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Abstract

Nowadays, neural networks are often used for image classification, but the structure
of their decisions is difficult to understand because of their "black-box" nature. Differ-
ent visualization techniques have been proposed to provide additional information on the
reason of the classification results. Existing methods provide quantitative explanations
by calculating heatmaps and interpretable components in the image. While the latter
provides semantics on the image parts that contribute for the classification, the compo-
nent areas are blurry due to the use of linear layers, which do not consider surrounding
information. This makes hard to point out the specific reason for the classification and to
evaluate quantitatively. In this paper, we introduce a novel method for explaining classi-
fication in neural networks, the Parts Detection Module. Unlike previous methods, ours
is capable of determining the accurate position of the interpretable components in the
image by performing upsampling and convolution stepwise, similarly to semantic seg-
mentation. In addition to providing quantitative visual explanations, we also proposed
a method to verify the validity of the quantitative explanations themselves. The experi-
mental results prove the effectivity of our explanations.

1 Introduction
In recent years, Convolutional Neural Networks (CNNs) have been successfully applied to
a variety of image classification tasks [6]. However, while CNNs achieve highly accurate
predictions, it is not straightforward to understand the process and reason for the produced
classifications by directly observing the weights of CNN. This is due to the discrepancy be-
tween how humans and CNNs recognize objects; while CNNs employ the RGB information
of the image pixels, humans resort to the semantics contained in the parts of the objects. Ap-
plications of CNNs in autonomous driving and healthcare would largely benefit from such
explainability, as a misclassification could lead to serious accidents. Determining the reason
of a faulty classification would allow understanding the situation and determining effective
measures against it. Therefore, the cues used by CNNs when taking a decision should be
presented and explained in a form that is linked to semantic information rather than a list of
observable numbers.
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Grad-CAM [11] has been traditionally used to provide explanations of CNN decisions.
This method allows visualizing the area of the input image that the network considers to
be important for classification. Since an image area does not provide enough cues for a
complete understanding, Interpretable Basis Decomposition (IBD) [17] decomposes the area
into smaller areas with semantic meaning, called interpretable basis, which correspond to
each of the components of the class the image belongs to. For example, a living room is
classified as such since it contains a coffee table, a couch, a TV stand, etc. IBD reconstructs
the output of Grad-CAM with the linear summation of its sub-areas, where the weights of
the linear summation can be regarded as the contribution rate of each sub-area, making it
possible to evaluate quantitatively the importance of each component. However, since IBD
uses a linear layer to determine the components in the features extracted by the CNN, it loses
the spatial information. This causes the sub-areas to be located in a position different from
the actual position of the corresponding component when it is visualized. This also prevents
us from validating correctly the contribution rates indicated quantitatively. Furthermore,
instead of using vague pixel areas, providing the exact region of the semantic component is
desirable for a clear explanation.

In this paper, we propose a novel method for explaining CNN classifications, the Se-
mantic Parts Explainer (SPE), which detects the specific parts that the CNN relies on for
classification via semantic segmentation. Our Dictionary Learning module reconstructs a
Grad-CAM-like output by using the detected parts directly as an interpretable basis (Fig. 1).
Our method creates different bases with respect to the input image, considering the spatial
information modeled in the convolutions by using a convolutional layer for the detecting
parts (instead of a linear layer), and quantifies the contribution rate of each part. The con-
tributions are summarized as follows. 1) We propose the Semantic Parts Detector, a novel
method to generate visual explanations create a basis considering the spatial information of
the CNN features. 2) Leveraging the spatial precision of our semantic parts, we propose a
novel evaluation method for quantitative explanations. 3) Finally, we prove the validity of
our visual explanations and the contribution rate of their parts by evaluating it via the method
in 2).

2 Related Works
There are mainly two ways of achieving comprehensibility in deep neural networks: through
indirect understanding and through direct understanding.

1. Indirect understanding of the decision structure of a network involves replacing the
reasoning process with an understandable model, for example, a decision tree [10]
that reproduces the network we want to understand (i.e., a CNN) [2, 15].

