
Data Pipes: Declarative Control over Data Movement
Lukas Vogel

Technische Universität München
lukas.vogel@in.tum.de

Daniel Ritter
SAP, HPI

daniel.ritter@sap.com

Danica Porobic
Oracle

danica.porobic@oracle.com

Pınar Tözün
IT University of Copenhagen

pito@itu.dk

Tianzheng Wang
Simon Fraser University

tzwang@sfu.ca

Alberto Lerner
University of Fribourg
alberto.lerner@unifr.ch

ABSTRACT
Today’s storage landscape offers a deep and heterogeneous stack of
technologies that promises to meet even the most demanding data-
intensive workload needs. The diversity of technologies, however,
presents a challenge. Parts of it are not controlled directly by the
application, e.g., the cache layers, and the parts that are controlled,
often require the programmer to deal with very different transfer
mechanisms, such as disk and network APIs. Combining these
different abstractions properly requires great skill, and even so,
expert-written programs can lead to sub-optimal utilization of the
storage stack and present performance unpredictability.

In this paper, we propose to combat these issues with a new pro-
gramming abstraction called Data Pipes. Data pipes offer a new API
that can express data transfers uniformly, irrespective of the source
and destination data placements. By doing so, they can orches-
trate how data moves over the different layers of the storage stack
explicitly and fluidly. We suggest a preliminary implementation
of Data Pipes that relies mainly on existing hardware primitives
to implement data movements. We evaluate this implementation
experimentally and comment on how a full version of Data Pipes
could be brought to fruition.

1 INTRODUCTION
The storage hierarchy in state-of-the-art computing systems has be-
come deeper and more heterogeneous. Besides the traditional cache
layers and DRAM, persistent memory (PMem) is now available on
Intel platforms [52], and soon High-Bandwidth Memory (HBM) will
also be on the market [45] 1. Technologies such as RDMA-enabled
networks, which are now very common, can connect stacks from
different machines with low latency [21, 46]. In addition, platforms
that enable computational storage and near-data processing are
becoming more widely available [11, 30]. Programming with such
a diverse set of technologies requires quite a skill set. Such a skill
set is much more crucial in data-intensive systems, where efficient
data movement is paramount.

The challenges to obtaining efficient and predictable data move-
ment are numerous. The following is a non-exhaustive list: (1)

1Even though Intel decided to discontinue PMem, the trend of having more diversity
in storage layers remains.

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution, provided that you
attribute the original work to the authors and CIDR 2023. 13th Annual Conference on
Innovative Data Systems Research (CIDR ’23). January 8-11, 2023, Amsterdam, The
Netherlands.

HDDs, SSDs, PMem, and DRAM all have different device character-
istics requiring the programmers to adopt different system optimiza-
tions. (2) There are various interfaces of different granularity when
accessing these devices (e. g., block, zone, key-value, byte). (3) Differ-
ent workloads (e. g., OLTP, OLAP, Machine Learning) exhibit differ-
ent data access patterns and require different hardware-conscious
optimizations. (4) The cloud and high-performance computing in-
frastructure have disaggregated storage, adding network-induced
unpredictability. (5) Different CPU vendors offer support for differ-
ent storage, such as Intel historically supporting persistent memory
while AMD supports more PCIe lanes.

The conventional wisdom in writing data-intensive systems is
to deal with each storage type individually, using whichever OS,
file system, or library API that is available. This approach is valid
when we store large data structures but do not move much data,
e.g., indexes. The programmer decides which storage layer data
should reside on and creates efficient access methods. This permits
targeting optimizations for particular storage device [10, 12, 32, 40,
44, 50], stack [19, 22, 29, 34], or primitive [26, 43].

This approach breaks down in scenarios where large amounts of
data need to be moved. One such example is an external sort. Sort is
arguably one of the most fundamental operations in data-intensive
systems and, as we will show shortly, one that can significantly
benefit from different storage technologies. The reason is that im-
plementing all the data movements that an external sort requires is
difficult precisely because of the diversity of storage options. The
programmer is exposed directly to all the individual idiosyncrasies
of each layer. We will use sort as an example throughout the pa-
per, but many other operators and patterns exist in data-intensive
systems that can benefit from significant data movement across
storage layers. Rather than exposing the programmer to a jamboree
of APIs and specific behaviors, we propose to give her an abstrac-
tion that can move data across any layers efficiently. We call this
abstraction Data Pipes.

Data pipes is a holistic, top-down approach to creating data-
intensive systems that utilize modern storage stacks. More specifi-
cally, data pipes offer programmers a declarative interface for ex-
plicitly controlling how data moves from one layer of the storage
stack to another. Underneath, a framework determines which prim-
itives to use based on the available hardware and requested data
path. In other words, a data pipe will resort to a hardware-assisted
data movement instead of wasting precious CPU cycles with load
and store instructions whenever such a hardware unit exists. For
instance, modern CPUs offer a little-known uncore DMA unit called
I/OAT [5]. The I/OAT unit can move data from PMem to DRAM and



CIDR23, January 08–11, 2023, Amsterdam, The Netherlands Vogel, et al.

vice-versa. For another instance, data pipes will resort to optimiza-
tions, such as DDIO [4], to move data directly to caches, skipping
DRAM whenever possible. The main goal of the framework under-
neath the Data Pipes abstraction is to minimize data movement
traffic and latency.

In summary, the contributions of this paper are the following:

• We survey the primitives that give us more control for orches-
trating data movement over the storage hierarchy (Section 2).

• We demonstrate the potential of these primitives over the use
case of an external sort in terms of minimizing data movement
latency and traffic (Section 3) and quantify the performance of
two primitives, I/OAT and DDIO, in this context (Section 4).

• We present our vision of Data Pipes, a top-down and holistic
approach to creating a declarative control plane over data move-
ment in data-intensive systems (Section 5) and discuss the guid-
ing principles behind their design (Section 6).

• We identify a research agenda targeting different system layers
(from hardware to applications) to better support the data pipes
vision (Section 7).

2 BACKGROUND AND MOTIVATION
We have mentioned several storage layers but have yet to describe
them. Fig. 1 depicts the typical stack in a modern computing system.
The right side shows the layers as a classic size vs. latency pyramid.
The lower storage layers are larger and slower, while the upper
layers are scarcer but present better latency and bandwidth. On the
left side of the figure, we present a partial list of mechanisms that
allow a programmer to directly or indirectly move data between two
layers. Note that the mechanisms range from complete protocols
such as NVMe [38], to technologies such as DDIO, all the way to
CPU instructions.

We classify the mechanisms by color-coding them according to
how easy to use and accurate they are from a programming point
of view. The green mechanisms are effortless for a programmer
to access it—e. g., via I/O system calls—and can issue precise data
transfers. One such example is the NVMe protocol. On the other
end of the spectrum, we portray highly specialized mechanisms in
red. They require low-level programming skills and are sometimes
advisory. Examples of such mechanisms are DDIO and I/OAT. In
between, there are a growing number of instructions that a savvy
programmer can use to interact with the caching storage layers.
When combined, these mechanisms can move data between almost
any two distinct layers of the stack.

