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MAXIMALITY OF LOGIC WITHOUT IDENTITY

GUILLERMO BADIA, XAVIER CAICEDO, AND CARLES NOGUERA

Abstract. Lindström’s theorem obviously fails as a characterization of first-order logic without identity
(L–
��). In this note, we provide a fix: we show that L–

�� is a maximal abstract logic satisfying a weak form
of the isomorphism property (suitable for identity-free languages and studied in [11]), the Löwenheim–
Skolem property, and compactness. Furthermore, we show that compactness can be replaced by being
recursively enumerable for validity under certain conditions. In the proofs, we use a form of strong upwards
Löwenheim–Skolem theorem not available in the framework with identity.

§1. Introduction. In the 1960s, Per Lindström [25] showed that first-order logic
is maximal (in terms of expressive power) among its extensions satisfying certain
combinations of model-theoretic properties. The best known of these combinations
are:

Löwenheim–Skolem theorem + Compactness,

Löwenheim–Skolem theorem + Recursively enumerable set of validities.

This list is by no means exhaustive though (the reader can consult the encyclopaedic
monograph [3] for a thorough treatment of this topic). Philosophically, these results
have been interpreted as providing a case for first-order logic being the “right” logic
in contrast to higher-order, infinitary, or logics with generalized quantifiers, which
can be argued to be more mathematical beasts (see [21, 29]). An implicit assumption
of Lindström’s work is that identity (=) belongs in the base logic.

The classical Lindström theorems clearly fail for first-order logic without identity
(L–
��) since first-order logic with identity (L��) is a proper extension ofL–

�� . In fact,
there are continuum-many logics between the former and the latter satisfying the
compactness and Löwenheim–Skolem properties, and with recursively enumerable
sets of validities (see Example 2.1).

In this article, we aim at finding a way to amend Lindström’s two central theorems
so that they apply in the identity-free context.1 Our proofs make heavy use of a
property that is not available in the presence of identity, namely, an unrestricted
upwards Löwenheim–Skolem theorem that applies even to finite models. We also
observe other maximality results: a very simple one for the monadic version of the
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1Recall that any criteria for first-order axiomatizability in terms of closure of a class of structures

under certain algebraic operations can be recast as a Lindström-style theorem. In this way, [11, Theorem
3.4] can be seen as a Lindström-style result for logic without identity.
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logic (i.e., restricted to vocabularies that only have unary predicates), L1–
�� , as well

as results for both L–
∞� and L–

�� in terms of a suitable variant of the Karp property.
A simple by-product will be a preservation theorem characterizing the identity-free
fragment of first-order logic (essentially [11, Corollary 2.10] obtained by a rather
different method).

L–
�� has attracted mathematical attention in other works such as [20] where the

problem of categoricity of theories in that logic is studied. Moreover, the results in
the present paper may provide new insight on the philosophical discussion whether
L–
�� is suitable as a contender for the title of the “right logic” against L�� . After

all, the logicality of the = predicate is not obvious (cf. [16]). So, if the criteria were
to involve only indisputably logical operators (thus more than what L�� already
involves), be reasonably expressive (quite a bit can be formalized already in L–

�� ,
including set theory), and satisfying a neat Lindström-style characterization, L–

��

would appear to be as good an option as any. However, we will not pursue those
issues here.

We use the notion of an abstract logic from [3, Definition II.1.1.1] which presents
logics as model-theoretic languages [15] (see also [2, 17, 25]), not as consequence
relations or collections of theorems. Furthermore, we assume logics to have the basic
closure properties from [3, Definition II.1.2.1], except that in the atom property we
use L–

�� as the base logic, and demand that � be an atomic formula of every
vocabulary. For greater generality, we do not require the relativization property. As
usual, ifL andL′ are logics, we writeL ≤ L′ if, for any vocabulary � and any formula
ϕ ∈ L(�), we can find an equivalent formula ϕ′ ∈ L′(�).

For vocabularies containing a binary relation symbol, L–
�� is, properly speaking,

a fragment of L�� that includes the guarded fragment corresponding to basic modal
logic. In this setting, the most fruitful approach has been to use bisimulations as
a modal analogue of potential isomorphisms in first-order logic [5]. In the present
context all we require is the notion of weak (partial) isomorphism introduced in
[11], which is stronger than bisimulation.2

Interestingly, the presence of identity can make a substantial difference regarding
compactness. For example, monadic first-order logic with the Henkin quantifier,
L1
��(QH ), is not compact and not contained in (monadic) first-order logic with

identity for it can express the quantifier “there are at least ℵ0-many elements”;
however, the identity-free fragment of the very same logic admits the effective
elimination of the quantifier QH and, hence, it is compact [23, Theorem 1.5].3

The paper is arranged as follows: in Section 2 we start with the preliminary
observation that there is a continuum of abstract logics between L–

�� and L�� ,
and we recall the definitions of the properties of abstract logics employed in the
paper, while referring to the literature for some particular technical notions. In
Section 3 we present our main new results, that is, Lindström-style characterizations
of the identity-free first-order logic and its monadic fragment, together with
instrumental observations regarding the logical relations of the involved properties

2This notion has incidentally proven useful in recent philosophical debates on the logicality of
quantifiers and other operators [6, 10].

3In contrast, the logic obtained from (monadic) identity-free first-order logic by adding the quantifier
“there are at least ℵ0 elements” does not satisfy compactness [32, Theorem 8].
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MAXIMALITY OF LOGIC WITHOUT IDENTITY 149

and a useful form of upwards Löwenheim–Skolem theorem. In Section 4 we examine
a few interesting particular extensions of L–

�� that help us understand the role of
compactness and the Löwenheim–Skolem property in our characterizations. Finally,
in Section 5, we collect some open problems that arise from this investigation.

