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Abstract

Training a Convolutional Neural Network (CNN) to be robust against rotation has
mostly been done with data augmentation. In this paper, another progressive vision of
research direction is highlighted to encourage less dependence on data augmentation by
achieving structural rotational invariance of a network. The deep equivariance-bridged
SO(2) invariant network is proposed to echo such vision. First, Self-Weighted Nearest
Neighbors Graph Convolutional Network (SWN-GCN) is proposed to implement Graph
Convolutional Network (GCN) on the graph representation of an image to acquire ro-
tationally equivariant representation, as GCN is more suitable for constructing deeper
network than spectral graph convolution-based approaches. Then, invariant representa-
tion is eventually obtained with Global Average Pooling (GAP), a permutation-invariant
operation suitable for aggregating high-dimensional representations, over the equivari-
ant set of vertices retrieved from SWN-GCN. Our method achieves the state-of-the-art
image classification performance on rotated MNIST and CIFAR-10 images, where the
models are trained with a non-augmented dataset only. Quantitative validations over in-
variance of the representations also demonstrate strong invariance of deep representations
of SWN-GCN over rotations.

1 Introduction
In the past few years, Convolutional Neural Network (CNN) has brought many advances,
especially on many computer vision tasks. The high performance leverages the use of learned
convolution filters, with phenomenal techniques to make the layers go deeper [7]. Such
advancements led to the performance close to human in image classification tasks on various
datasets [7, 15, 18, 28, 35]. Especially, deeper layers of CNN have been empirically shown
to learn substantially more translation-invariant features in each layer, which takes account
for a wide range of applicability and reliability of CNN [3, 6, 25].

However, achieving rotation invariance is another desirable property of a network, espe-
cially on applications that require inferences over arbitrarily rotated images, such as aerial
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[30] or biomedical microscopy images [32]. To do so, the most common practice to train
a neural network to yield rotation-invariant representations is data augmentation [22]. By
providing rotation-augmented images for training, a network can learn representations ex-
pressed in different rotations. If associated with a correct objective function, the network can
yield reasonably invariant representations or inferences regardless of the rotation of an input
[26].

Yet, models trained with data augmentation may fail to capture local equivariance and
entail the black-box problem [33]. Besides, with an extensive list of data augmentations
to train a transformation-robust network, the exponential growth of search space for aug-
mentations inflates the dataset size [26]. Thus, liberation from rotation augmentation during
training not only decreases a substantial number of training but can also give more search
space for other types of data augmentations. Considering that rotation is one of the most
common types of data augmentations [26], achieving rotation-invariance of a network is a
large leap towards less dependence on data augmentation.

To address this issue, TIGraNet [11] made the most recent attempt to explicitly define
the aforementioned problem and to suggest a solution. The researchers validated the trans-
formation invariance of their proposed network by training their network only with upright
2D images with no transformation augmentation and evaluating the network with images
augmented with isometric transformations. We extend their view and propose an alternative
over their spectral graph convolution-based method to construct deeper image representation
network using an equivariance-bridged SO(2) invariant graph convolutional network.

2 Related Works
Transformation-Equivariant Networks Instead of obtaining multiple filters that repre-
sent different rotations, steerable filters can be constructed with finite linear combinations
of irreducible representations in order to achieve transformation equivariance [5]. The re-
cent work extends the concept to construct steerable CNN by obtaining homomorphisms of
transformations built with base representations from transformation-equivariant filter bank
[4]. Following works include parametrizing the steerable filters [32], restricting the filters
to be of the form from the circular harmonic family to achieve hard-baked rotation equiv-
ariance [33], or applying convolutional filters at multiple orientations to retrieve vector field
representations of deep features [21].

The most recently, E(2)-CNN [31] makes a holistic implementation of the aforemen-
tioned transformation-equivariant networks on the steerable filters. Based on the group
theory, the implementation achieves E(2) (translation, rotation and reflection in Euclidean
space) equivariance and achieves the state-of-the-art performance over MNIST rot [17] dataset
classification task.

Deep Learning on Graphs Promising potentials of graph-based networks were demon-
strated from the generalization of CNN to low-dimensional graph domains along with the
extension of the convolution via the Laplacian Spectrum [1]. Then, spectral network with a
graph estimation procedure enabled the graph-based network to go deeper, demonstrating its
superior performance over large-scale classification problems [8].