We note how non-uniform these mechanisms are. Some are
transparent, such as promoting an entire cache line as a side-effect
of reading data; others are explicit, such as issuing the recent
CLDEMOTE instruction to perform the opposite movement. Some
are implemented as hardware instructions, as above, while others
are libraries. In particular, I/OAT defies classifications. As we men-
tioned before, the I/OAT is a DMA unit that can move data without
CPU intervention.

Some frameworks try to unify these mechanisms and make them
more accessible to programmers, the most notorious one being In-
tel’s Storage Performance Development Kit (SPDK) [7]. Indeed, we
extensively used SPDK for the experiments we present in Section 4.
SPDK is, however, very “opinionated” on how programs must be

caches

PMem / DRAM

Flash / Network

CPU

CL
FL

US
H

CL
DE

MOTE

Pr
efe

tch

I/O
AT

NV
Me

DD
IO

persistent volatile
Figure 1: Data movement primitives (left) can shuffle data
among storage layers (right). We claim that the set of primi-
tives is, at best, incomplete and, arguably, incoherent from
the programmer’s point of view.

structured. It gives the programmer access to even the I/OAT unit
but forbids her from using, for instance, established threading and
many other useful libraries.

In contrast, we propose an API for data pipes that encapsulates
the exact mechanisms SPDK does without imposing any other pro-
gramming style or limitation to the application. As we commented
above, we introduce these notions with the help of a motivation
sorting example. Sorting is an operation we call well-behaved with
respect to data movements. Even though we cannot predict the
amount of data to move, these operations have predictable data ac-
cess and movement patterns. Some other well-behaved operations
and workloads in data-intensive applications are the following: log-
ging, which comprises data movements of small sequential records
to low-latency persistent storage; and checkpointing, which moves
several large chunks of DRAM-resident data structures in parallel,
also into stable storage, to cite a few.

The advantage of recognizing a workload as predictable—well-
behaved—is that it allows the programmer to declare the data
transfers in advance. One of the goals of Data Pipes is to give
the programmer the syntax to encode these declarations. Let us see
one such example in practice.

3 CASE STUDY: EXTERNAL SORT
In this section, we look at a typical external sort algorithm but con-
centrate on the types of data movement it generates. We pick exter-
nal sort because it is a central building block formany data-intensive
operations (e. g., compaction of log-structured merge trees [39],
deduplication [41], and sorting query results).

An external sort is comprised of two phases: one in which data
is partitioned in small batches and each batch is sorted, and one
in which the sorted batches are merged. Unsorted batches move
“up” the storage stack to be sorted by the CPU and then need to
be moved “down” to make space for new batches. The recently
sorted batches should be kept as close to the CPU as possible, as the
latter will operate on them again when merging. Fig. 2 depicts the
data movements for sorting (way up from storage/memory) and
merging (way down). We discuss each of these movements in turn.



Data Pipes: Declarative Control over Data Movement CIDR23, January 08–11, 2023, Amsterdam, The Netherlands

Core 0 Core 1

LLC

DRAM PMem

PCIe

DMA

I/OAT 

DDIO

Run 1 Run n

SSD

...

Core 0 Core 1

LLC

DRAM

L2

I/OAT 

"Way up / Sorts"

"Way down /
Merges"

"Larger than memory data spills"

 1 

 2 

 3 

Figure 2: Hardware-efficient external merge-sort using DMA, DDIO, and I/OAT across CPU caches, DRAM, PMem, and SSDs.

3.1 Data Movements in External Sort
We assume in the following that our system contains PMem. PMem
can be used in different ways, but we focus on deploying it as a
staging layer between sorting and merging.
Way up/Sorts: As shown in Fig. 2, with DDIO, the data to be sorted
1 is read directly from persistent storage (i. e., data source) to
CPU caches via the DMA engine, bypassing main memory (hence
avoiding extra memory allocations). The size unit of these fetches
(runs) can be half the LLC size per core. We need twice the space to
allow double buffering in LLC rather than going to DRAM while a
core is sorting the fetched data.
Larger-than-Memory Data Spills: In non-pipelined external sort,
we first sort all the runs before each core merges these runs. Each
core performs merging until the DRAM size is exhausted. The
merge-sorted run 2 can be efficiently spilled to a staging area
backed by a persistent storage device larger than DRAM, using
I/OAT as soon as its initial block/page is produced. The staging
area could use a different device than the data source (if available).
Ideally, the device should exhibit low access latency, preferring
PMem or the latest low-latency SSDs.
Way down/Merges: The merge-sorted runs 3 are read from the
staging area, using I/OAT via DMA as a fetch unit similar to the way
up/sorting phase. However, since the runs are already sorted, the
CPU cores only need to perform a merge. This process is repeated
until the run is sorted.

3.2 The Case for Hardware-Assisted Data
Movement

Data movements should be computationally inexpensive in theory,
and in many cases, they are. Take a transfer from a modern SSD,
for instance. The NVMe protocol, which fast SSDs overwhelmingly
use, can be seen as a layer atop the SSD’s DMA engine. NVMe
allows an application to point to data it wants to write instead of
moving the data itself. However, not all layers are built as NVMe,

and, in practice, transfers could be CPU intensive for multiple
reasons: (1) They waste CPU cycles if synchronous storage APIs are
used (e. g., read(), write() system calls); (2) Moving data between
different layers can incur non-trivial overheads on the side (e. g.,
entering kernel mode or copying buffers); (3) They are inherently
expensive because of implicit aspects (e. g., networking or PMem’s
load/store interface requiring CPU instructions).

Besides efficiency, another observation is that some data move-
ments may occur explicitly (e. g., reading a block from an NVMe
SSD). In contrast, others transfers are implicit (e. g., the CPU flushes
a cache line). Anecdotally, practitioners invest a significant amount
of time trying to coerce implicit data movements into efficient
patterns for their applications.

With Data Pipes, we aim to make all data movements explicit.
One way to achieve so is to assume that DMA units, rather than the
CPU, will perform all movements. As mentioned above, this is al-
ready the case when transferring data in or out of NVMe devices. It
is also the case when using RDMA-capable network interface cards
(NICs). For the remaining movement possibilities, we resort to the
I/OAT unit as a DMA agent. In other words, we avoid using the CPU
load and store instructions to transfer data whenever possible.
We call this strategy hardware-assisted data movement. Putting it
differently, one may see Data Pipes as wrappers to different DMA
units available in a computer system. We discuss what Data Pipes
look like shortly, but before doing so, we perform some prelimi-
nary experiments to quantify the effects of hardware-assisted data
movements.

4 EXPERIMENTS
When using Data Pipes instead of coding data transfers by hand,
a programmer can move the responsibility of optimizing those
transfers to the Data Pipes implementation. In this section, we
evaluate such potential optimizations using two hardware-based
mechanisms: DDIO and I/OAT. We start with one experiment of data
loading from storage into LLC/L3 with DDIO. Then, we evaluate



CIDR23, January 08–11, 2023, Amsterdam, The Netherlands Vogel, et al.