§2. Preliminaries. We begin this section by noting that there are continuum-many
pairwise non-equivalent abstract logics between L–

�� and L�� (actually, already
between their monadic fragments).

Example 2.1. Consider quantifiers ∃≥n with semantics A |= ∃≥nx ϕ iff there are
at least n elements a such that A |= ϕ[a]. For each non-empty X � � \ {0, 1}, we
can prove that the logic L–

��({∃≥n | n ∈ X}) indeed lies properly between L–
�� and

L�� in terms of expressive power and, moreover, there is a continuum of such
intermediate abstract logics.

For distinctX,Y ⊆ � \ {0, 1}, the corresponding logics L–
��({∃≥n | n ∈ X}) and

L–
��({∃≥n | n ∈ Y}) are also distinct. To see this, it suffices to focus our attention on

a monadic vocabulary � = {P}. Suppose, without loss of generality, that we have an
element r ∈ X \ Y . We abbreviate, for n < m, ∃≥nx � ∧ ¬∃≥mx � as ∃[n,m)x �, and,
for each n, ∃≥nx � as ∃[n,∞)x �. Then, using results from [9], any sentence ϕ from
the logic L–

��({∃≥n | n ∈ Y}) over the vocabulary � is equivalent to a disjunction
�1 ∨ ··· ∨ �q involving only quantifiers from ϕ where each �i is of one of the three
following forms:

• ∃[ni ,mi )x P(x) ∧ ∃[ri ,si )x ¬P(x),
• ∃[ni ,mi )x P(x),
• ∃[ri ,si )x ¬P(x),

where ni ≤ mi and ri ≤ si belong to Y ∪ {1,∞}. Thus, ϕ just describes an array of
possible cardinalities for the interpretations of P and its complement, and clearly,
∃≥rx P(x) is equivalent to this disjunction if and only if [r,∞) =

⋃
ni<mi

[ni ,mi), or
r = ni for the least ni , which is impossible as r �∈ Y ∪ {1}.

We use the definitions from [11]: A ∼ B means that there is a relativeness
correspondence between the structures [11, Definition 2.5] (we prefer to call this
a weak isomorphism); A ∼p B means that there is a back-and-forth system I of
partial relativeness correspondences between the models [11, Definition 4.7] (we will
say that these structures are partially weakly isomorphic); and we denote by ∼n the
finite approximation of ∼p [11, Definition 4.2]. In the setting of first-order logic
without identity, the relation ∼ behaves like a weak notion of isomorphism [11],
which motivates the name for the third property defined below.4

The properties of abstract logics that we consider in this article are:

• Compactness property: for any vocabulary �, Φ ⊆ L(�), if every finite subset of
Φ has a model, then Φ has a model.

• Löwenheim–Skolem property: for any vocabulary � and sentence ϕ ∈ L(�), ϕ
has a countable model if it has an infinite model.

• Weak isomorphism property: for any structures A and B, A ∼ B only if A ≡L B.

4Another place in the literature where this has been studied, albeit in less detail, is [30].
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• Finite weak dependence property: for any vocabulary � and any ϕ ∈ L(�), there
is a finite �0 ⊆ � s.t. for any �-structures A and B, if A � �0 ∼ B � �0, then
A |= ϕ iff B |= ϕ.

• Karp– property: for any structures A and B, A ∼p B only if A ≡L B.
• Boundedness property: any sentence ϕ(<, ... ) which for arbitrary large ordinal

type α has a model where the interpretation of< is an irreflexive and transitive
binary relation containing a chain of order type α has a model where the
interpretation of < contains an infinite descending chain.

All these properties, with the exception of Karp– and weak isomorphism, hold in
L��.

Given a structure A, we denote by A∗ the reduction of A [11, Definition 2.4], i.e.,
the quotient structure A�Ω(A) obtained from the Leibniz congruence relation.

Proposition 2.2 [11]. Let A and B be structures. Then:

(i) If A and B are countable, then A ∼p B iff A ∼ B.
(ii) A ∼ B iff A∗ ∼= B∗.

Thanks to Proposition 2.2, the weak isomorphism property can be equivalently
formulated as follows: for any structures A and B, A∗ ∼= B∗ only if A ≡L B. Observe
that A∗ ∼= A∗∗, so by Proposition 2.2, A ∼ A∗.

§3. Maximality results. We start this section by showing a form of upwards
Löwenheim–Skolem theorem, which will be heavily used in the arguments below:

Lemma 3.1. Let L be an abstract logic with the weak isomorphism property. Then,
a theory T ⊆ L(�) has a model A of cardinality � only if, for any κ > �, there is a
model B of T with cardinality κ and a surjective strict homomorphism (in the sense of
[11, Definition 2.1]), and hence a weak isomorphism, from B onto A.

Proof. It follows by inspection of the proof of [7, Lemma 2.24] or [1, Chapter IV,
§1] (which is only formulated for relational languages but can be easily generalized
to languages with function symbols). For any structure A of cardinality �, in that
proof one builds a model B of size κ and a mapping B −→ A which is, in fact, a
surjective strict homomorphism. �

Remark 3.2. Lemma 3.1 allows us to see that a plethora of logics do not have the
weak isomorphism property, e.g., the logics in Example 2.1. Interestingly, the usual
Lindström quantifiers may destroy the property, in particular in the logics L–

��(Qα).
However, as we will see in Example 4.1, all of these logics have counterparts which
do have the weak isomorphism property. On the other hand, as we will see below,
the Henkin quantifier QH is a curious case of a natural Lindström quantifier that
has the weak isomorphism property.