Meanwhile, GCN [13] has been one of the most prevalent graph processing networks
and was devised as renormalized first-order approximations of spectral graph convolutions
to conduct semi-supervised learning on graph-structured data. GCN has been effectively
applied to a wide range of fields, such as but not limited to multi-label image recognition [2],
temporal action localization [36], and even solid-state material science [24].
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Transformation-Invariant Networks Ti-Pooling [16] achieves rotation invariant repre-
sentation by feeding multiple rotated instances of an image to a siamese network, followed
by element-wise pooling. Meanwhile, Spatial Transformer Network (STN) achieves the ca-
pacity to yield transformation-invariant representation by learning the affine transformation
within the data with much distortion [10]. In the meantime, graph-based isometry-invariant
network [11] was proposed as a successful attempt to represent an image to be isometry-
invariant using graph. Their methodology uses spectral convolutions and dynamic pooling
to retrieve isometry-equivariant graph representation of an image, followed by a statistical
layer over Chebyshev polynomial representations of graph signals to retrieve the isometry-
invariant representations.

3 Problem Definition
3.1 Equivariance and Invariance
Given a function f : X→Y , f is said to be equivariant to a group of transformations if every
transformation ψ ∈Ψ of an input X ∈ X can be associated with an equal transformation of
the corresponding representation Y ∈ Y , or

f (ψ(X )) = ψ( f (X )) = ψ(Y). (1)

Meanwhile, given a function g : Y → Z , g is said to be invariant over transformation ψ

if ψ in space Y yields identity transformation in Z, or

g(ψ(Y)) = g(Y). (2)

Then, the composition of equivariant function f followed by invariant function g even-
tually yields an invariant function with respect to ψ as follows:

g( f (ψ(X ))) = g(ψ( f (X ))) = g( f (X )). (3)

We bridge the equivariant network as the means to effectively project an input to a high-
dimensional representation space instead of directly transforming an input image to invariant
representation. The illustrative explanation can be found in Figure 1-(a).

3.2 Rethinking the Value of Equivariant Networks
Most methodologies on equivariant networks [31, 33] validate their performances by training
and testing their networks over rotation-augmented datasets, such as MNIST-rot [17]. The
significance of the works is that the equivariant networks have larger capacity to learn all
the different representations of rotation augmented inputs, since the representations are less
variational and more equivariant, whose consistencies are easier to be adapted.

However, our objective lies on constructing a structurally invariant network that can
make invariant inferences over rotations without rotation augmentations. Acquiring high-
dimensional and equivariant feature space is a key step to achieving this goal by associating
with a transformation-invariant function, as will be described in Section 3.3.

3.3 Equivariance-bridged SO(2) Invariant Network
Specifying X as a training dataset and given an objective function L, our goal is to find a
rotation-equivariant network f (·;w f ), rotation-invariant function g(·), and optimal parame-
ters w∗f of the network f that satisfy

w∗f = argmin
w f

L(g( f (X ;w f ))). (4)
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(a) (b)
Figure 1: (a) Illustration of equivariant function f , invariant function g, transformation func-
tion ψ , and their compositional relationships. Composition of f and g yields a Ψ-invariant
representation (blue representation boxes); (b) Illustration of our objective and comparison
of t-SNE [20] visualized feature representations of randomly rotated MNIST extracted with
Convolutional Neural Networks (CNN) (left) and our proposed method (right). Both models
are trained with non-augmented, upright MNIST dataset.

Then, given a rotation angle θ ∈ [0◦,360◦), a corresponding rotation transformation
Rθ ∈ R, where R is a group of rotation transformation on image representation and forms a
homomorphism with SO(2), and a correspondingly rotated image Rθ = Rθ (X ), our objec-
tive network and parameters should satisfy from Eq. (3) as

g( f (Rθ ;w∗f )) = g( f (X ;w∗f )). (5)

Thus, g( f (·;w∗f )) trained with the upright dataset X should be able to yield invariant
representation for every Rθ . Such objective and t-SNE [20] visualized representations of
randomly rotated input images extracted from our method compared with those extracted
from ResNet-50 are available in Figure 1-(b).