DDIO enabled DDIO disabled

0

500

1000

4 64 1024

Chunk Size [KiB]

Th
ro
ug

hp
ut

[M
iB
/s
]

(a) Throughput of DDIO workload

0

50

100

150

200

4 64 1024

Chunk size [KiB]

C
ac
he

M
is
se
s
·1
06

(b) L3 Cache Misses (from perf)

0.000

0.025

0.050

0.075

0.100

0.125

4 64 1024

Chunk Size [KiB]

La
te
nc
y
[𝜇
s/
B
]

(c) Latency of DDIO workload

Figure 3: Performance with enabled and disabled DDIO (one CPU core) with parallel DRAM-intensive STREAM workload.

IIO_LLC_WAYS: 0 2 5 7 11

0

50

100

150

200

4 64 1024

chunk size [KiB]

C
ac
he

M
is
se
s
·1
06

Figure 4: Impact of the IIO_LLC_WAYS register on cachemisses
with DDIO enabled.

I/OAT for data spills from memory to storage and vice versa in two
separate experiments.

We use a machine in our experiments equipped with a Xeon
Gold 6212U CPU with 24 physical cores, 192 GiB RAM, 768 (6 · 128
GiB) first generation PMem, and a Samsung 970 Pro (PCIe 3) SSD.

4.1 Fast Load from Storage to Compute
In our first experiment, we use the data movement accelerator
DDIO, enabled by default on current Intel platforms, to move data
from SSD toward the CPU for sorting. DDIO directly places data
with DMA via PCIe into the L3 cache, assuming that requested data
will be needed soon. Since we can also use DMA to read data from
NVMe SSDs, we can re-purpose DDIO to load data from SSD and
put it directly into L3 (cf. 1 in Fig. 2).

The experiment consists of issuing reads at queue depth 32 and
then iterating over the read data once whenever a request is finished
(forcing all data into the caches). We use SPDK on one CPU core
to copy integers in increasing chunk sizes to DRAM (with DDIO
disabled) or L3 cache (with DDIO enabled) and sum them up. To
show that we can perform storage-to-cache movement without
using DRAM bandwidth, we fully saturate the DRAM bandwidth
by creating heavy artificial traffic using STREAM benchmark [35]
in parallel in the background.

Fig. 3 shows the resulting performance of DDIO on this DRAM-
intensive workload. In Fig. 3b, we observe that leveraging DDIO
reduces cache misses (i. e., minimizing the side-effects of heavy
DRAM traffic) as long as the chunk fits into L3 cache. In addition,

when the memory subsystem is taxed, DDIO can increase through-
put (cf. Fig. 3a) and reduce latency (cf. Fig. 3c) even for “slow” SSDs
(compared to NICs, i. e., DDIOs original use case), while freeing the
CPU to do other computations (e. g., sorting).

We note that DDIO can be hard to use optimally as it depends on
some hidden tuning knobs: Tuning the value of the undocumented
msr register IIO_LLC_WAYS as explained by Farshin et al. [20] has
a significant impact for this workload, as seen in Fig. 4. Increasing
its value from 2 to 11 reduces cache misses by up to 41% at chunk
sizes below 1 MiB.

4.2 Fast Load from Buffer to Memory
In our second experiment, we leverage I/OAT as a DMA engine to
offload data movement between PMem (i. e., storage) and DRAM.
This movement optimization comes in handy when loading spilled
data during sorting (cf. 3 in Fig. 2). Here, offloading data move-
ment is especially valuable since PMem uses a load()/store()
interface like DRAM, where each access is a CPU instruction. This
experiment uses SPDK’s accel_fw [7] feature on a single core to
issue copy requests of increasing size from PMem at queue depth 8,
comparing memcpy (internally using non-temporal load, store) to
the I/OAT backend.

The resulting throughput is shown in Fig. 5a. When deploying
I/OAT, moving data from PMem to DRAM is up to ≈ 2.57× faster
compared to memcpy on a single core. Hence, for a throughput
comparable to I/OAT, three CPU cores need to be dedicated to
data movement. This emphasizes the benefit of offloading data
movement from the CPU.

4.3 Lack of Control for Data Spills to Buffer
In our third experiment, we look into the reverse data movement
from the experiment in Section 4.2. We use the I/OAT unit once
again, this time to move data from DRAM to PMem (cf. 2 in Fig. 2).

Fig. 5b shows the resulting throughput. These experiments re-
veal some issues with I/OAT. While writing to PMem, I/OAT is still
marginally faster at chunk sizes ≤ 512 KiB, but it only reaches a
third of the read throughput. That is far below PMem’s potential
write throughput. To investigate further, we measured the PMem
media throughput (i. e., the write throughput the physical DIMM ac-
tually experiences), which is≈ 10GiB/s, close to PMem’s maximum
write throughput [49]. The reason for the high write amplification



Data Pipes: Declarative Control over Data Movement CIDR23, January 08–11, 2023, Amsterdam, The Netherlands

Mode: memcpy I/OAT Measurement: Media throughput Effective throughput

0

3

6

9

4 32 256 2048

Chunk Size [KiB]

Th
ro
ug

hp
ut

[G
iB
/s
]

(a) Moving data from PMem to DRAM

0

3

6

9

4 32 256 2048

Chunk Size [KiB]

Th
ro
ug

hp
ut

[G
iB
/s
]

(b) Moving data from DRAM to PMem

Figure 5: Throughput when moving data between DRAM and PMem with and without I/OAT.

was first discovered by Kalia et al. [26]: I/OAT implicitly puts data
into the L3 cache when it moves it to PMem using DMA, assuming
it will be processed soon. This feature is called Direct Cache Access
(DCA) and is not readily usable on modern CPUs. While this is
great when moving data in from PMem, it is a huge bottleneck
when moving data out to PMem for two reasons: (1) It evicts other
data from the L3 cache and replaces it with data not intended to be
accessed (otherwise, we would not have moved it out of DRAM).
(2) When the CPU finally evicts the data, it does not evict it sequen-
tially but semi-randomly. As each cache line is 64 bytes and PMem’s
internal block size is 256 bytes, each cache line eviction triggers a
block write, resulting in up to 4× write amplification (≈ 3.27× in
our measurements).

From these experiments, we note that using I/OAT to offload
memory movement to/from PMem is hard to implement in practice.
What compounds the issue is that Intel does not document details
about DCA or how to toggle it. Even on CPUs that nominally
support disabling it, it often is not exposed in the BIOS configuration
and requires error-prone fiddling with Intel’s msr registers. In our
setup, Intel does not expose the msr register, leaving us with no way
to disable DCA. In other words, by hiding these complexities behind
a Data Pipe interface, we can adapt to systems that permit the
configuration and fall back to a less optimized transfer in systems
that do not.

4.4 Discussion
Our experiments showed that existing hardware-assisted datamove-
ment mechanisms such as DDIO and I/OAT are beneficial for data-
base workloads, but they also uncovered several challenges.

The main issue is how obscure some of these mechanisms are.
I/OAT’s DCA issue when copying to PMem and DDIO’s hidden tun-
ing knobs highlights a central problem with our current data move-
ment primitives. These primitives provide significant speedups if
use cases match the scenarios for which they were originally de-
signed. It is possible to deviate from those scenarios but not without
mixed results (i. e., DDIO is great with reducing traffic in caches
but shows limited latency improvements and is hard to tune; I/OAT
is hard to exploit). We require further experiments to determine all
the constraints, tuning knobs, and implicit assumptions required to
make the hardware mechanisms work for Data Pipes.