Now we can provide an analogue of (1) from [3, Theorem III.1.1.1].

Lemma 3.3. LetL be an abstract logic such thatL–
�� ≤ L. IfL has the compactness

and weak isomorphism properties, then it also has the finite weak dependence property.
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Proof. Given a vocabulary �, let �′ be a disjoint copy and consider the theory
Φ(�,R):

{∀x1 ... xn∀y1 ... yn[
∧
i

Rxiyi → (�(x1 ... ) ↔ � ′(y1 ... ))] | � ∈ �, � ′ ∈ �′ its copy}

∪ {∀x1, ... , xn ∀y1, ... , yn [
∧
i

Rxiyi → Rt(x1 ... )t′(y1 ... )] | t a term of �}

∪ {“R and R–1are surjective”}.

For anyϕ ∈ L(�), letϕ′ denote its renaming in the type �′. Then, Φ(�,R) |= ϕ ↔ ϕ′

by closure of the logic L under weak isomorphisms, and by compactness

Φ(�0, R) |= ϕ ↔ ϕ′

for some finite �0 ⊆ �.
Assume now that A � �0 ∼ B � �0 by some �0-weak isomorphism r ⊆ (A ∪ B)2,

and |A| < |B |. By Lemma 3.1, there is a C of power |B | and a surjective strict
homomorphism h : C → A. Thus, r ◦ h is a �0-weak isomorphism from C onto
B. Renaming the last structure as B′ with �′ we may put C and B′ together in a
structure C + B′ sharing the same domain. Then, 〈C + B′, r ◦ h〉 |= Φ(�0, R), and
hence, 〈C + B′, r ◦ h〉 |= ϕ ↔ ϕ′ this implies: C |= ϕ iff B |= ϕ. But A ∼ C with
respect to full �, then A |= ϕ iff B |= ϕ. If |A| = |B |, we apply the construction
directly with A and B. �

We are now ready to provide the main result of this paper:

Theorem 3.4. Let L be an abstract logic such that L–
�� ≤ L. If L has the weak

isomorphism, compactness, and Löwenheim–Skolem properties, then L ≤ L–
�� .

Proof. Assume ϕ ∈ L(�) \ L–
��(�) and ϕ depends on a finite vocabulary �0 ⊆ �

(by compactness and Lemma 3.3). Notice that there are only finitely many sentences
of rank ≤ n in L–

��(�0) [11, Lemma 4.4]; thus, the relation A � �0 ≡–
n B � �0 has

finitely many equivalence classes of structures of type � and the equivalence class of
a structure A coincides with Mod�(ΘA) for the sentence

ΘA =
∧

{� of rank ≤ n | A |=�}.

Therefore, Mod�(ϕ) cannot be a union of these classes (it would be equivalent to a
finite disjunction of sentences in L–

��(�0)) and it must cut some equivalence class in
two non-emtpy pieces. In other words, there are �-structures An and Bn such that

An � �0 ≡–
n Bn � �0, An |= ϕ,Bn |= ¬ϕ.

By Lemma 3.1, we may assume that An and Bn have the same infinite power and
share the same domain An.

By [11, Lemma 4.4 and Proposition 4.5], An � �0 ∼n Bn � �0; that is, there are sets
I0, ... , In of weak finite �0-partial isomorphisms from An to Bn such that In �= ∅ and,
for each p ∈ Ij+1, a ∈ An, b ∈ Bn, there are q, q′ ∈ Ij such that q, q′ ⊇ r and a ∈
dom(q), b ∈ rg(q′), and further extension properties guaranteeing that constants and
functions are eventually preserved. The set of all finite weak �0-partial isomorphisms
has the same power as D, so we may enumerate them as {Rp | p ∈ An}; moreover,
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we may assume {0, ... , n} ⊆ An. Then, renaming Bn as B′
n on the vocabulary �′, as

in the proof of Lemma 3.3, and defining in An:
<∗= usual order of {0, ... , n},
c∗0 = n,
〈j, p〉 ∈ I ∗ ⇔ Rp ∈ Ij ,
〈p, x, y〉 ∈ G∗ ⇔ 〈x, y〉 ∈ Rp,

the structure 〈An + Bn, <
∗, c∗0 , I

∗, G∗〉 satisfies the following finite theory Ψ in the
vocabulary:

�0 ∪ �′0 ∪ {<, c0, I, G},

where c0 is a constant, < and I are binary relations, and G is a ternary relation (all
fresh symbols; moreover, for each formula 	 ∈ L(�0), we denote by 	′ its renaming
in the vocabulary �′0):

1. ϕ, ¬ϕ′.
2. ∃p Ic0p.
3. ∀p−→x −→y (

∧
iGpxiyi → (
(−→x ) ↔ 
′(−→y ))),

for each relation symbol 
 ∈ �0 of arity |−→x |.
4. ∀uvp−→x −→y (u < v ∧ Ivp ∧

∧
iGpxiyi → ∃q[Iuq ∧Gqf(−→x )f′(−→y )

∧∀zw(Gpzw → Gqzw)]),
for each function symbol f ∈ �0 of arity |−→x |.

5. ∀uvp(u < v ∧ Ivp → ∃q[Iuq ∧Gqcc′ ∧ ∀zw(Gpxw → Gqzw)]),
for each constant symbol c ∈ �0.

6. ∀uvp(u < v ∧ Ivp → ∀x∃qq′yy′[Iuq ∧ Iuq′ ∧Gqxy ∧Gq′y′x
∧∀zw(Gpxw → Gqzw ∧Gq′zw)].