2. Direct understanding of the decision structure of a network involves controlling the
inputs and outputs to understand the reasoning of the network, without changing its
inner structure. [1, 3, 11, 12]

2.1 Indirect Understanding

Methods for indirect understanding [2, 15] first gather the outputs of the network we want
to explain, and then use these outputs as supervised data to train a decision tree to perform a
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Figure 1: Overview of our method. It consists of two main parts: the Predictor, which is the
network whose reasoning we are trying to explain, and the Explainer, which generates the
explanation. The Predictor outputs the results for the image classification problem (e.g., bird
classification) and calculates their respective Class Activation Maps (CAMs). The Explainer
receives the CAM from the Predictor, and generates the component bases corresponding
to the semantic parts in the input image (e.g., head and wings in the case of birds) via a
Parts Detection Module, and reconstructs the CAM by the linear sum of these bases. Then,
after reconstructed, we calculate the contribution of each part and use it to generate the
explanation.

similar reasoning (i.e., to output similar values). Decision trees are used since they learn an
architecture that is easily explainable.

The method in [15] transforms the CNN into a network capable of understanding the
reasoning process by changing the inner structure. The model becomes understandable by
learning each channel of the intermediate features obtained from the input image in order to
identify parts of the image with a semantic meaning. Taking a dog image as an example, the
intermediate features of the middle layer identifies the dog’s ears, another channel identifies
the head, and another output identifies the tail. This way, when there is a misclassification,
we can explain which image part was the cause by checking which channel was activated.
This allows for an indirect understanding since we know which parts were identified by the
middle layer.

These indirect methods aim at understanding the decision structure of the network, but
they do not fully reproduce the original network. Therefore, if the network we want to
explain and the network prepared as an alternative are very different, we may have a wrong
understanding of the network decision mechanism

2.2 Direct Understanding
Methods for direct understanding [3, 11, 13, 17] involve using an attention mechanism that
allows visualizing the image areas that a network considers important when making deci-
sions. This is achieved by conveying gradients of a specific class to the target convolutional
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layers of the network we try to explain.
Another method creates two versions of the network we want to explain [1], one from

the input to a shallow/intermediate layer and the other from the input to a deep/final layer,
and classifies the image by adding a linear layer at the end. This allows us to understand the
classes that each layer is able to classify.

Direct methods overcome the problems of indirect methods as they do not change the
structure of the original network.

Our proposed method belongs to the group of direct understanding.

Visualization Explanations

Visualization explanations, such as Grad-CAM [11], have become a mainstream explanation
method for direct understanding, since they combine a simple architecture and an intuitive
comprehensibility. In [16], a gradient approach to explaining importance through visual-
ization was proposed, by using the backpropagation of gradients and the properties of the
global average pooling layer (GAP layer). The GAP layer is applied to the CNN to gener-
ate a Class Activation Map (CAM) that represents the relevance of each image pixel for the
classification.

IBD[17] was also proposed to provide explanations through visualization. IBD decom-
poses the CAM computed using Grad-CAM into an interpretable basis of several concepts,
that is, a vector linked to semantic information such as colors and part names. This mecha-
nism allows explaining which concepts the CNN considered important via the contribution
rate of how much the decomposed basis affects the reconstruction of the CAM. To create the
basis of concepts, IBD performed multi-label classification for each pixel by using a linear
layer. However, this causes spatial information to be lost, and thus, the output activation
maps become vague area of the image. This hinders the quality of the explanations, as parts
are not properly represented.

In this paper, we leverage semantic segmentation to visualize the exact position of the
concepts, or parts. For the creation of the basis, instead of a linear layer, we employ a convo-
lutional layer like in semantic segmentation models, which allows considering the surround-
ing pixels (i.e., modeling spatial information). This allows for a more precise representation
of the image parts in the explanations.

