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Agenda 

• Security industry advances and the role of ML 

• [DEMO] Attacker’s perspective: How to defeat ML 

• Solution: Defense through diversity 

• Implementation discussion and results 

• [DEMO] Attacker’s perspective revisited 

• Conclusions and paths forward 

2 



Evolution of the security industry 

? 
Signatures, 

Packet Filters 
Heuristics, Sandboxes, 

Stateful Filters 
(+) Recognize known threats 
(-) Very brittle 
 

(+) Recognize malicious indicators 
(-) Rely on known indicators 

Machine 
Learning 

(+) Unstoppable 
(-) None 
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(+) Robust 
(-) ?? 

Signatures, 
Packet Filters 

Machine 
Learning 

Heuristics, Sandboxes, 
Stateful Filters 

Evolution of the security industry 

(+) Recognize known threats 
(-) Very brittle 
 

(+) Recognize malicious indicators 
(-) Rely on known indicators 
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The perils of a shared defense 

(+) Recognize known threats 
(-) Very brittle 
 

 
                           
(-) Shared signatures 

Signatures, 
Packet Filters 

The sharing of signatures among all deployments gives the attacker a significant advantage 
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(-) Shared ruleset / engine 

Heuristics, Sandboxes, 
Stateful Filters 

(+) Recognize malicious indicators 
(-) Rely on known indicators 

Newer technology using the same deployment paradigm is similarly vulnerable 

The perils of a shared defense 
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(-) Shared models (?) 
(+) Robust 

Machine 
Learning 

? ? 

? ? ? 

The perils of a shared defense 

? 

Some machine learning approaches may be exploitable by the same means 
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Unsupervised 
(no labels) 

Incremental 
(Learn 

continuously) 
 
 
 
 

Batch 
(Learn once) 

Machine Learning in cybersecurity 

Supervised 
(with labels) 

ML solutions for malware detection fail to break from the flawed deployment paradigm 
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Experimental Setup 

Generate payloads 

New iteration using 
varying encoders 

Test against AV, ML 

Embed in calc.exe 
template 

Experiment Finished 

Tools:  
    Metasploit 4.11.1 
 
Payloads: 
    windows/meterpreter/reverse_tcp 
    windows/messagebox 
      
Encoders: 
     x86/shikata_ga_nai 
     x86/call4_dword_xor 
     x86/jump_call_additive 
     etc. 
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Experimental Setup 

AV Software:  
    ClamWin 0.98.7 

 Test list holdout performance 

Machine Learning Model: 
    Training list: 20,000 benign + 20,000 malicious samples 

Filetype False Positives False Negatives

PE32 3.5% 3.8%
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Assumptions: 
    Attacker has copy of AV and ML software 
    Attacker is unable to reverse engineer the software 



DEMO: AV vs ML,  
Attacker’s Perspective 



Demo: Lessons Learned 

So what happened? 
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Demo: Lessons Learned 

Attacker holds significant advantages and can defeat target with enough persistence 

AV ML 

Attacker’s 
Lab 

AV 

Target 1 

ML 

Target 2 

It
er

at
io

n
s 

Attacker’s Advantages: 
 

• Confident model has 
not changed 

• Confident all targets 
have the same model 

Original 

All it takes is persistence 
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How can we do better? 

Traditional Defense Moving Defense 

Why hasn’t this been done before? 
• Logistical difficulty 
• Cost to vendors 
• Perceived risk to vendors 

The Moving Defense concept addresses the issue but has not been widely implemented 
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There are many ways to permute machine learning classifiers 

Feature Space Learning Algorithm Data Input 

Machine Learning: A Moving Defense 
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Classifier 

Library of 
Benign Data 

Library of 
Malicious Data 

Classifier 

Vendor Lab 

“B” “M” 

Classifier Generation and Use 

Moving Defense for ML: different data  different classifiers 16 

User Environment 



Moving Defense for ML: different data  different classifiers 

Classifier 

User Environment 

“B” “M” 

Vendor Lab 

Classifier 

Library of 
Benign Data 

Library of 
Malicious Data 

Classifier 

Classifier 

Classifier Generation and Use 
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Vendor Data Cloud 