The second sentence states that In is non-empty. Sentences 3–6 describe a sequence
I0, ... , In of sets of weak �0-partial isomorphisms in the sense of [11, Definition 4.2].

As the above holds for any n, we have models for any finite part of the infinite
theory with additional constants c1, c2, ...:

Ψ(�0, <, I, G) ∪ {ϕ,¬ϕ′} ∪ {cj+1 < cj | j ∈ �}.

By compactness, we have a model 〈C, <C, I C, GC, 〈cC
j 〉j∈�〉 of this theory. By the

axioms, each p ∈ C encodes a weak �0-partial isomorphism Rp = {〈x, y〉 ∈ A2 |
〈p, x, y〉 ∈ GC} between C � �0 and C � �′0, and the sequence

Ij = {Rp ∈ C | 〈p, cj〉C ∈ I C}, j = 0, 1, ...

has the back-and-forth extension property with respect to increasing subindexes: if
Rp ∈ Ij and c ∈ C , then there is a Rq ∈ Ij+1 such that c ∈ dom(Rp), etc. Hence,
KC =

⋃
j Ij has the unrestricted extension property and becomes a Karp system

of weak �0-isomorphisms. This is expressible by the finite theory Φ(�0, K,G) which
results of changing the back-and-forth axioms of Ψ(�0, <, c0, I, G) to

∀px(Kp → ∃q q′ ∃yy′[Kq ∧Kq′ ∧ Gqxy ∧ Gq′y′x ∧ ∀z∀w(Gpzw → Gqzw ∧ Gq′zw)].

In sum, 〈C, KC, GC〉 |= Φ(�0, K,G) ∪ {ϕ,¬ϕ} which means

C � �0 ∼p C � �′0,C � � |= ϕ,C � �′ |= ¬ϕ′.
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By the Löwenheim–Skolem property, we may assume that C is countable. Hence, by
Proposition 2.2, C � �0 ∼ C � �′0 and thus C� � |= ϕ ⇐⇒ C� �′|= ϕ by the choice of
�, a contradiction. �

Remark 3.5. The Karp– property may replace the Löwenheim–Skolem hypoth-
esis in the above theorem because the proof yields before the last step a model
of Φ(�0, K,G) ∪ {ϕ,¬ϕ} for any finite �0 ⊆ �, which by an additional use of
compactness gives a model 〈C, KC, GC〉 of Φ(�,K,G) ∪ {ϕ,¬ϕ}; that is, the weak
isomorphisms encoded by K,G are weak �-isomorphisms, thus we have

C � � ∼p C � �′, C� � |= ϕ, C� �′|= ¬ϕ′
,

which, by the Karp– property, gives directly the contradiction C� � |= ϕ ⇔ C� �′|= ϕ′.

Remark 3.6. Note that the boundedness property for L–
∞� is essentially a

corollary of the classical one from [4, Theorem 1.8]. Then, if we use our approach in
encoding weak partial isomorphisms in Theorem 3.4 and working with the Karp–

property, it is straightforward to modify the argument from [3, Theorem III.3.1] to
show that L–

∞� is maximal among its extensions in having the boundedness, and
Karp– properties. In fact, all we need from the boundedness property is that it will
give us a model where < is not well founded.

Remark 3.7. As a referee suggests, a small modification of the given proof
of Lindström’s result permits to prove the following separation theorem: if ϕ,
ϕ∗ ∈ L(�), L is an extension of L–

�� satisfying the conditions of Theorem 3.4
except for closure, and the classes of structures Mod(ϕ) and Mod(ϕ∗) are
disjoint, then they are separable by some � ∈ L–

��(�), i.e., Mod(ϕ) ⊆ Mod(�) and
Mod(ϕ∗) ⊆ Mod(¬�). Just makeϕ∗ play the role of¬ϕ in the proof (for a thorough
discussion of the case with identity, see [18]). Applying this property to second-order
existential logic without identity L–II∃

�� , yields Craig interpolation theorem for L–
��

[13, Theorem 5]. Assume ϕ |= 	 with ϕ ∈ L–
��(�), 	 ∈ L–

��(�), and � = � ∩ �.
Then, ∃�\�ϕ |= ∀�\�	, where ∃�\�, ∀�\� are second-order quantifier binding the
symbols in � \ � and � \ �, respectively. Now, ∃�\�ϕ and ∃�\�¬	 define disjoint
model classes belonging to L–II∃

�� (�) and, by the separation property, we obtain
� ∈ L–

��(�) such that ∃�\�ϕ |= � |= ∀�\�	. That is, ϕ |= � |= 	.

Comparing the proof of Theorem 3.4 with that of its classical counterpart with
identity, the reader should note that our approach makes a substantial use of the
strong upwards Löwenheim–Skolem theorem given by Lemma 3.1. This allows us
to deal with cardinality situations that in the classical context are dealt with the
expressive power of identity.

One may wonder whether we can obtain a Lindström-style characterization
for identity-free monadic first-order logic, L1–

�� , analogous to Tharp’s result [28,
Theorem 1] for monadic first-order logic. The answer is yes and the result does not
require, surprisingly, any form of the Löwenheim–Skolem theorem (not even the
other two properties if we assume the finite weak dependence property; see Remark
3.9).