5 OUR VISION: DATA PIPES
We discussed Data Pipes as an abstraction and showed that

some powerful hardware-assisted data movement mechanisms to
support them are available, even if these mechanisms are tricky
to configure. Therefore, we hide the implementation complexity
under a friendlier API, and expose only concepts familiar to data-
intensive programmers. We chose to do so by making Data Pipes
resemble a new type of descriptor/object in a C/C++ sense. Once a
pipe is instantiated, it can transfer data from source to destination
via a special call. We make the pipe’s source and destination explicit
by introducing the concept of resource locators. Curiously, these
decisions still allow us to experiment with different programming
styles when using Data Pipes.
Data Pipe Flavors.We propose three different flavors of data pipes.
They mainly differ on whether the programmer wants to: (1) wait
on the transfer, (2) be asynchronously notified when it is done,
(3) or whether there is OS support for the wait. For each flavor,
Fig. 6 shows an example of how an application would use it. Fig. 6a
implements the data movement step 1 of Fig. 2 using flavor (1),
i. e., it moves data in L2 cache-sized chunks to the cache of each core,
where it is sorted and then demoted to DRAM. Fig. 6b implements
step 2 using flavor (2), spooling sorted runs from DRAM to the
backing PMem. Fig. 6c illustrates flavor (3) by retrieving sorted runs
from PMem and merging them (step 3 ).

We discuss these flavors shortly but first present the abstraction
of the resource locator in more detail.

5.1 Resource Locators
Resource Locators can declare a source or destination of a data
movement. We highlight resource locators code in green. Differ-
ent types of resource locators are used for different storage de-
vices, e. g., a DRAMResourceLocator, an SSDResourceLocator, or
a CoreCacheResourceLocator for the L2 cache of a given core.
Employing this abstraction has at least two advantages. First, it
presents a uniform start and endpoint to which a data pipe can
connect. Second, it enforces type system of sorts on data move-
ment. Traditionally, most data access is “loosely typed” as a pointer
and an offset (memory-mapped devices) or file descriptor (block
devices). With the thin abstraction of resource locators and pipes,
data movements have become intentional and “strongly typed.”
While a locator internally might still be a pointer, the user is now



CIDR23, January 08–11, 2023, Amsterdam, The Netherlands Vogel, et al.

1 size_t buffer_sz = 1 * GB;

2 size_t run_sz =

CoreCacheResourceLocator ::

CacheSize;

3

4 SSDResourceLocator ssd_locator("/path

/to/ssd/file");

5 DRAMResourceLocator dram_locator(

buffer_sz);

6

7 do_parallel_foreach_core {

8 size_t offset = core_idx * run_sz;

9

10 // Allocate cache at the local core ,

backed by a memory area

11 CoreCacheResourceLocator

cache_locator(run_sz ,

dram_locator + offset);

12

13 Pipe ssd_uppipe(ssd_locator ,

cache_locator);

14 Pipe cache_downpipe(cache_locator ,

dram_locator);

15

16 //Will try to use DDIO , since this

is a disk to cache transfer

17 ssd_uppipe.transfer(

18 offset /*ssd offset */,

19 0 /*cache offset */, run_sz);

20 sort(cache_locator.data(), run_sz);

21 // Will try to use CLDEMOTE since

this is a cache to RAM transfer

22 cache_downpipe.transfer(

23 0 /*cache offset */,

24 offset /*dram offset */, run_sz);

25 }

(a) Straightforward, loading data from SSD
and sorting it into runs. Step 1 in Fig. 2.

1 size_t base = 0;

2 size_t pmem_offset = 0;

3

4 PMemResourceLocator pmem_locator("/

dev/dax0.1", pmem_offset , sz);

5

6 PipeRuntime runtime;

7 runtime.fork_and_start ();

8 Pipe dram_downpipe(dram_locator ,

pmem_locator , &runtime);

9

10 while (is_sorting_runs) {

11 // Collect pending tasks

12 vector <future > futures;

13 for (size_t offset = 0; offset <

watermark; offset += run_sz) {

14

15 promise <void > write_promise;

16 futures.push_back(write_promise.

get_future ());

17

18 //Uses I/OAT with disabled DCA to

not pollute the cache. Moves

are scheduled asynchronously by

the runtime , the promise is

tranferred to the runtime.

19 dram_downpipe.transfer_with_cb(

20 offset /*dram offset */,

21 base+offset /*pmem offset */,

22 run_sz , move(write_promise));

23 }

24 base += watermark;

25 // Block until all moves are done

26 wait_all(futures).wait();

27 futures.clear();

28 }

(b) Inversion of Control, store sorted runs on
PMem. Step 2 in Fig. 2.

1 int k = 4;

2 size_t merge_sz = k * run_sz;

3

4 int pmem_uppipe_fd = create_pipe(

5 pmem_locator ,

6 cache_locator);

7

8 int epoll_fd = epoll_create1 (0);

9 epoll_event pmem_pipe_op;

10 pmem_pipe_op.events = EPOLLTRANSFER;

11 pmem_pipe_op.fd = pmem_uppipe_fd;

12 epoll_ctl(epoll_fd , EPOLL_CTL_ADD , 0,

&pmem_pipe_op);

13

14 do_parallel_for_each_core {

15 // Wait until the pipe can make the

transfer as the I/OAT unit

might be occupied elsewhere.

16 epoll_event event;

17 epoll_wait(epoll_fd , &event , 1);

18 if (/* error */)

19 break;

20

21 size_t offset = core_idx*merge_sz;

22

23 // Issue a DMA request from PMem

using I/OAT. Recall that the

cache locator is backed by a

memory area

24 pipe_transfer(

25 pmem_uppipe_fd ,

26 offset /*pmem offset */,

27 0 /*cache offset */,

28 merge_sz);

29 merge(k, event.locator);

30 }

(c) OS supported, load andmerge sorted runs.
Step 3 in Fig. 2.

Figure 6: Three flavors of data pipes and how to employ them in the external sort example.

forced to think about what that pointer represents and where this
data is supposed to be moved to, which aligns with our earlier goal
of making data movement explicit and declarative.

Underneath each locator type, we include code that makes that
storage area available for use. The locator is responsible for ac-
quiring/releasing that resource (e. g., malloc()/ free() for DRAM,
issuingNVMe commands, through io_uring for instance, for SSDs).
The design of each locator thus depends on the resource it manages:
• Locators backed by a file take the path to a file as an argument
(e. g., the SSDResourceLocator in Fig. 6a, Line 4)

• A DRAM locator only needs a size to be constructed (Fig. 6a,
Line 5) as it allocates its memory by itself.

• Locators not referencing addressable memory, such as the core
cache locator that references L2 cache (Fig. 6a, Line 11), need to
be backed by a memory area.

5.2 Data Pipes
A Data Pipe connects two resource locators 𝐴 and 𝐵. For simplic-
ity, it is unidirectional, so it can only transmit data from 𝐴 to 𝐵.
As Fig. 6 shows, all flavors are declarative.