4 Proposed Method
The schematics of our proposed network is summarized in Figure 2. Self-Weighted Nearest-
Neighbors Graph Convolutional Network (SWN-GCN) is proposed to learn graph-based fea-
tures in high dimensional and rotation-equivariant representation space, followed by Global
Average Pooling (GAP) for invariance mapping of equivariant representations.

4.1 SWN-GCN
Propagation Rule GCN [13] is applied over an instance of image X of width W and
height H expressed as an undirected graph representation G = (V,A). V is a set of |V| =
W ·H number of vertices and A ∈ R|V|×|V| is the adjacency matrix between the vertices.
Specifically, we start off by representing X as a graph with vertices of

V(0) = [V(0)
(1,1) · · ·V

(0)
(w,h) · · ·V

(0)
(W,H)

]> ∈ R|V|×c(0) (6)

where V(0)
(w,h) denotes channel-wise values located at (w,h) in image X and c(0) is the

size of input channel of X , i.e. c(0) = 1 for gray-scale images and c(0) = 3 for color images.
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The component of the adjacency matrix A that represents the adjacency between two vertices
V(0)
(w,h) and V(0)

(w′ ,h′ )
is denoted as A

[(w,h),(w′ ,h′ )] and is defined as follows:

A[(w,h),(w′,h′)] =

{
1 if 0 < d(w′,h′)

(w,h) ≤
√

2

0 otherwise
(7)

where d(w′,h′)
(w,h) =

√
(w−w′)2 +(h−h′)2.

Then, given the l-th propagated set of vertices V(l), a unit propagation of SWN-GCN
comprises the two networks, which we will refer to as Self-weighted Message Passing net-
work (SMP, ζ (·)) and Shared-weight Graph Propagation network (SGP, ξ (·)), to construct
a unit layer of our equivariant network f (l) : V(l)→V(l+1) correspondingly as

V̂(l) = D̄−
1
2 Ā(l)D̄−

1
2V(l) := ζ

(l)(V(l),A) (8)

V(l+1) = κ
(l)
2 (κ

(l)
1 (V̂(l))) := ξ

(l)(V̂(l)) (9)

where Ā(l) = A+ β (l)I|V| is the self-weighted adjacency matrix and β (l) is a trainable
parameter. D̄ ∈ R|V|×|V| is a diagonal matrix formulated as:

D̄[(w,h),(w,h)] = 1+
w′=W,h′=H

∑
w′,h′=1

A[(w,h),(w′,h′)]. (10)

The trainable function κ
(l)
i (·) in SGP is defined as

κ
(l)
i (·) = σ(BN(l)

i ( ·W (l)
i )) (11)

where c′(l),W (l)
1 ∈ Rc(l)×c′(l) , W (l)

2 ∈ Rc′(l)×c(l+1)
, BNi, and σ are intermediate dimen-

sion size, first and second propagation parameters, batch-normalization [9], and ReLU non-
linearity, respectively.

Leveraging GCN to construct deeper model Given a diagonal matrix D where Dii =

∑ j Ai j, if the linear approximation of Chebyshev polynomials of spectral graph convolu-

tion is applied over our method, SMP would be formulated as V̂(l) = (I|V|+D−
1
2 AD−

1
2 )V(l).

However, eigenvalues of I|V|+D−
1
2 AD−

1
2 range in [0,2], which means that multiple stacks of

these layers to construct deeper models may cause exploding or vanishing gradient problems.
GCN tackled this concern directly and conducted renormalization of the operation by substi-
tuting I|V|+D−

1
2 AD−

1
2 with D̃−

1
2 ÃD̃−

1
2 , where Ã = A+ I|V| and D̃ii = ∑ j Ãi j, thus allowing

the network to back-propagate more stable in deeper layers. We additionally included batch
normalization to reduce the typical covariance shift problem [9] in deeper models. More de-
tails on the derivation of the approximation of spectral graph convolution and the following
discussion can be found in [13].

4.2 SO(2)-Equivariant Property of SWN-GCN
In this subsection, we show that the architecture of SWN-GCN yields rotation-equivariant
representation by its structural nature. Primarily, representation of a rotated image must be
strictly defined.