Theorem 3.8. Let L be a monadic logic such that L1–
�� ≤ L. If L satisfies the

compactness and weak isomorphism properties, then L ≤ L1–
�� .

https://doi.org/10.1017/jsl.2023.2 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.2


154 GUILLERMO BADIA, XAVIER CAICEDO, AND CARLES NOGUERA

Proof. Assumeϕ ∈ L(�) \ L–
��(�), � = {Pi | i ∈ I }. As in the proof of Theorem

3.4, we have for each finite �0 ⊆ �:
A � �0 ≡–

1 B � �0, A |= ϕ, |= ¬ϕ,
and by compactness

A ≡–
1 B, A |= ϕ,B |= ¬ϕ.

By Lemma 3, we may assume A and B share the same domain A.
Each map  : I → {0, 1} determines a type

t(x) = {Pi(x) | (i) = 1} ∪ {¬Pi(x) | (i) = 0}.
A type t is consistent with A if for each finite J ⊆ I , A |= ∃x ∧ (t(x) � J ). Clearly,
A and B above have the same consistent types and, if t is not consistent with A,
there is a witness � of the form ¬∃x ∧ (t�J (x)), J ⊆fin I, true in both A and B.

Consider the following theory on the vocabulary � ∪ �′ ∪ {P, P′
 |  ∈ 2I }:

– ϕ,¬ϕ′.
For each t consistent with A and each finite J ⊆ I :

– ∃xP(x), ∀x(P(x) → ∧(t�J (x)).
– ∃xP′

(x), ∀x(P′
(x) → ∧(t′�J (x)).

For each t inconsistent with A:
– � , �′ .

Then, C = A + B′ may be expanded to a model 〈A + B′, PC
 , P

′C
 〉
∈2J of each

finite part Σ of this theory, taking PC
 = {a ∈ A | A |=t�J (a)} and P′C

 = {b ∈ A |
B′|=t′�J (a)} for J = {i | Pi or P′

i occur in Σ}.

By compactness, there is a model 〈Â + B̂′, PA
 , P

′B′
 〉

∈2J of the full theory. Then,
Â and B̂ realize exactly the same types t (those originally consistent) and thus
Â ∼ B̂, defining aRb iff a and b realize the same type t . This contradicts the weak
isomorphism property since Â |= ϕ and B̂ |= ¬ϕ. �

Remark 3.9. If L has the finite weak dependence property, then the compactness
and weak isomorphism properties are not needed in the previous theorem. Indeed,
if ϕ depends on finite �0 ⊆ �, the first step of the proof A � �0 ≡–

1 B � �0, A |= ϕ,
B |= ¬ϕ, yields already a contradiction, since A and B realize trivially the same t
types based on �0, and thus A � �0 ∼ B � �0.

Since L�� and L1
�� have both the compactness and the Löwenheim–Skolem

properties, then we can obtain the following preservation result from Theorems
3.4 and 3.8 (which is essentially [11, Corollary 2.10]5 proved by a rather different
method):

Corollary 3.10. L–
�� (resp. L1–

��) is the fragment of L�� (resp. L1
��) preserved

under weak isomorphisms.

We proceed now to obtain an analogue of the second Lindström theorem from
[25]. First, we need the following lemma:

5Note that [11, Corollary 2.10] is equivalent to our formulation due to [11, Proposition 2.6].
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Lemma 3.11.
6 Let L be an abstract logic such that L–

�� ≤ L satisfying the finite
weak dependence and weak isomorphism properties. If L extends properly L–

�� , then
there exist a finite vocabulary � containing at least one unary relation U and, for each
finite vocabulary � ⊇ �, a sentence � ∈ L(�) such that:

(1) For each n ≥ 1, there is a model A |= � with |UA| = n.
(2) If A |= � and A is countably infinite, then UA

∗
is finite and non-empty.

Proof. Assume ϕ ∈ L(�) \ L–
��(�) and ϕ depends on finite �0 ⊆ �. Let �′0 be a

disjoint copy of �0, and set

� = �0 ∪ �′0 ∪ {<, c0, I, G,U,E},
which results of adding to the vocabulary in the proof of Theorem 3.4 a unary
predicate symbol U and a binary predicated symbol E.Next, let � ⊇ α be finite and
consider the sentence � ∈ L(�) which is the conjunction of the theory Ψ introduced
in the proof of Theorem 3.4 plus the following new sentences:

7. ∀x(Ux ↔ ∃y(x < y ∨ y < x) “U is the field of <”.
8. ∀xExx

∀xy∀−→w (Exy → (
(−→w ) ↔ 
(−→w (y/x))) ∧ Ef(−→w )f(−→w (y/x))), 
,f ∈ �.
This says that E satisfies the finite list of axioms of identity for the vocabulary
�, and guarantees that E is the Leibniz congruence relation (this is enough by
[22, Section 73, Theorem 41]) with respect to �.

9. ∀x¬(x < x), ∀xyz(x < y ∧ y < z → x < z),
∀xy(Ux ∧Uy → x < y ∨ y < x ∨ Exy),
Uc0 ∧ ∀x(Ux → x < c0 ∨ xEc0),
∀xy(Ux ∧Uy ∧ x < y → ∃z(z < y ∧ ∀w(w < y → w < z ∨ Ewz)).
These axioms say, with E replacing =: “< is a strict linear order of U with last
element c0 and immediate predecesor for non-minimal elements”.

Using [11, Lemma 4.4 and Proposition 4.5] and Lemma 3.1 as in Theorem 3.4,
for each n < �, we get a model C = 〈An + B′

n, <
∗, c∗0 , I

∗, G∗, U ∗, E∗〉 |= � where
UA = {0, ... , n}, and EA is true identity.