To use a Data Pipe, a programmer first declares the locators she
intends to use. She then prepares data movement by connecting
the locators with pipes before moving data and performing addi-
tional computations. This concept can be rendered in different ways.
We describe three variations in Fig. 6 next.
A straightforward flavor. Here (Fig. 6a), pipes are objects ini-
tialized with source and target resource locators (Lines 13 – 14)
and provide a transmit() method. This method takes two offsets,
one for the source and one for the target resource locator. The
transmit() call blocks until data is successfully moved. This fla-
vor is easy to implement, e. g., as a library, and integrate into an
existing application as the caller of the pipes never relinquishes
control (similar to traditional blocking I/O).
Inversion of control flavor. This flavor (Fig. 6b) schedules data
movement asynchronously. A runtime, initialized once (Lines 6 –
8), runs concurrently with the application and is responsible for
scheduling. The pipe’s transmit() method is asynchronous and



Data Pipes: Declarative Control over Data Movement CIDR23, January 08–11, 2023, Amsterdam, The Netherlands

signals their completion via a future argument (lines 15–22).2 The
application thus relinquishes control to the pipe runtime.

The advantage of this approach is that multiple data pipes can
run in parallel with a central coordinator keeping track of progress
and scheduling data movements optimally. In this example, a single
thread can trigger multiple data movements in parallel, leaving
scheduling and CPU allocation to the pipe runtime. The downside
is that inversion of control is often hard to incorporate into an
existing application as it might complicate the programming model
and add synchronization overhead. Communicating over a future
involves a mutex which might add negligible overhead when mov-
ing megabytes of data but is very expensive if moving just a few
bytes between caches.
An OS-supported flavor. The previous approaches depend on a
library written in the application’s language. In this third flavor
(Fig. 6c), a pipe is an abstraction at the OS level:3 They are OS
concepts represented by file descriptors (lines 4 – 6), and so one can
transfer data (lines 23 – 28) analogous to pread/pwrite. Lever-
aging OS support, for example epoll in Linux, the application can
monitor the pipe’s state. As shown by lines 8–12, the application
uses epoll to obtain a file descriptor that allows it to get notified
whenever the pipe can start a new transfer. Afterward, we spawn
multiple threads that wait until the pipe is ready to accept new
requests (lines 15 - 19) via the epoll API and then issue a transfer
request.

From a programmer’s perspective, this approach is an abstrac-
tion level below the other two approaches: The user has to check
whether the data pipe is in the correct state before issuing any
requests. While this approach is more involved than the other two,
it comes with two advantages: (1) It takes a big step towards being
programming language agnostic, as it relies on and extends a uni-
versally known and supported interface (epoll, pread/pwrite) of
the operating system. (2) It serves as a foundation upon which a
library for the other two approaches can be built: Encapsulating
lines 15 – 28 into a transfer method yields the behavior of the
"straightforward" approach, adding a request to a queue before
epolling on a separate thread yields the "inversion of control" ap-
proach. This approach, however, also has the downside of requiring
still-to-be-developed kernel support.

5.3 Data Pipes Optimization
We note that in well-behaved workloads, there are often options
to where to move data. In our external sort illustrated in Fig. 2, for
example, we arbitrarily decided to spill runs to PMem. However,
PMem is not universally available, e. g., in AMD CPUs. Depending
on the system configuration, we could decide to store sorted batches
on the source SSD or even on a second SSD, if available. Since data
pipes already follow a declarative approach, we can abstract over
which intermediate storage device the runs are placed. We illustrate
here a fourth possibility: that in which an optimizer within the
runtime picks the “right” storage device during execution instead,
considering the storage devices available in the system.

2We use C++’s promises, but C-style callbacks would work just as well.
3Note that this is just a proposal on how such an interface could look. The implemen-
tation would require specialized kernel support.

Fig. 7a illustrated this possibility. It depicts how multiple threads
sort small runs, which are transferred via (for now) abstract data
pipes to a staging area, and from there, are merged, producing
the sorted output. Since data pipes are declarative, an optimizing
runtime can decide during execution how to instantiate the abstract
pipes. Fig. 7b shows two such options. A sort might start with
path (a), storing sorted runs in PMem, and switching to option (b)
using an SSD when PMem is exhausted. Since pipes are declarative,
this would come with minimal overhead for the programmer and
would allow the algorithm to be split into smaller parts that can be
connected via pipes in a dynamic manner.

6 DATA PIPES PRINCIPLES
We have shown above a few examples of how data pipes could
be used as a programming artifact, but we have yet to discuss the
guiding principles behind their design. This section does so. We
start with two principles that were already demonstrated:
(1) Declarative. The programmer declares beforehand which data
pipes they wish to use, e. g., from a PCIe NVMe SSD to a cache
layer or from there to PMem. The upfront declaration makes the
intention of the programmer explicit, which (1) allows the system to
make specific optimizations (e. g., enabling or disabling DCA), and
(2) gives the system a way to reject ways to move data for which no
suitable optimization is implemented. The programmer can always
check if the intended data path is used and adjust the application
logic otherwise.
(2) Composable. As seen in our external sort example in Section 3
and Fig. 7, data movement primitives depend on each other’s results.
Data is loaded, operated on, and then moved again (i. e., spilled back
to background storage or moved to the cache of a different core).
Making data pipes declarative allows the programmer to compose
them and thus indicate which dependencies between computation
and data movement exist. This approach is very similar to tradi-
tional query engines where optimizing data movement also plays a
big part (i. e., vectorized vs. code generation).

There are additional principles we now introduce that are just
as integral part of data pipes proposal:
(3) Configurable. Current data movement primitives are hard to
configure. They either (1) cannot be configured at all (caching be-
havior), (2) only be configured coarsely (e.g., globally disabling/en-
abling the prefetcher), or (3) rely on undocumented msr registers
(e. g., DCA, amount of L3 cache available to DDIO). Data pipes
can instead expose those tuning knobs to the programmer. This
allows for tighter integration between software and hardware, as
each knob can be tuned to the application’s specific needs. In our
DDIO experiment, tuning the value of the undocumented regis-
ter IIO_LLC_WAYS significantly reduces cache misses as we have
shown in Fig. 4. Exposing and documenting features like this would
thus make it easier to benefit from DDIO.
(4) Visible State. Being configurable alone is no silver bullet: Some
aspects cannot be tuned as they are fixed hardware properties (e. g.,
cache associativity or cache line size), and it is unrealistic to expect
hardware vendors to make them tuneable. Data pipes, however, can
make such aspects and their state visible to the programmer. As
such, the programmer is not forced to guess or infer such constants



CIDR23, January 08–11, 2023, Amsterdam, The Netherlands Vogel, et al.

merge

sort

sort

staging

(a) Blueprint for a declarative external sort using pipes.

merge

sort

sort
a

b

PMEM

PMEM

SSD

(b) Instantiated template with data pipes: Operator can be instanti-
ated using PMem(a) or SSD as staging area (b).

Figure 7: Using data pipes to make algorithms modular.

via heuristics (e. g., CPU generation, manufacturer, benchmarking),
thus making them more confident in the applicability and benefits
of a particular pipe upfront.