Definition 1. Given (u′,v′) and Tθ ∈ SO(2) that satisfies Tθ [w− W
2 ,h−

H
2 ]

T = [u′−
W
2 ,v
′− H

2 ]
T , every pixel value of rotated imageRθ

(u,v) is defined as:
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Figure 2: Self-Weighted Nearest-Neighbors Graph Convolutional Network (SWN-GCN).

Rθ

(u,v) := h(X(w,h);(u
′,v′)) (12)

where h(·;(u′,v′)) is an interpolation function [29] to assign interpolated values to the
closest pixel at (u,v) in Rθ . We may say that Rθ

(u,v) and X(w,h) forms a spatial correspon-
dence.

Then, we can straightforwardly show rotation equivariance of the l-th propagated vertex
set V(l) by showing that every vertex of an upright image and the spatially corresponding
vertex of a rotated image are equal throughout the propagation as the following proposition
shows.

Proposition 1. Let H be the vertex set representation of a rotated image Rθ . Then, for
all w ∈ {1 · · ·W}, h ∈ {1 · · ·H} and l ∈ {0 · · ·L f }, the following approximation holds

H(l)
(u,v) ≈ V

(l)
(w,h). (13)

Proof. Inductive method is used to prove the proposition.
(a) When l = 0: or when every vertex representation is the original pixel value, we can

safely make the following assumption:
Assumption 1. H(0)

(u,v) ≈ V
(0)
(w,h) for all w ∈ {1 · · ·W}, h ∈ {1 · · ·H}.

The assumption is reasonable from our definition of spatial correspondence in Eq. (12)
given that interpolation does not significantly change the value of most pixels.

(b) Then, provided that Eq. (13) holds when l = n, we need to show that the equation
holds when l = n+1, or

ξ
(n)(ζ (n)(V(n)))(w,h) = ξ

(n)(ζ (n)(H(n)))(u,v). (14)

First, SMP does preserve rotational invariance of spatial correspondence, or ζ (n)(V(n))(w,h)
= ζ (n)(H(n))(u,v). Since there are only 9 vertices including itself (assume that image is ro-
tated with zero padding) that yields non-zero adjacency for every vertex according to Eq.
(7), degree matrix D̄ in Eq. (10) can be approximated as 9I|V|. The degree matrix can thus
be approximated as a scalar multiplication of an identity matrix, from which Eq. (8) can be
rearranged as

D̄−
1
2 Ā(l)D̄−

1
2 = D̄−1Ā(l). (15)

Then, Eq. (15) can be utilized to express V̂(n)
(w,h) = ζ (n)(V(n))(w,h) as

V̂(n)
(w,h) =

1
9
(β (n)V(n)

(w,h)+
w+1,h+1

∑
i=w−1, j=h−1

i 6=w, j 6=h

V(n)
(i, j)). (16)
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Likewise, Ĥ(n)
(u,v) = ζ (n)(H(n))(u,v) can also be expressed with the same process we lever-

aged to obtain Eq. (16) as

Ĥ(n)
(u,v) =

1
9
(β (n)H(n)

(u,v)+
u+1,v+1

∑
i=u−1, j=v−1

i 6=u, j 6=v

H(n)
(i, j)). (17)

In fact, the expectation of sum of adjacent vertices of V(n)
(w,h) andH(n)

(u,v) in Eq. (16) and Eq.
(17) are equal. Specifically, we have local rotational consistency as shown in the following
assumption:

Assumption 2. (Local Rotational Consistency)

E

 w+1,h+1

∑
i=w−1, j=h−1

i6=w, j 6=h

V(n)
(i, j)

= E

 u+1,v+1

∑
i=u−1, j=v−1

i 6=u, j 6=v

H(n)
(i, j)

 . (18)

Rigid rotation of an image does not change the list of adjacent vertices, which means
that their sum remains constant under rigid rotation. Yet, the values of vertices retrieved
from images with rotations that are not multiples of 90◦ may be slightly different due to in-
terpolations. However, it is reasonable to assume that the sum of the adjacent vertices, each
of which has slightly deviating values from interpolation, is acceptably constant. Experi-
mental results in the later section show that this assumption is reasonable enough to yield the
most invariant representation out of all baselines (see Section 6.1). Meanwhile, we are given
with β (n)V(n)