All that is left to show is that if for a countably infinite structure A we have A |= �,
then UA

∗
is finite and non-empty. The first thing to notice is that <A

∗
is a strict

linear ordering with last element [c0] and immediate predecessors for non-minimal
elements, because E collapses to true identity in A∗. Now, suppose that UA

∗
is

infinite, then we have an infinite descending sequence

··· <A
∗

[a2] <A
∗

[a1] <A
∗

[a0] = [c0]

in UA
∗
, where [an+1] is the immediate predecessor of [an]. But then we have the

sequence ··· <A a2 <
A a1 <

A a0 in A. Reasoning as in the proof of Theorem 3.4
(i), A � �0 ∼p (A � �′0)–′

and, since A is countable, A � �0 ∼ (A � �′0)–′
but A � �0 |=

ϕ, (A � �′0)–′ |= ¬ϕ′, contradicting the weak isomorphism property. �

6This lemma is an analogue of [3, Lemma III.1.1.2] for L�� , but simpler. In particular, we need not
use the Löwenheim–Skolem property.
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Theorem 3.12. Let L be an effectively regular abstract logic [3, Definition II.1.2.4]
such that L–

�� ≤ L. Then, L has the weak isomorphism property, is recursively
enumerable for validity, and has the Löwenheim–Skolem property only if L ≤ L–

�� .

Proof. Assume for a contradiction that L �≤ L–
��.Using Vaught’s generalization

of Trakhtenbrot theorem to L–
�� [31], we obtain a finite purely relational vocabulary

�′ such that the set Vfin ⊆ L–
��(�′) of sentences valid on finite models is not

recursively enumerable. Let � ∈ L–
��(� ∪ �′) where � and � are given by Lemma

3.11 (we may obviously assume � ∩ �′ = ∅). Now we may observe that

	 ∈ Vfin iff � � → 	U,

where 	U is the relativization in L–
�� of 	 to the unary predicate U (which is

possible since L–
�� has the relativization property). If 	 ∈ Vfin, then whenever A

is a countably infinite � ∪ �′-structure such that A |= � we must have that UA
∗

is
finite and non-empty by Lemma 3.11, thus A∗ |= 	U, and by the weak isomorphism
property, A |= 	U as desired (given that A ∼ A∗). But for any sentence 
 ofL,� 
 iff

 is valid on countably infinite structures: if �� 
, a countably infinite countermodel
for 
 can be found by either applying the Löwenheim–Skolem property or Lemma
3.1 as needed.7 On the other hand, if � � → 	U and A is a �′-model of size n, say,
we may assume (since �′ ∩ � = ∅) that A ∼= (A′|U ) � �′ for a model A′ that comes
from extending and expanding A to a �′ ∪ �-model of � given by (1) of Lemma
3.11 in a suitable way. Hence, A′ |= 	U and thus A |= 	. Since, by hypothesis, L is
effectively regular and recursively enumerable for validity, we must have then that
Vfin is recursively enumerable after all, which is a contradiction. �

Remark 3.13. Proper extensions of L–
�� which are recursively enumerable for

validity and have the weak isomorphism property are given in Examples 4.1 and
4.2. Notice that an analogous theorem for the monadic case is trivial by Remark
3.9 because, in the presence of the weak isomorphism property, the effectivity of the
logic implies the finite weak dependence property.

Remark 3.14. Other maximality results can be obtained by similar methods
to those in this paper. For example, L–

�� is the maximal logic with the weak
isomorphism property, compactness and the so called Tarski union property. This
can be seen by adapting the argument of [3, Theorem III.2.2.1] for L�� to the
context without identity with the help of [14, Proposition 2.8]. We conjecture that
the �-omitting types theorem also provides a characterization of the maximality of
L–
�� (cf. [26]).

§4. Extensions of L–
�� . In this section, we collect a number of interesting

examples of identity-free logics that help answer some questions posed by our
results, e.g., is there a proper extension of L–

�� satisfying both the compactness and
weak isomorphism properties?8 Notice that the infinitary logic L–

�1�
is an example of

7This point is different from the proof of the classical counterpart of the theorem, where identity
is available. Obviously, in that setting, from a finite countermodel we cannot simply go to a countably
infinite one.

8The positive answer to this question in Example 4.2 shows that the Löwenheim–Skolem property is
necessary in Theorem 3.4.
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an abstract logic with the weak isomorphism and Löwenheim–Skolem properties,
but without compactness.

Our examples will rely on the addition of suitable Lindström quantifiers which
conveniently differ from usual definitions found in the literature. Indeed, adding a
Lindström quantifier to L–

�� usually destroys the weak isomorphism property, as is
the case with cardinality and cofinality quantifiers. However, each quantifier has a
natural version closed under weak isomorphisms.

Example 4.1 (The logic L–
��(Q–

α)). Consider the Lindström quantifier Q–
α

defined as:

{〈A,M,E〉 |M ⊆ A,E equivalence relation on A congruent withM,
∣∣M�E∣∣ ≥ �α}.

The satisfaction condition for this operator then is

A |= Q–
αxyz[ϕ(x), �(y, z)] iff {〈a, b〉 ∈ A2 | A |= �[a, b]} is an equivalence relation on A,

A |= ∀xy(�(x, y) → (ϕ(x) → ϕ(y))), and∣∣{a ∈ A | A |= ϕ[a]}�{〈a, b〉 ∈ A2 | A |= �[a, b]}
∣∣ ≥ �α.

The quantifier Qα may be recovered by letting E be the true identity relation =.