3 Method
We propose a method for explaining the reasoning of a CNN by visualizing the exact im-
age parts considered for classification, the Semantic Parts Detector (SPD). Unlike previous
methods, which offer a vague CAM area, SPD achieves a representation of the actual posi-
tion of the image parts by modeling spatial information for creating the basis of components.
We quantitatively verify the validity of the contribution rate of each part to the classification.

In order to detect the accurate image parts that contain a semantic concept for classifi-
cation, we pretrain our Parts Detection module via a dataset annotated with the segmented
parts. The Predictor provides the classification results for the input image, which are used to
calculate the CAM via Grad-CAM [11]. Then, the Parts Detection module detects the image
parts to construct a basis of components. The CAM from the acquired bases is reconstructed
using the Dictionary Learning module. The contribution rate of each part is calculated from
the coefficients of the lexical learning module used in reconstructing the CAM. The resulting
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explanation of the classification consists of the aforementioned contribution rate along with
the accurate visualization of their corresponding parts in the image.

3.1 Parts Detection module

This module generates a set of basis from the input image, by detecting the image parts with
a semantic meaning. For our implementation, instead of using simple linear transformations,
we use ENCNet[14]. ENCNet explicitly learns information about which parts tend to exist
at the same time for a given class, by using a Context Encoding module. For example, the
parts “beak” and “wings” are typical of the class “bird”, and the parts “hands” and “hair” are
typical of the class “human”.

Compared with the state-of-the-art explanation method IBD [17], there is a significant
difference in the upsampling process (Fig. 2). IBD applies a linear layer and a single final
upsample to output their basis, which is similar to the segmentation result. On the other hand,
ENCNet upsamples and convolutes the intermediate features multiple times, thus, retaining
more spatial features than IBD. This aims to provide clearer and more accurate parts as our
bases. ���:#����! 
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Figure 2: Details of our Parts Detection module (upper) vs. the state of the art (IBD). First,
both architectures extract intermediate features (C× h×w) from the input image using a
CNN (e.g. ResNet). ENCNet upsamples and convolutes the intermediate features multiple
times to obtain an accurate map of the image parts. In contrast, IBD applies a linear layer and
a single upsampling, which hinders the modeling of spatial features and lowers the quality
of the detected parts.

3.2 Dictionary Learning Module

The Dictionary Learning module reconstructs a CAM using the bases acquired by the Parts
Detection module. It is inspired by dictionary learning [9], a learning method in which the
target signal is reconstructed by a linear sum of a group of signals called a dictionary. In
this case, the acquired basis is used as a dictionary and the CAM calculated by Grad-CAM is
reconstructed. Assuming that the basis corresponding to part pi is Mpi ∈ RHW and the weight
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of the linear summation is qpi , the reconstructed CAM Mrec is

Mrec = ∑
i

qpiMpi (1)

Using qpi (learned during training), the contribution rate upi of the part pi is

upi =
qpi

∑i qpi

(2)

We found that the contribution rate of the background was often high when we use stan-
dard MSE loss. In order to solved it, we used the initialization of weights as follows,

q0
pi
= min

(
maxi, j(Mpi)

k
,1
)

(3)

where Mpi is the output of the Parts Detection module (i.e., a mask with shape batch_size x
H x W), and k is a hyperparameter. The purpose of this initialization is to fix the contribution
rates of the parts that are not present in the image to zero, Then the hyperparameter k is
introduced to control the order of initial weights.

4 Experiments

4.1 Datasets
We pretrained our Parts Detection module using the Pascal Part dataset [4]. Each image in
the dataset is labeled with a single class, out of the 20 different image classes contained.
Additionally, each image contains a number between 1 and 15 part classes. Similarly, each
pixel is labeled with a part class. We selected 16 different parts for our experiments (see
Sec. 4.2). This sums up to a total of 4638 images, from which 10% were used for testing.

The Predictor (network we want to explain) was trained using the Caltech-UCSDBirds200
(CUB200) dataset. The dataset contains 200 classes of bird images, adding up to 4758 im-
ages for training and 6033 images for testing. Thus, we employ two datasets in our paper, as
in the most relevant work to ours[7, 15, 17].