(w,h) ≈ β (n)H(n)
(u,v) from the inductive assumption, from which we can conclude

ζ (n)(V(n))(w,h) ≈ ζ (n)(H(n))(u,v).
Then, ξ (n)(V̂(n))(w,h)≈ ξ (n)(Ĥ(n))(u,v) straightforwardly holds because multiplied weights

are shared and ReLU is not a one-to-many function. Meanwhile, batch-normalization does
not strictly but acceptably preserves the approximate equality (see Section A in supplemen-
tary material for details). Thus, we can conclude V(n+1)

(w,h) ≈H
(n+1)
(u,v) given V(n)

(w,h) ≈H
(n)
(u,v) and

finalize the inductive proof.

4.3 Global Average Pooling for Invariant Mapping and Classification
of Invariant Representations

Recent graph-based networks [11, 34] employ the statistical layer, which computes means
and variances of graph signals using graph Chebyshev polynomials of order up to Kmax,
to map an equivariant vertex set to an invariant representation. Given set of vertices after

the L f -th propagation, where every vertex is represented in Rc(L f ) , the statistical layer cal-
culates c(L f ) · (Kmax + 1) number of means and variances. However, such process may be
burdensome on equivariant representations expressed in high representation space retrieved
from deep networks like ours, where the dimension of representation space can go up to
c(L f ) = 512.

Meanwhile, deep network such as PointNet [23] or Residual Network [7] demonstrated
that a global permutation-invariant operation, such as max or average operation, is capable
of efficiently aggregating high-dimensional representations. To this end, we employ GAP to

aggregate rotation-equivariant set of vertices, V(L f ), to invariant representation z ∈ Rc(L f ) as

z =
1

W ·H

W,H

∑
w=1,h=1

V(L f )

(w,h). (19)
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Since sum is a permutation-invariant operation, GAP yields rotation-invariant z out of
rotation-equivariant vertices V(L f ), where the permutation occurs within the rotation-equivariant
set of vertices. Unlike direct use of GAP [19] that requires the last feature representation
dimension equal to the number of classification classes, our equivariant space is mapped
into much higher dimension before GAP and the final classification is conducted with fully
connected layers non-linearized with ReLU. The summary of the methods can be found in
Algorithm 1.

Algorithm 1 SWN-GCN for SO(2)-invariant representation of an image
given X (input image), L (Layer configurations)
G = (V,A)← Image2Graph(X ) . Eq. 6, Eq. 7
for l in L do
V̂ ← ζ (l)(V,A) . Eq. 8
V ← ξ (l)(V̂) . Eq. 9

end for
z← GAP(V) . Eq. 19
return linear_classifier(z)

5 Experiment
5.1 Dataset
MNIST The MNIST dataset [18] comprises of images with grayscale, handwritten digits
of 10 classes ranging from 0 to 9. The dataset includes 60,000 train and 10,000 test images.

CIFAR-10 The CIFAR-10 dataset [14] consists of 60,000 32× 32 images in 10 classes
with 6,000 images per class. The dataset includes 50,000 training images and 10,000 test
images. All images are circularly masked to yield minimum interference caused by black
spaces on edges created after rotation for the sake of the experiment.

5.2 Experimental Setup
We compare our model with the state-of-the-art E(2)-equivariant network, E(2)-CNN [31],
as well as Harmonic Network [33] and TIGraNet [11]. The most prevalent CNNs such
as VGG-19 [27] and ResNet-50 [7] are also compared. For E(2)-CNN, we selected C8, as it
showed the best performance out of the rotation groups from our experiment. GAP is applied
for rotation equivariant models with no specific implementation of invariance mapping. The
number of parameters for all models are kept approximately constant, except for VGG-19
and ResNet-50 since these are not designed for rotation equivariance but are included as
baseline models to demonstrate the degree of rotation-invariance of other state-of-the-art
models.