Lastly, we have indirect goals for the data pipes API:
(5) Orthogonal to existing primitives. Data pipes do not rely on
hardware vendors implementing new data movement primitives.
While we believe that programmers would profit from additional
data movement primitives that are not currently available, there is
already a huge benefit in making existing primitives more easily
accessible and configurable. We thus do not urge hardware vendors
to invent a newways to resolve all challenges in designing hardware-
conscious data management software. We instead want them to
enhance the interfaces to current data movement primitives to
make it easier for applications to benefit from them.
(6) Inspiring new primitives. On the other hand, data pipes can
pave the way for creating new primitives that benefit data-intensive
systems, since they offer a straightforward and user-friendly way
for programmers to indicate their desired data orchestration mo-
tives. This mode of indicating desired movements and paths could
ease the communication between hardware vendors and software
programmers to better address the needs of data-intensive systems.

It is worth mentioning that our work is aligned with other ef-
forts to provide higher-level abstractions on which to build data-
intensive systems. Some recent examples of this line of work are
DPI [9] and DFI [46], which help programmers to utilize RDMA
networks, and xNVME [33], which does the same in spirit but for fast
NVMe devices. We share several traits with these abstractions but
try to take a unified view of data movement independent of data
location.

While data pipes can easily be used to implement well-behaved
workloads efficiently, other workloads could be more challenging.
For example, OLTP is characterized by the unpredictability of the
read and write patterns. In literature, a common way to handle such
not-well behaved workloads is to create hardware-conscious data
structures such as log-structured merge trees [39, 44], B-epsilon
tree [14], Plush [50], APEX [32], and others. The main design goal
when creating such data structures is to morph the workload’s
unpredictable data access patterns or movement into a more well-
behaved pattern for the target storage device. There are also recent

works, such as Umzi [34], Mosaic [51], or NovaLSM [22] that tar-
get multiple layers of storage hierarchy or disaggregated storage.
Enhancing these proposals with data pipes should not be an issue
as long as the predictable access patterns are identifiable.

7 RELATEDWORK AND RESEARCH AGENDA
It is possible to turn data pipes vision into a real-world framework
even by using the available primitives and software libraries today.
However, to be able to create a flexible and efficient framework
across different programming languages and computer infrastruc-
tures (bare metal to the cloud), additional support from different
computer systems layers is essential. We are not the only group
researching such solutions. Therefore, in this section, we identify
related and future research directions that can enable better sup-
port for data movement in general, and Data Pipes in particular. We
divide these efforts according to context in which they are being
studied: from the OS, the hardware, or from a cloud infrastructure
perspective.

7.1 Operating Systems
While performing the preliminary experiments for our vision of
data pipes in Section 4, we relied heavily on SPDK to get access
to the low-level primitives to control data movement. However,
this comes at the cost of using a very niche and unintuitive pro-
gramming model. To keep the data pipes programming model as
simple and adoptable as possible across programming languages
and infrastructure deployments, it would be ideal to have better OS
support for accessing low-level primitives rather than always rely-
ing on OS-bypass techniques (such as Arrakis [42], Demikernel [54],
Persephoné [18]).

Furthermore, enabling an application that uses data pipes to col-
locate with other applications that may not use data pipes requires
OS support as well. The OS needs to be aware of the data pipes and
avoid swapping memory or evicting last-level cache (LLC) blocks
that are explicitly needed by a pipe. One solution is to reserve part
of the main memory/CPU caches to be exclusive to data pipes or to
give priority to data pipes to prevent other collocated applications
from thrashing memory or LLC.

These desiderata are not so far-fetched and would benefit more
than data pipes, given recent efforts that already crave more explicit



Data Pipes: Declarative Control over Data Movement CIDR23, January 08–11, 2023, Amsterdam, The Netherlands

control over memory regions. For example, to tackle DDIO’s prob-
lems, IAT [53] and IDIO [8] devise efficient frameworks that can
monitor I/O and cache traffic to customize data placement in the
LLC for better performance isolation. Performance isolation on LLC
can also be achieved by using Intel’s Cache Allocation Technology
(CAT) [37] or by configuring DDIO usage via some recently dis-
covered mechanisms [20]. Furthermore, DimmStore [28] explores
different data layouts in main memory chips for energy efficiency.
Differentiated storage service [36] allows to classify I/O operations
to process different requests with proper policies. Data pipes can
potentially leverage such differentiated storage services and LLC
management techniques to use dedicated policies with priority,
avoiding thrashing across layers.

7.2 Hardware
The current I/OAT unit in the Intel Xeon line of chips is an example
of a DMA unit that can support transfer between “upper” layers
of the storage hierarchy, such as caches, DRAM, and PMem. It has
been shown that it can free the CPUwhile it performs asynchronous
memory copies [47, 48]. This DMA unit, however, can be improved
in at least three ways. First, while it delivers latency benefits over,
for instance, the highly optimized glibc’s memcpy() [16], it may
present lower bandwidth when it comes to small data transfers.
Second, the unit presents a limited number of channels. The exact
number is a piece of information protected under NDA, but the
maximum number of channels reported has been 16 [16]. For com-
parison, we note that the number of tags in a PCIe Gen 3 system,
arguably the equivalent mechanism to support parallel transfers,
is 256. This number keeps growing; it is 1024 for PCIe Gen 4–and
both PCIe generations allow extended tags, which further increases
this number. Third, the I/OAT unit does not support advanced
transfer mechanisms such as scatter/gather [17], in which several
non-contiguous memory ranges are transferred in one operation.
Despite all the limitations, there have been reports of successfully in-
corporating I/OAT into sophisticated data movement schemes [15].

Studies have also experimented with more powerful DMA units,
e.g., memif [31]. That work, however, confined the use of the DMA
unit to the operating system’s use, for instance, for data movement
caused by page migration. They justify the decision by noting
the lack of mechanisms to notify an application once a requested
transfer is done. We demonstrated in Figure 6 three possible ways
of dealing with the issue. Putting it differently, we believe that a
DMA unit that overcomes the challenges we listed above can be
quite useful for data pipes and can be successfully made accessible
to applications.

We seek a future DMA unit with extended capabilities in another
specific direction: increased reach. By increased reach, we mean
accessing a portion of the storage hierarchy that remains closed.
For instance, nothing can reach the CPU registers that do not come
from the L1 cache. Recent examples, such as the nanoPU NIC [23],
show that transferring data straight into the CPU registers can sig-
nificantly reduce communication latency. This, in turn, can support
new algorithms such as record-breaking sorting techniques [24].
Moreover, we also mean by increased reach that a more modern
unit should keep pace with any new type of memory that newer
systemswill bring. One such imminent example, is High-Bandwidth

Memory (HBM) [25]. The next generation of Intel Xeon chips, co-
denamed Sapphire Rapids, will support this type of memory [45],
and there have been reports of the HBM benefits for the kind of
data-intensive applications that we address here [27].

7.3 Cloud Infrastructure
Cloud infrastructure is becoming the de-facto environment for the
development and deployment of modern applications, and we be-
lieve that data pipes have the potential to be very valuable both
to cloud infrastructure providers and application developers. Cur-
rently cloud infrastructure providers offer a lot of flexibility of
compute and storage deployments ranging from a wide variety of
virtual machine and bare metal instances [2, 3] to fully flexible re-
source sizing [6] to stateless compute [1]. However, data-intensive
applications often make resource sharing challenging and can eas-
ily become a noisy neighbor to others. Data pipes can alleviate this
problem by making data movement predictable, thus also helping
with scheduling and balancing resource usage in shared infrastruc-
ture environments.