4.2 Settings
We chose ResNet101 [6] as the target architecture for explaining its classification decisions
(Predictor). ResNet101 has achieved an accuracy of 0.758 for 20 classes in the Pascal Part
dataset, and 0.745 in the CUB200 dataset. For our Parts Detection module we compared
the performance of ENCNet with a baseline, which is used in IBD. We chose the 16 most
frequent part classes from the Pascal Part dataset: eye, nose, leg, mouth, face, neck, arm,
hand, torso, hair, beak, wing, plant, tail and background. Parts shared among image classes
were assigned the same label (e.g., dog/human legs or human/bird eyes). Both ENCNet and
the baseline(IBD) were trained using three GPUs, Quadro RTXs with a batch size of 64 and
an image size of (480×480). We used the AdaBound[8] optimizer for 100 epochs, with an
initial learning rate of 0.001 and a final learning rate of 0.2. We used cross entropy loss as
loss function.

The Dictionary Learning module was trained using the RMSProp [5] optimizer for 50
epochs per image to obtain the contribution rate of each part, with a learning rate of 0.01 and
a hyperparameter k of 10. We used mean squared loss as loss function.
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4.3 Evaluation
We evaluated our method quantitatively using the Average Drop Percent (ADP) [3] and ap-
plied it to evaluate the ranking of parts. This metric assigns a higher score to visualization
maps that correctly highlight the pixels that are relevant for determining the class c. If the
(i, j) ∈ RH×W pixel of CAM Mc computed for the class c by a visualization method (e.g.,
Grad-CAM) is below a certain threshold θ , then we replace the same i, j pixel of the input
image I with zero, and input it to the Predictor CNN to obtain the classification results Oc.
Let Yc be the classification results for the original I, ADP is expressed as:

ADP =
max(0,Yc−Oc)

Yc
×100 (4)

In order to perform a quantitative evaluation of the parts detected by our Parts Detection
module, we sorted them by their contribution rates, and calculated a CAM Mp for the top
p∈ P parts, using θ = 0.3. Let Oc,p be the classification results when the pixels of Mp below
the θ become zero in I. In this case, ADP is

ADP =
Ptop n

∑
p

max(0,Yc−Oc,p)

Yc
×100 (5)

We calculate an ADPrand by using an O obtained by randomly replacing with zero the same
number of pixels as in ADP. We define ADPdi f f as the difference between both:

ADPdi f f = ADPrand−ADP (6)

For each test image N, we compute

ADPmean =
1
N

N

∑
i=1

ADP(i)
di f f (7)

If ADPmean > 0 , we determine that the important features are visualized.

4.4 Results
First, we evaluated quantitatively our Parts Detector module. Our evaluation metric is the
mean IoU, that is, we calculate the intersection area of the output mask (segmentations from
the Parts Detector) and the ground-truth mask (annotations from Pascal Parts) and divide it
by the union area. Then we calculate the average for all classes:

meanIoU =
1

NC

C

∑
c

intersection o f class masks
union o f class masks

(8)

The mean IoU achieved using the test set of Pascal Parts is 0.758 for ENCNet and
0.320 for the baseline(IBD). ENCNet significantly outperformed baseline(IBD) because this
method can model better the parts that belong to a specific class.

Next, we evaluate quantitatively the explanations generated for the Pascal Part dataset
and CUB200. The results of the ADPmean described in Sec. 4.3 are shown in Table1. We
ranked our bases (detected parts) by taking those with the highest contribution rate, and
calculated the corresponding APDs for a P = 5 and P = 10. The average ADP in the top 10
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Table 1: ADP quantifies the decrease in classification accuracy by comparing adding noise
to random parts of the input image with adding noise to the visualized important parts of the
image. APD assumes that the classification accuracy decreases when important image parts
are lost. A high value of ADPmean indicates that the calculated bases allow for a successful
visualization of the important sections of the image for classification.