5.3 Training Details
80% of the training sets are used for training, and the remainders for validation dataset. Mod-
els are optimized with ADAM optimizer [12] with learning rate of 10−4 and batch size of
64 until the models show no improvement over validation dataset for 40 consecutive epochs.
All models are trained three times, and all the reports on classification accuracies are their
averages. Also, models are deliberately trained with no augmentation, including rotation as
well as typical augmentation methods such as flips or random crop, in order to demonstrate
the strict measure of rotation invariance.

Citation
Citation
{Lin, Chen, and Yan} 2013

Citation
Citation
{LeCun, Bottou, Bengio, and Haffner} 1998

Citation
Citation
{Krizhevsky} 2009

Citation
Citation
{Weiler and Cesa} 2019

Citation
Citation
{Worrall, Garbin, Turmukhambetov, and Brostow} 2017

Citation
Citation
{Khasanova and Frossard} 2017

Citation
Citation
{Simonyan and Zisserman} 2014

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Kingma and Ba} 2014



HWANG, LIM, MYUNG: SO(2)-INVARIANT REPRESENTATION LEARNING 9

Figure 3: (L-R): Plots of the averages of rotational L2 norm of variance (δ θ
L2

) and rotational
cosine distance of invariance (δ θ

cos) of invariant representations over rotation angle θ for 10
randomly selected images from (L) MNIST and (R) CIFAR-10 dataset. For δ θ

L2
, the lower,

the better and for δ θ
cos, the higher, the better.

5.4 Metrics
Invariance of Representations Besides the classification accuracy, metrics are defined to
evaluate the degree of invariance of the representations. Let zθ be the representation of the
input image Rθ . Then, relative L2 norm of rotational variance (δ θ

L2
) and absolute cosine

similarity of rotational invariance (δ θ
cos) are defined correspondingly as

δ
θ
L2

=
||zθ − z0||
||z0||

, δ
θ
cos =

||zθ · z0||
||zθ || ||z0||

(20)

where || · || is the L2 norm.

6 Results and Discussions
6.1 Validations over Invariance
Quantitative Validation on Invariance Given 10 randomly sampled images from MNIST
and CIFAR-10 each, δ θ

L2
and δ θ

cos are measured for θ ∈ [0,360) with ResNet-50, E(2)-CNN
C8, and SWN-GCN, and the averages of the results are reported in Figure 3. SWN-GCN
produces δ θ

L2
closer to 0 and δ θ

cos closer to 1 over all angles of rotations than other baseline
models, which shows that SWN-GCN yields the most rotation-invariant representations out
of the baselines. Especially, note that ours yields the exact value of δ θ

L2
= 0 for θ with

multiples of 90◦. E(2)-CNN yields significantly better invariance than ResNet-50, but still
yields noticeable variances in both δ θ

L2
and δ θ

cos over all rotation angles.

6.2 Rotation-Invariant Image Classification
We also demonstrate the classification accuracy over rotation augmented dataset of our net-
work with other baselines, where all the models are trained with upright images only. As
shown in Table 1, classification accuracy of our proposed model outperformed all baseline
models on the overall accuracy (OA) on test datasets that are augmented with random rota-
tion angles.

On top of the highest classification accuracy on the rotation augmented dataset, SWN-
GCN shows significant improvements in classification accuracy over the largest range of
rotation. Table 1 reports classification accuracies over dataset augmented with fixed angles
with multiples of 30◦. Even though ResNet-50 shows the highest performance over upright
image classification, all other baselines yield higher classification accuracy on rotated images
than ResNet-50 in most rotation angles. In particular, SWN-GCN outperforms TIGraNet, the
state-of-the-art graph-based isometry-invariant network, in all rotation angles.
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Table 1: Classification accuracies over test datasets rotated by fixed angles. Overall Accuracy
(OA) is the result over all range of rotation.