From the cloud application perspective, the goal of predictable
datamovement performance often requires over-provisioning shared
or provisioning dedicated infrastructure to avoid noisy neighbors.
Exposing data pipes as a first-class resourcewith predictable through-
put and latency would help ensure performance predictability at
the application level. Furthermore, they can also become a flexible
infrastructure building block with specific latency and throughput
characteristics. Finally, using a common API for data movement
across different layers of memory and storage hierarchy would
make it much easier for applications to use each new and improved
generation of devices without significant application changes.

8 CONCLUSION
In this paper, we motivated and illustrated a vision, data pipes,
where the programmers can dictate and fine-tune how data moves
from one storage layer to another in a declarative manner. Data
pipes can make data movement more visible and configurable at
the application layer. Moreover, they would not clash with existing
low-level primitives to control data movement while having the
potential to inspire new ones. It can allow a user-friendly abstrac-
tion while making use of the modern storage stack to achieve low
latency and reduce data movement traffic in data-intensive systems.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their constructive feedback.
We also thank Schloss Dagstuhl and the organizers and participants
of the Dagstuhl Seminar 22111 on Database Indexing and Query
Processing [13].

REFERENCES
[1] AWS Lambda. https://aws.amazon.com/lambda/. [accessed December 11, 2022].
[2] Azure Virtual Machine series. https://azure.microsoft.com/en-us/pricing/details/

virtual-machines/series/. [accessed December 11, 2022].
[3] Google Cloud Machine families resource and comparison guide. https://cloud.

google.com/compute/docs/machine-resource. [accessed December 11, 2022].
[4] Intel Data Direct I/O Technology. https://www.intel.ca/content/www/ca/en/io/

data-direct-i-o-technology.html. [accessed December 11, 2022].
[5] Intel I/O Acceleration Technology. https://www.intel.ca/content/www/ca/en/

wireless-network/accel-technology.html. [accessed December 11, 2022].

https://aws.amazon.com/lambda/
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/series/
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/series/
https://cloud.google.com/compute/docs/machine-resource
https://cloud.google.com/compute/docs/machine-resource
https://www.intel.ca/content/www/ca/en/io/data-direct-i-o-technology.html
https://www.intel.ca/content/www/ca/en/io/data-direct-i-o-technology.html
https://www.intel.ca/content/www/ca/en/wireless-network/accel-technology.html
https://www.intel.ca/content/www/ca/en/wireless-network/accel-technology.html


CIDR23, January 08–11, 2023, Amsterdam, The Netherlands Vogel, et al.

[6] Oracle Cloud Infrastructure Compute Shapes. https://docs.oracle.com/en-us/
iaas/Content/Compute/References/computeshapes.htm. [accessed December 11,
2022].

[7] SPDK: Acceleration framework. https://spdk.io/doc/accel_fw.html. [accessed
December 11, 2022].

[8] M. Alian, S. Agarwal, J. Shin, N. Patel, Y. Yuan, D. Kim, R. Wang, and N. S.
Kim. IDIO: Network-Driven, Inbound Network Data Orchestration on Server
Processors. In MICRO, pages 480–493, 2022.

[9] G. Alonso, C. Binnig, I. Pandis, K. Salem, J. Skrzypczak, R. Stutsman, L. Thostrup,
T. Wang, Z. Wang, and T. Ziegler. Dpi: the data processing interface for modern
networks. CIDR 2019 Online Proceedings, page 11, 2019.

[10] T. E. Anderson, M. Canini, J. Kim, D. Kostić, Y. Kwon, S. Peter, W. Reda, H. N.
Schuh, and E. Witchel. Assise: Performance and Availability via Client-Local
NVM in a Distributed File System. In OSDI, 2020.

[11] A. Barbalace and J. Do. Computational Storage: Where Are We Today? In CIDR,
pages 1–6, 2021.

[12] L. Benson, H. Makait, and T. Rabl. Viper: An Efficient Hybrid PMem-DRAM
Key-Value Store. PVLDB, 14(9):1544–1556, 2021.

[13] R. Borovica-Gajic, G. Graefe, A. W. Lee, C. Sauer, and P. Tözün. Database indexing
and query processing (dagstuhl seminar 22111). Dagstuhl Reports, 12(3):82–96,
2022.

[14] G. S. Brodal and R. Fagerberg. Lower bounds for external memory dictionaries.
In SODA, pages 546–554, 2003.

[15] D. Buntinas, B. Goglin, D. Goodell, G. Mercier, and S. Moreaud. Cache-efficient,
intranode, large-message MPI communication with mpich2-nemesis. In ICPP,
pages 462–469. IEEE Computer Society, 2009.

[16] Z. Chen, D. Li, Z. Wang, H. Liu, and Y. Tang. RAMCI: a novel asynchronous
memory copying mechanism based on I/OAT. CCF Trans. High Perform. Comput.,
3(2):129–143, 2021.

[17] J. Corbet. The chained scatterlist API. https://lwn.net/Articles/256368/, 2007.
[accessed December 11, 2022].

[18] H. M. Demoulin, J. Fried, I. Pedisich, M. Kogias, B. T. Loo, L. T. X. Phan, and
I. Zhang. When Idling is Ideal: Optimizing Tail-Latency for Heavy-Tailed Data-
center Workloads with Perséphone. In SOSP, pages 621–637. ACM, 2021.

[19] J. Ding, U. F. Minhas, B. Chandramouli, C. Wang, Y. Li, Y. Li, D. Kossmann,
J. Gehrke, and T. Kraska. Instance-Optimized Data Layouts for Cloud Analytics
Workloads. In SIGMOD, page 418–431, 2021.

[20] A. Farshin, A. Roozbeh, G. Q. M. Jr., and D. Kostic. Reexamining Direct Cache Ac-
cess to Optimize I/O Intensive Applications for Multi-hundred-gigabit Networks.
In USENIX, pages 673–689, 2020.

[21] P. W. Frey and G. Alonso. Minimizing the Hidden Cost of RDMA. In IEEE ICDCS,
pages 553–560, 2009.

[22] H. Huang and S. Ghandeharizadeh. Nova-LSM: A Distributed, Component-based
LSM-tree Key-value Store. In SIGMOD, pages 749–763, 2021.

[23] S. Ibanez, A. Mallery, S. Arslan, T. Jepsen, M. Shahbaz, C. Kim, and N. McKeown.
The nanoPU: A Nanosecond Network Stack for Datacenters. In OSDI, pages
239–256, 2021.

[24] T. Jepsen, S. Ibanez, G. Valiant, and N. McKeown. From sand to flour: The next
leap in granular computing with nanosort. CoRR, abs/2204.12615, 2022.

[25] H. Jun, J. Cho, K. Lee, H.-Y. Son, K. Kim, H. Jin, and K. Kim. Hbm (high bandwidth
memory) dram technology and architecture. In 2017 IEEE International Memory
Workshop (IMW), pages 1–4, 2017.

[26] A. Kalia, D. G. Andersen, and M. Kaminsky. Challenges and solutions for fast
remote persistent memory access. In SoCC, pages 105–119, 2020.