User Environment 

“B” “M” 

Classifier + 

• Vendor: Model Randomization  
 Randomly select among available data 

provided by vendor 
X No additional diversity in datasets 

Data Sources 

Instantiating a Moving Defense  
Using Machine Learning 
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User Environment 

“B” “M” 

Classifier + + 

• Vendor: Model Randomization  
 Randomly select among available data 

provided by vendor 
X No additional diversity in datasets 
 

• Local: Model Reinforcement 
 Feed back classifier-labeled samples into 

training set 
X Only reinforces what the classifier already 

“thinks” it knows 

Data Sources 

Instantiating a Moving Defense  
Using Machine Learning 
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• Vendor: Model Randomization  
 Randomly select among available data 

provided by vendor 
X No additional diversity in datasets 
 

• Local: Model Reinforcement 
 Feed back classifier-labeled samples into 

training set 
X Only reinforces what the classifier already 

“thinks” it knows 
 

• Local: Model Correction (“In-Situ”) 
 Feed back errors, correctly-labeled 

samples 
 Introduce new local knowledge to learner 

Instantiating a Moving Defense  
Using Machine Learning 

Data Sources User Environment 

“B” “M” 

Classifier + + 

Analyst 
Adjudication 
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Addition 

Considerations for Implementing In-Situ 

There are many factors to consider when operationally implementing in-situ 

Balanced Unbalanced 

Replacement 
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In-situ classifiers perform equal or better than the base classifier 

Experimental Results for In-Situ 

local data

False Positives False Positives False Negatives

base 20000 + 0 20000 100.0% 2.1% 3.3%

1% 20000 + 200 20000 14.4% 2.0% 3.8%

2% 20000 + 400 20000 8.3% 1.5% 4.2%

5% 20000 + 1000 20000 7.1% 2.5% 3.1%

10% 20000 + 2000 20000 3.8% 1.2% 3.9%

20% 20000 + 4000 20000 3.1% 1.9% 3.4%

lab databenign

(lab + local)
malware

Training Set Size Test Set Performance 

Addition (unbalanced) 
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In-situ classifiers perform equal or better than the base classifier 

Experimental Results for In-Situ 

local data

False Positives False Positives False Negatives

base 20000 + 0 20000 100.0% 2.1% 3.3%

1% 20000 + 200 20000 14.4% 2.0% 3.8%

2% 20000 + 400 20000 8.3% 1.5% 4.2%

5% 20000 + 1000 20000 7.1% 2.5% 3.1%

10% 20000 + 2000 20000 3.8% 1.2% 3.9%

20% 20000 + 4000 20000 3.1% 1.9% 3.4%

lab databenign

(lab + local)
malware

Training Set Size Test Set Performance 

Addition (unbalanced) 
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Experimental Results for In-Situ 

local data

False Positives False Positives False Negatives

base 100.0% 2.1% 3.3%

r1 6.9% 2.0% 3.3%

r2 7.1% 2.5% 2.9%

r3 6.7% 2.2% 3.6%

r4 5.8% 1.7% 3.8%

r5 5.9% 2.4% 3.2%

r6 6.3% 2.3% 3.1%

r7 5.4% 1.6% 3.8%

r8 6.8% 2.4% 2.9%

r9 8.4% 3.5% 2.2%

r10 7.2% 2.0% 2.9%

MEAN: 6.7% 2.3% 3.2%

STDEV 0.9% 0.5% 0.5%

lab data

Test Set Performance 

Local Data Lab Data 

+ 

+ 
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In-situ classifiers have equivalent performance between trials 



Generated 10 random  
in-situ classifiers using  
5% addition (unbalanced) 

