifications

In-Situ	r1	r2	r3	r4	r5	r6	r7	r8	r9	r10
r1	100%	47%	46%	45%	43%	44%	42%	46%	40%	44%
r2		100%	48%	46%	51%	51%	45%	51%	50%	49%
r3			100%	48%	47%	44%	45%	42%	45%	46%
r4				100%	46%	48%	47%	46%	40%	48%
r5					100%	47%	47%	49%	44%	45%
r6						100%	45%	47%	44%	49%
r7							100%	41%	37%	44%
r8								100%	46%	45%
r9									100%	44%
r10										100%

Any two given in-situ classifiers have a **46 + 3%** overlap in misclassifications

Experimental Setup

AV Software:

ClamWin 0.98.7

Machine Learning Model:

Training list: 20,000 benign + 20,000 malicious samples

Test list holdout performance

Filetype	False Positives	False Negatives
PE32	3.5%	3.8%

In-Situ Models:

Use 4 of the random models using 5% addition (unbalanced)

DEMO: In-situ Models, Attacker's Perspective

Demo: Lessons Learned

In-situ classifiers provide a moving defense against malware that defeats base model

Summary of benefits of in-situ

- Diversity of defense
- Environment-specific tailoring, performance
- Increased responsiveness
- No need to share personal or proprietary data

Black Hat Sound Bytes

- Improvements in ML methods for malware detection are weakened by their reliance on the traditional deployment paradigm
- The concept of a moving defense addresses this shared-model vulnerability and may be naturally applied to some ML solutions
- The diversity offered by a moving defense is "better for the herd" – users should engage with their vendors about its implementation