[27] K. Kara, C. Hagleitner, D. Diamantopoulos, D. Syrivelis, and G. Alonso. High
bandwidth memory on fpgas: A data analytics perspective. In FPL, pages 1–8.
IEEE, 2020.

[28] A. Karyakin and K. Salem. DimmStore: Memory Power Optimization for Database
Systems. PVLDB, 12(11):1499–1512, jul 2019.

[29] J. Kim, I. Jang,W. Reda, J. Im,M. Canini, D. Kostić, Y. Kwon, S. Peter, and E.Witchel.
LineFS: Efficient SmartNIC Offload of a Distributed File System with Pipeline
Parallelism. In SOSP, page 756–771, 2021.

[30] A. Lerner and P. Bonnet. Not your Grandpa’s SSD: The Era of Co-Designed
Storage Devices. In SIGMOD, pages 2852–2858, 2021.

[31] F. X. Lin and X. Liu. memif : Towards programming heterogeneous memory
asynchronously. In ASPLOS, pages 369–383. ACM, 2016.

[32] B. Lu, J. Ding, E. Lo, U. F. Minhas, and T. Wang. APEX: A High-Performance
Learned Index on Persistent Memory. PVLDB, 15(3):597–610, 2021.

[33] S. A. Lund, P. Bonnet, K. B. Jensen, and J. Gonzalez. I/o interface independence
with xnvme. In Proceedings of the 15th ACM International Conference on Systems
and Storage, pages 108–119, 2022.

[34] C. Luo, P. Tözün, Y. Tian, R. Barber, V. Raman, and R. Sidle. Umzi: Unified
Multi-Zone Indexing for Large-Scale HTAP. In EDBT, pages 1–12, 2019.

[35] J. D. McCalpin. STREAM: Sustainable memory bandwidth in high performance
computers. https://www.cs.virginia.edu/stream/. [accessed December 11, 2022].

[36] M. Mesnier, F. Chen, T. Luo, and J. B. Akers. Differentiated Storage Services. In
SOSP, page 57–70, 2011.

[37] K. T. Nguyen. Introduction to Cache Allocation Technology in the Intel® Xeon®
Processor E5 v4 Family.

[38] NVM Express. Everything You Need to Know About the NVMe® 2.0 Specifica-
tions and New Technical Proposals, 2022.

[39] P. E. O’Neil, E. Cheng, D. Gawlick, and E. J. O’Neil. The Log-Structured Merge-
Tree (LSM-Tree). Acta Informatica, 33(4):351–385, 1996.

[40] I. Oukid, J. Lasperas, A. Nica, T. Willhalm, and W. Lehner. FPTree: A Hybrid
SCM-DRAM Persistent and Concurrent B-Tree for Storage Class Memory. In
SIGMOD, page 371–386, 2016.

[41] G. N. Paulley and P.-r. Larson. Exploiting Uniqueness in Query Optimization. In
CASCON, page 804–822. IBM Press, 1993.

[42] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos, A. Krishnamurthy, T. E. Anderson,
and T. Roscoe. Arrakis: The Operating System Is the Control Plane. ACM Trans.
Comput. Syst., 33(4):11:1–11:30, 2016.

[43] A. Raybuck, T. Stamler, W. Zhang, M. Erez, and S. Peter. HeMem: Scalable Tiered
Memory Management for Big Data Applications and Real NVM. In SOSP, page
392–407, 2021.

[44] S. Sarkar and M. Athanassoulis. Dissecting, Designing, and Optimizing LSM-
based Data Stores. In SIGMOD, pages 2489–2497, 2022.

[45] G. M. Shipman, S. Swaminarayan, G. Grider, J. Lujan, and R. J. Zerr. Early
Performance Results on 4th Gen Intel(R) Xeon (R) Scalable Processors with DDR
and Intel(R) Xeon(R) processors, codenamed Sapphire Rapids with HBM. CoRR,
abs/2211.05712, 2022.

[46] L. Thostrup, J. Skrzypczak, M. Jasny, T. Ziegler, and C. Binnig. DFI: the data
flow interface for high-speed networks. In SIGMOD Conference, pages 1825–1837.
ACM, 2021.

[47] K. Vaidyanathan, W. Huang, L. Chai, and D. K. Panda. Designing efficient asyn-
chronous memory operations using hardware copy engine: A case study with
I/OAT. In IPDPS, pages 1–8. IEEE, 2007.

[48] K. Vaidyanathan and D. K. Panda. Benefits of I/O acceleration technology (I/OAT)
in clusters. In ISPASS, pages 220–229. IEEE Computer Society, 2007.

[49] A. van Renen, L. Vogel, V. Leis, T. Neumann, and A. Kemper. Building blocks for
persistent memory. VLDB J., 29(6):1223–1241, 2020.

[50] L. Vogel, A. van Renen, S. Imamura, J. Giceva, T. Neumann, and A. Kemper. Plush:
A Write-Optimized Persistent Log-Structured Hash-Table. PVLDB, 15(11):2662–
2675, 2022.

[51] L. Vogel, A. van Renen, S. Imamura, V. Leis, T. Neumann, and A. Kemper. Mosaic:
A budget-conscious storage engine for relational database systems. Proc. VLDB
Endow., 13(11):2662–2675, 2020.

[52] J. Yang, J. Kim, M. Hoseinzadeh, J. Izraelevitz, and S. Swanson. An Empirical
Guide to the Behavior and Use of Scalable Persistent Memory. In USENIX FAST,
page 169–182, 2020.

[53] Y. Yuan, M. Alian, Y. Wang, R. Wang, I. Kurakin, C. Tai, and N. S. Kim. Don’t
Forget the I/O When Allocating Your LLC. In ISCA, pages 112–125, 2021.

[54] I. Zhang, A. Raybuck, P. Patel, K. Olynyk, J. Nelson, O. S. N. Leija, A. Martinez,
J. Liu, A. K. Simpson, S. Jayakar, P. H. Penna, M. Demoulin, P. Choudhury, and
A. Badam. The Demikernel Datapath OS Architecture for Microsecond-scale
Datacenter Systems. In SOSP, pages 195–211. ACM, 2021.

https://docs.oracle.com/en-us/iaas/Content/Compute/References/computeshapes.htm
https://docs.oracle.com/en-us/iaas/Content/Compute/References/computeshapes.htm
https://spdk.io/doc/accel_fw.html
https://lwn.net/ Articles/256368/
https://www.cs.virginia.edu/stream/

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Case Study: External Sort
	3.1 Data Movements in External Sort
	3.2 The Case for Hardware-Assisted Data Movement

	4 Experiments
	4.1 Fast Load from Storage to Compute
	4.2 Fast Load from Buffer to Memory
	4.3 Lack of Control for Data Spills to Buffer
	4.4 Discussion

	5 Our vision: Data Pipes
	5.1 Resource Locators
	5.2 Data Pipes
	5.3 Data Pipes Optimization

	6 Data Pipes Principles
	7 Related Work and Research Agenda
	7.1 Operating Systems
	7.2 Hardware
	7.3 Cloud Infrastructure

	8 Conclusion
	Acknowledgments
	References