CLASSIFICATION ACCURACY (%)
DATASET MODELS 0◦ 30◦ 60◦ 90◦ 120◦ 150◦ 180◦ 210◦ 240◦ 270◦ 300◦ 330◦ OA
MNIST RESNET-50 [7] 99.5 91.9 47.7 28.1 29.7 48.8 57.4 51.1 33.7 23.5 35.2 90.0 42.4

E(2)-CNN C8 [31] 99.3 98.1 95.9 96.3 86.2 74.9 70.7 71.1 81.8 95.1 92.9 97.0 87.5
TIGRANET [11] 89.1 82.7 79.8 89.1 82.7 79.8 89.1 82.7 79.8 89.1 82.7 79.8 85.1

SWN-GCN 96.5 89.8 87.3 96.5 89.8 87.3 96.5 89.8 87.3 96.5 89.8 87.3 91.8
CIFAR-10 RESNET-50 85.1 54.5 34.1 18.3 27.5 26.9 35.6 27.0 24.9 33.8 33.2 52.5 36.1

E(2)-CNN C8 77.1 57.8 44.3 48.5 34.4 30.8 37.8 31.9 35.4 49.4 45.0 56.0 46.2
TIGRANET 38.9 37.0 36.8 38.9 37.0 36.8 38.9 37.0 36.8 38.9 37.0 36.8 38.1
SWN-GCN 51.3 49.6 50.1 51.3 49.6 50.1 51.3 49.6 50.1 51.3 49.6 50.1 50.5

Meanwhile, one may observe from Table 1 and Figure 3 that for some rotation angles,
E(2)-CNN yields better δ θ

L2
and δ θ

cos over SWN-GCN yet shows higher classification per-
formances than SWN-GCN (i.e. θ = 0◦,30◦,60◦ for MNIST and θ = 0◦,30◦ for CIFAR-
10). For these angles, the impact of difference in expressibility of representations between
E(2)-CNN and SWN-GCN is more significant than the disruptions on representations intro-
duced by input image rotation on E(2)-CNN. However, disruptions introduced by a moderate
amount of input image rotation on E(2)-CNN easily overwhelm the advantage of E(2)-CNN
on expressibility, as proven by SWN-GCN outperforming E(2)-CNN in most range of rota-
tions for image classifications.

Such trade-off of advantages between the two models can be explained by making an
analogous comparison with CNN by referring to Eq. (16) for SWN-GCN. All parameters
in convolution kernels, i.e. 3× 3, are trainable in CNN, meaning that these kernels are
as expressive as they can be. However, these parameters have different values within the
convolution kernel and break the local rotation consistency. Whereas for SWN-GCN, only
the self-vertex is multiplied with trainable parameters, and the magnitude of adjacency with
adjacent vertices are uniform and fixed for the sake of preserving local rotational consistency.

7 Conclusion
We proposed a network that yields equivariant representation with SWN-GCN and invariant
representation using GAP. We showed structural equivariance of SWN-GCN and invariance
of GAP, and validated the properties with experimental results. Our method achieved the
state-of-the-art performances on rotated MNIST and CIFAR-10 image classification, where
the models were trained with upright images only.

8 Acknowledgement
This work was supported by Institute of Information & communications Technology Plan-
ning & Evaluation (IITP) grant funded by the Korea government(MSIT) (2021-0-01112,
"Development of location identification algorithms that are robust to spatial changes"). The
students are supported by the BK21 FOUR from the Ministry of Education (Republic of
Korea).

References
[1] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks

and locally connected networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Weiler and Cesa} 2019

Citation
Citation
{Khasanova and Frossard} 2017



HWANG, LIM, MYUNG: SO(2)-INVARIANT REPRESENTATION LEARNING 11

[2] Zhao-Min Chen, Xiu-Shen Wei, Peng Wang, and Yanwen Guo. Multi-label image
recognition with graph convolutional networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 5177–5186, 2019.

[3] Taco Cohen and Max Welling. Group equivariant convolutional networks. In Proceed-
ings of the International Conference on Machine Learning, pages 2990–2999, 2016.

[4] Taco S Cohen and Max Welling. Steerable cnns. arXiv preprint arXiv:1612.08498,
2016.

[5] William T Freeman, Edward H Adelson, et al. The design and use of steerable fil-
ters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(9):891–906,
1991.

[6] Ian Goodfellow, Honglak Lee, Quoc Le, Andrew Saxe, and Andrew Ng. Measuring
invariances in deep networks. In Advances in Neural Information Processing Systems,
pages 646–654, 2009.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 770–778, 2016.

[8] Mikael Henaff, Joan Bruna, and Yann LeCun. Deep convolutional networks on graph-
structured data. arXiv preprint arXiv:1506.05163, 2015.