The first observation we wish to make is thatQ–
1 (seen as a Lindström quantifier)

is closed under weak isomorphisms, i.e., if 〈A,M,E〉 ∈ Q–
1 and 〈A,M,E〉 ∼

〈A′,M ′, E ′〉, then 〈A′,M ′, E ′〉 ∈ Q–
1 . To see this, suppose that 〈A,M,E〉 ∈ Q–

1 and
R is a weak isomorphism from 〈A,M,E〉 onto 〈A′,M ′, E ′〉. E ′ is an equivalence
relation on A′ compatible withM ′ because that fact can be expressed as a formula
in L–

�� . We wish to show then that R induces a bijectionM�E −→M
′
�E ′. Consider

the relation R′ defined as [x]R′[y] iff xRy. We wish to show that R′ is in fact a
bijection. It is obviously surjective since R is. For functionality: assume that x ∈M ,
xRy1 and xRy2, then, since xEx, we must have that y1E

′y2, which then means
that if [x]R′[y1] and [x]R′[y2], [y1] = [y2]. Injectivity is obtained by an analogous
argument in reverse. Hence, |M

′
�E ′| ≥ �1 as desired.

L–
��(Q–

1) is clearly more expressive than L–
�� since the latter has the Löwenheim–

Skolem property but the former does not (thus, the quantifier Q–
1 is not definable in

L–
��). Recall that a logic L is said to be congruence closed [27] if, for any ϕ ∈ L(�),

there is a sentence ϕE ∈ L(� ∪ {E}) (where E is a new binary predicate) such that

(∗) A�E |= ϕ iff 〈A, E〉 |= ϕE

for any structure A and any equivalence relationE on A. We will follow the notation
of [8] in using qL to denote the congruence closure of a given logic L, obtained
by adjoining to L the sentences defined by (∗) as new quantifiers (see [27]). Then
it is not difficult to observe that the logic L–

��(Q–
1) is contained in the logic (with

identity) qL��(Q1). By the definition above,∣∣{a ∈ A | A |= ϕ[a]}�{〈a, b〉 ∈ A2 | A |= �[a, b]}
∣∣ ≥ �1

can be expressed by the relativized sentence ((Q1x(x = x))�){x|ϕ(x)}. Recall a logic
is (κ, �)-compact if every set of sentences of cardinality ≤ κ which has models for
each of its subsets of cardinality< �, has itself a model. By [27, Proposition 3.2], for
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any L, if L is (κ, �)-compact, so is qL, and hence qL��(Q1) is (�,�)-compact since
L��(Q1) is, which means that L–

��(Q–
1) also inherits this property. Once more, by

[27, Proposition 3.2], sinceL��(Q1) is recursively enumerable for validity, qL��(Q1)
is too, and hence, so is the logic L–

��(Q–
1).

Example 4.2 (The logic L–
��(Qcf�–)). Consider now the following Lindström

quantifier:

Qcf�– = {〈A,M,E〉 |M ⊆ A2, E is an equivalence relation on A congruent withM,

〈A,M 〉�E is a linear order with cofinality �}.

Then, we have that A |= Qcf�–xyzw[ϕ(x, y), �(z, w)] iff:

• �A = {〈a, b〉 ∈ A2 | A |= �[a, b]} is an equivalence relation on A,
• A |= ∀xy((�(x, y) ∧ �(z, w)) → (ϕ(x, z) → ϕ(y,w))),
• A |= “ϕ(x, y) is an irreflexive transitive relation”,
• A |= ∀xy (ϕ(x, y) ∨ ϕ(y, x) ∨ �(x, y)), and

• 〈A, �A〉�{〈a, b〉 ∈ A2 | A |= �[a, b]} has cofinality �.

Once more, the quantifier Qcf� can be defined as above by letting E be the true
identity relation =.

We can show that the quantifier Qcf�– is closed under weak isomorphisms.
Suppose that 〈A,M,E〉 ∈ Qcf�– and R is a weak isomorphism from 〈A,M,E〉 onto
〈A′,M ′, E ′〉. As in Example 4.1, R′ defined as [x]R′[y] iff xRy gives a bijection

from 〈A,M 〉�E to 〈A′,M ′〉�E ′. Furthermore, R′ preserves the order: assume that

[x1]R′[y1], [x2]R′[y2] and 〈[x1], [x2]〉 ∈M 〈A,M〉�E , so 〈x1, x2〉 ∈M and, since x1Ry1

and x2Ry2, we have 〈y1, y2〉 ∈M ′, and thus 〈[y1], [y2]〉 ∈M ′〈A′,M ′〉
�E′ . Hence, the

cofinality ofM
′〈A′,M ′〉

�E′ must be � as well.
Shelah’s logic L��(Qcf�) is (∞, �)-compact9 and, by [27, Proposition 3.2], so is

qL��(Qcf�). But, given that L–
��(Qcf�–) is included in qL��(Qcf�), the former is

also (∞, �)-compact. Similarly, L–
��(Qcf�–) is recursively enumerable for validity.

Moreover, we can observe that L–
��(Qcf�–) does not have a Löwenheim–Skolem

theorem. For example, the sentence in the signature {E,<} with two binary relation
symbols,

¬Qcf�–xyzw[x < y,E(z, w)] ∧ “E is an equivalence relation”
∧ ∀xy((E(x, y) ∧ E(z, w)) → (x < z → y < w))
∧“ < is an irreflexive transitive relation”
∧ ∀xy (x < y ∨ y < x ∨ E(x, y)) ∧ ∀x ∃y (x < y)

has no countable models since it produces in the quotient model an infinite linear
order without last element with cofinality �= �, and hence ≥ �1.