ADP ADP random ADP mean
Pascal Part Dataset top 5 85.5 89.6 4.09

Pascal Part Dataset top 10 84.2 87.0 2.87
CUB200 top 5 110.3 121.7 11.3

CUB200 top 10 111.7 117.5 5.82

bases of the Pascal Part dataset is about 2.87 higher than the randomly added ADP, and the
ADP in the top 5 bases is 4.09 higher. The difference between the ADP and the ADP random
of the top 5 bases is larger than that of the top 10 bases, suggesting that the top 5 bases retain
more important features. Similarly, the average ADP of the top 10 bases in CUB200 is 5.82
higher than that of the randomly substituted ADP, and the ADP of the top 5 bases is 11.3
higher. Following the same reasoning as with the Pascal Part dataset, the top 5 bases prove
to retain more important features.

Next, we use the CUB200 dataset to qualitatively evaluate the visualization results of the
parts with the top contribution rate (Fig. 3). Each image represents an interpretable basis
and its inferred part label. The top 5 parts are sorted from left to right in decreasing order of
contribution rate. The upper row shows that our method can successfully detect the accurate
parts that better identify the input image. The lower row shows the results of the state-of-
the-art baseline IBD [17], whose detected parts are vague and blurry, especially beak and
neck. Since the detected bases do not properly segment the image areas for beak and neck,
IBD determines a larger contribution rate on these parts, even though they are not actually
relevant for classification. For this reason, our explanations are more accurate, outperforming
the state of the art.

(.

MEC- E9E TIM* BEA- HEAD

9M2SR�

Figure 3: Comparison of the bases detected by our SPD (upper) and IBD [17] (lower): The
convolutional architecture of our Parts Detector achieves more accurate bases, in particular
eye and beak, whereas the bases of the comparison method are vague and blurry.

Fig. 4 shows a qualitative evaluation of our generated explanations, which consist of parts
contribution rates (semantics) and reconstructed CAMs (visualization). From left to right,
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the input image and its respective CAM and reconstructed cam are shown. Below, there
are the three parts with the highest contribution rate. The contribution for beak is higher in
pelicans due to their long beaks (lower left), and the contribution for head and eyes is higher
in birds with distinctive facial patterns (upper). In some cases, unrelated parts such as tree
have high contribution rates, since CAM pays attention to image areas that are not relevant
(lower right).
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Figure 4: Qualitative comparison of our visual explanations: input image (left), computed
CAM (middle), and reconstructed CAM (right). The detected parts with the top 3 contribu-
tions appear below the image.

5 Discussion and Conclusion
We evaluated quantitatively our Parts Detection module to show its effectiveness in matching
the position of the visualized parts with the position of the actual parts in the image. This is
because its convolutional architecture allows considering spatial features. We also evaluated
quantitatively our Dictionary Learning module to show its effectiveness in reconstructing
the CAM visualization through the image areas containing the concept bases with the high-
est contribution rates. This is because the module succeeds in learning how to give more
importance to the parts with higher weights.

In this paper, we proposed a novel method to accurately visualize which image parts are
important for classification at the pixel level, and also to specify their contribution at the
part level. This allows creating an explanation on the reasoning of the prediction network
judgment, by connecting the semantics of the image parts with the classification results of
the CNN we want to explain. More concretely:

• By using a convolutional layer (the ENCNet segmentation network in our case) instead
of a linear layer, and our weight initialization, we are able to generate a basis that takes
spatial information into account.

• The use of spatial information-conscious bases enables quantitative evaluation using
methods such as ADP.
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To summarize, our proposed method enables the generation of a positionally accurate
bases and the quantitative evaluation of the validity of the contribution rate of each basis,
by applying a semantic segmentation method that uses convolutional layers instead of linear
layers for the generation of bases. The quantitative evaluation showed that the generated
contributions were in the correct order and that the basis visualizes the important parts of the
image.

As our future work, we consider providing detailed explanations, such as color and shape
of the parts, unsupervisedly.
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