[9] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In Proceedings of the International Con-
ference on Machine Learning, pages 448–456. PMLR, 2015.

[10] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. Spatial transformer net-
works. In Advances in Neural Information Processing Systems, pages 2017–2025,
2015.

[11] Renata Khasanova and Pascal Frossard. Graph-based isometry invariant representation
learning. In Proceedings of the International Conference on Machine Learning, pages
1847–1856, 2017.

[12] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[13] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolu-
tional networks. arXiv preprint arXiv:1609.02907, 2016.

[14] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical
report, University of Toronto, 2009.

[15] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. Communications of the ACM, 60(6):84–90, 2017.

[16] Dmitry Laptev, Nikolay Savinov, Joachim M Buhmann, and Marc Pollefeys. Ti-
pooling: transformation-invariant pooling for feature learning in convolutional neu-
ral networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 289–297, 2016.



12 HWANG, LIM, MYUNG: SO(2)-INVARIANT REPRESENTATION LEARNING

[17] Hugo Larochelle, Dumitru Erhan, Aaron Courville, James Bergstra, and Yoshua Ben-
gio. An empirical evaluation of deep architectures on problems with many factors of
variation. In Proceedings of the International Conference on Machine Learning, pages
473–480, 2007.

[18] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learn-
ing applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324,
1998.

[19] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv preprint
arXiv:1312.4400, 2013.

[20] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of
Machine Learning Research, 9(Nov):2579–2605, 2008.

[21] Diego Marcos, Michele Volpi, Nikos Komodakis, and Devis Tuia. Rotation equivari-
ant vector field networks. In Proceedings of the IEEE International Conference on
Computer Vision, pages 5048–5057, 2017.

[22] Luis Perez and Jason Wang. The effectiveness of data augmentation in image classifi-
cation using deep learning. arXiv preprint arXiv:1712.04621, 2017.

[23] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learn-
ing on point sets for 3d classification and segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 652–660, 2017.

[24] Jonathan Schmidt, Mário RG Marques, Silvana Botti, and Miguel AL Marques. Recent
advances and applications of machine learning in solid-state materials science. npj
Computational Materials, 5(1):1–36, 2019.

[25] Uwe Schmidt and Stefan Roth. Learning rotation-aware features: From invariant priors
to equivariant descriptors. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2050–2057, 2012.

[26] Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmentation for
deep learning. Journal of Big Data, 6(1):60, 2019.

[27] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[28] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper
with convolutions. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 1–9, 2015.

[29] Philippe Thévenaz, Thierry Blu, and Michael Unser. Image interpolation and resam-
pling. Handbook of Medical Imaging, Processing and Analysis, 1(1):393–420, 2000.

[30] Shidong Wang, Yi Ren, Gerard Parr, Yu Guan, and Ling Shao. Invariant deep com-
pressible covariance pooling for aerial scene categorization. IEEE Transactions on
Geoscience and Remote Sensing, 2020.



HWANG, LIM, MYUNG: SO(2)-INVARIANT REPRESENTATION LEARNING 13

[31] Maurice Weiler and Gabriele Cesa. General e(2)-equivariant steerable cnns. In Ad-
vances in Neural Information Processing Systems, pages 14334–14345, 2019.

[32] Maurice Weiler, Fred A Hamprecht, and Martin Storath. Learning steerable filters for
rotation equivariant cnns. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 849–858, 2018.

[33] Daniel E Worrall, Stephan J Garbin, Daniyar Turmukhambetov, and Gabriel J Brostow.
Harmonic networks: Deep translation and rotation equivariance. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 5028–5037,
2017.

[34] Qin Yang, Chenglin Li, Wenrui Dai, Junni Zou, Guo-Jun Qi, and Hongkai Xiong. Ro-
tation equivariant graph convolutional network for spherical image classification. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pages 4303–4312, 2020.

[35] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional net-
works. In Proceedings of the European Conference on Computer Vision, pages 818–
833. Springer, 2014.

[36] Runhao Zeng, Wenbing Huang, Mingkui Tan, Yu Rong, Peilin Zhao, Junzhou Huang,
and Chuang Gan. Graph convolutional networks for temporal action localization. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
7094–7103, 2019.