Interestingly enough, some known quantifiers can be shown to preserve the weak
isomorphism property:

9A nice detailed proof can be found in [12].
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Example 4.3 (The logic L–
��(QH )). Recall the Henkin quantifier QH which is

defined as follows:

QH = {〈A,M 〉 |M ⊆ A4,M ⊇ f × g for some f, g : A −→ A}.

Then, we have that A |= QHxyzwϕ(x, y, z, w) iff for some f, g : A −→ A and for
each a, b ∈ A, A |= ϕ[a,f(a), b, g(b)] iff A |= ∃f, g ∀x, y ϕ[x,f(x), y, g(y)].

First, we must show that QH is closed under weak isomorphisms. Assume then
that 〈A,M,E〉 ∈ QH and R is a weak isomorphism from 〈A,M 〉 onto 〈A′,M ′〉.
ThenM ⊆ A4,M ⊇ f × g for somef, g : A −→ A. All we need to do now is define
f′, g ′ : A′ −→ A′ such that M ′ ⊇ f′ × g ′. Define f′ as follows: take any a1 ∈ A′,
we know then that Ra0a1 for some a0 ∈ A, so let f′(a1) be some b1 ∈ A′ such
that Rf(a0)b1. Do a similar thing for g ′. Now, for any 〈a1, f

′(a1), b1, g
′(b1)〉 ∈

f′ × g ′, there are a0, b0 ∈ A s.t. Ra0a1, Rf(a0)f′(a1), Rb0b1, Rg(b0)g ′(b1), and
since R is a weak isomorphism and 〈a0, f(a0), b0, g(b0)〉 ∈M by hypothesis,
〈a1, f

′(a1), b1, g
′(b1)〉 ∈M ′, as desired.

Take now the sentence ϕinf ∈ L–
��(QH )(�) where � = {E} and E is binary:

“E is an equivalence relation” ∧ ∃z ∃f, g ∀x, y (¬zEf(x) ∧ (f(x)Ey → g(y)Ex)).

Since QH is closed under weak isomorphisms, A ∼ A∗ = A�EA in the

vocabulary �, and A�EA |= ∀x, y (xEy ↔ x = y), we have that A |= ϕinf

only if A�EA |= ∃z ∃f, g ∀x, y (z �= f(x) ∧ (f(x) = y → g(y) = x)). The latter

sentence says that A�EA is infinite. On the other hand, for a �-structure

A, if A |= “E is an equivalence relation” and A�EA = A∗ is infinite, A�EA |=
∃z ∃f, g ∀x, y (z �= f(x) ∧ (f(x) = y → g(y) = x)), so, reversing the previous
reasoning, A |= ϕinf.

Hence, we might consider the following theory T in the vocabulary �:

{¬ϕinf} ∪ {∃x0, ... , xn
∧
i<j≤n

¬xiExj | 1 ≤ n < �} ∪ {“E is an equivalence relation”}.

This theory says that E is an equivalence relation with infinitely many equiv-
alence classes, so for any model A |= T , A�EA is infinite and then A�EA |=
∃z ∃f, g ∀x, y (z �= f(x) ∧ (f(x) = y → g(y) = x), which is impossible, since A |=
¬ϕinf. Hence, T has no models. However, T is finitely satisfiable. Thus, compactness
fails for the logic L–

��(QH ), which is then obviously a proper extension of L–
�� .

To see that L–
��(QH ) does not have the Löwenheim–Skolem property, consider

first the formula �(x, y) in the vocabulary {E,<}:
“E is an equivalence relation congruent with < ”,
∃f, g ∀u, v((E(u, v) ↔ E(f(u), g(v))) ∧ (u < x → f(v) < y)),
∧ ∃f, g ∀u, v((E(u, v) ↔ E(f(u), g(v))) ∧ (u < y → f(v) < x)).

Now, if A |= �[a, b], since A ∼ A�EA, and given that A�EA |= ∀x, y
(xEy ↔ x = y),

A�EA |= ∃f, g∀u, v((u = v ↔ f(u) = g(v)) ∧ (u < [a]E → f(u) < [b]E)),

A�EA |= ∃f, g∀u, v((u = v ↔ f(u) = g(v)) ∧ (u < [b]E → f(u) < [a]E)).
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Logic Compactness LöwSko property Weak Iso property
L�� + + –
L–
�� + + +

L–
��({∃≥n | n ∈ X}) + + –

L–
��(Q–

1) + (at least (�,�)) – +
L–
��(Q1) + (at least (�,�)) – –

L–
��(Qcf�–) + – +

L–
��(Qcf�) + – –

L–
��(QH ) – – +

L–
�1�

– + +
L–
∞� – – +

Table 1. Summary of properties of some logics.

This implies that |{z | A�EA |= z < [a]E}| = |{z | A�EA |= z < [b]E}|. Hence,
�(x, y) is an instance of a Härtig quantifier in the quotient by E. We can then
use this methodology to adapt the typical counterexample for the Löwenheim–
Skolem property for the Härtig quantifier [19, Sentence (1.2)], axiomatizing infinite
linear orderings of successor cardinalities.

Incidentally, the expressive power on finite models of fragments of existential
second-order logic without identity, but containing the Henkin quantifier (in
particular Independence Friendly logic), has been studied in great detail in [24].

§5. Conclusions. We have fulfilled our aim of finding Lindström-style character-
izations for the maximality of (variants of) the identity-free first-order logic. The
properties we have employed are collected in Table 1. Our work, however, still leaves
a number of interesting open questions, including:

Problem 5.1. Is there a proper extension of L–
�� satisfying both the Löwenheim–

Skolem and compactness properties that is not contained in L��?

Problem 5.2. Is there a compact extension of L–
�� which does not remain compact

when adding identity to the logic?
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