Experimental Results for In-Situ 

In-situ classifiers have equivalent performance between trials 

local data

False Positives False Positives False Negatives

base 100.0% 2.1% 3.3%

r1 6.9% 2.0% 3.3%

r2 7.1% 2.5% 2.9%

r3 6.7% 2.2% 3.6%

r4 5.8% 1.7% 3.8%

r5 5.9% 2.4% 3.2%

r6 6.3% 2.3% 3.1%

r7 5.4% 1.6% 3.8%

r8 6.8% 2.4% 2.9%

r9 8.4% 3.5% 2.2%

r10 7.2% 2.0% 2.9%

MEAN: 6.7% 2.3% 3.2%

STDEV 0.9% 0.5% 0.5%

lab data

Test Set Performance 

All in-situ classifiers showed 
similar overall performance 
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Similarity of In-Situ Classifiers 

In-situ classifiers are very diverse from their base classifiers 

29% 
Utilized feature space 

commonality 

Averaging across 10 in-situ models, 
compared to their base classifiers… 

Features 
Utilized 
(Base) 

Features 
Utilized 
(In-situ) 

Total Feature Space 
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Similarity of In-Situ Classifiers 

In-situ classifiers are very diverse from their base classifiers 

46% 
Overlapping 

misclassifications 

Averaging across 10 in-situ models, 
compared to their base classifiers… 

Misclassification = False Positive or False Negative 

Total Samples Analyzed 

Misclassified 
Samples 
(Base) 

Misclassified 
Samples 
(In-Situ) 
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In-Situ r1 r2 r3 r4 r5 r6 r7 r8 r9 r10

r1 100% 47% 46% 45% 43% 44% 42% 46% 40% 44%

r2 100% 48% 46% 51% 51% 45% 51% 50% 49%

r3 100% 48% 47% 44% 45% 42% 45% 46%

r4 100% 46% 48% 47% 46% 40% 48%

r5 100% 47% 47% 49% 44% 45%

r6 100% 45% 47% 44% 49%

r7 100% 41% 37% 44%

r8 100% 46% 45%

r9 100% 44%

r10 100%

Similarity of In-Situ Classifiers 

Overlapping Misclassifications 

In-situ classifiers show large diversity relative to other retrained classifiers 

r1 vs r2 r2 vs r4 
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In-Situ r1 r2 r3 r4 r5 r6 r7 r8 r9 r10

r1 100% 47% 46% 45% 43% 44% 42% 46% 40% 44%

r2 100% 48% 46% 51% 51% 45% 51% 50% 49%

r3 100% 48% 47% 44% 45% 42% 45% 46%

r4 100% 46% 48% 47% 46% 40% 48%

r5 100% 47% 47% 49% 44% 45%

r6 100% 45% 47% 44% 49%

r7 100% 41% 37% 44%

r8 100% 46% 45%

r9 100% 44%

r10 100%

Similarity of In-Situ Classifiers 

Any two given in-situ classifiers have a  
46 + 3% overlap in misclassifications 

Overlapping Misclassifications 

In-situ classifiers show large diversity relative to other retrained classifiers 
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Experimental Setup 

AV Software:  
    ClamWin 0.98.7 

 Test list holdout performance 

Machine Learning Model: 
    Training list: 20,000 benign + 20,000 malicious samples 

In-Situ Models: 
    Use 4 of the random models using 5% addition (unbalanced) 

Filetype False Positives False Negatives

PE32 3.5% 3.8%
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DEMO: In-situ Models,  
Attacker’s Perspective 



Demo: Lessons Learned 

AV AV 

Demo (Part 1) 

ML 

It
er

at
io

n
s 

Original 

In-situ 

Target 1 

In-situ 

Target 4 

In-situ 

Target 3 

Defense through diversity 

Attacker’s 
Lab 

ML 

In-situ classifiers provide a moving defense against malware that defeats base model 
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In-situ 

Target 2 



Summary of benefits of in-situ 

• Diversity of defense 
 

• Environment-specific 
tailoring, performance 
 

• Increased responsiveness 
 

• No need to share personal 
or proprietary data 
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Black Hat Sound Bytes 

• Improvements in ML methods for malware 
detection are weakened by their reliance on 
the traditional deployment paradigm 

• The concept of a moving defense addresses 
this shared-model vulnerability and may be 
naturally applied to some ML solutions 

• The diversity offered by a moving defense is 
“better for the herd” – users should engage 
with their vendors about its implementation 
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