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ABSTRACT
Wepropose cloud oracles as an alternative tomachine learning for on-

line optimization of cloud configurations. Our cloud oracle approach

guarantees complete accuracy and explainability of decisions for

problems that can be formulated as parametric convex optimizations.

We give experimental evidence of this technique’s efficacy and share

a vision of research directions for expanding its applicability.

1 INTRODUCTION
The cloud offers the promise of an infinitely flexible, elastic, and scal-

able black box. In practice, to keep costs low, developers must intel-

ligently choose how to deploy their applications between hundreds

of storage tiers, hardware types, and regions. This is exacerbated

by the move to multi-cloud pipelines and the proliferation of cloud

providers [11, 27, 52]. Finding the optimal configuration for a system

is far from straightforward. This challenge is further compounded by

the fact that one must find this configuration not just once, but mul-

tiple times as workload changes, which happens frequently at scale.

Existing solutions cluster around two extremes. On the one hand,

Integer Linear Programming (ILP) solvers offer provably correct

solutions but at prohibitively high computational cost. For instance,

our benchmarks highlighted in Figure 1 show that optimizing the

storage location of a single object takes >16 minutes at the current

cloud-scale (>100 data centers) [8, 13, 14, 44]. On the other hand are

approximation solutions, currently dominated by machine learning

techniques. These trade some accuracy for fast execution but suffer

from operational challenges of training pipelines and a lack of ex-

plainability that hinders deployment in production settings [56, 57].

This accuracy trade-off is also an expensive one at cloud scaleswhere

companies arepayinghundredsofmillions in cloudbills annually.Re-

cent work onML-based autotuning for cloud databases [54] showed

performance variations in the 10s of percents (millions of dollars

of waste, at the scale discussed above), as well as outright system

crashes due to unsafe configuration recommendations.

In this paper, we propose a third avenue: cloud oracles. We ob-

serve thatmany decisions in the cloud are (yet another) scenario that

can be viewed as a query optimization problem! This perspective

on cloud decisions leads us to a little-used hammer in the query

optimization toolbox: parametric query optimization (PQO).

Like machine learning, PQO splits optimization into an offline

precomputation phase and an online serving phase. At compile time,

PQO, based on a known cost model, materializes several execution

plans, each one of which is optimal for a subset of all possible input
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Figure 1: Optimization of object storage location forminimal
access latency among 𝑛 data centers—via the traditional exact
approach (ILP) and our exact cloud oracle.

parameters. At runtime, when the input parameters become known,

PQO can then select the final, correct plan with near-zero overhead,

as all relevant optimal plans have already been indexed [26]. PQO’s

success hinges on three conditions: 1) a relatively fixed cost model

for long-lasting offline decisions; 2) a “well-behaved” cost model for

tractable offline computation of all optimal decisions; 3) a tractable

decision space—either enumerable in reasonable time, or collapsi-

ble/prunable into a tractable number of equivalence classes.

Cloud optimization broadly satisfies these conditions. Pricing and

SLOs are reliable and fairly slow-changing by necessity, to maintain

stable business relations and service operation. Also, the pay-per-

use cloud billing model translates to simple linear cost functions:

0.3 per read and 0.5 per write for instance. Finally, the unbounded

elasticity of cloud infrastructure prevents “bin-packing-style” pit-

falls where due to limited capacity one partial decision changes the

options available for the next partial decision—impeding pruning.

As a result, the analogy from PQO to cloud oracles is quite direct:

query plans map to system configurations, e.g., choices of VM or

storage resources across regions or tiers; query execution costs map

to price- and latency-based cost models; workload parameters like

query selectivity map to API request metrics like PUT and GET rate.
Given the fixed cost model and the space of possible parameters,

we propose to precompute a data structure that can be leveraged

online to frequently compute the optimal cloud configuration for the

currentworkload. To that end, it is natural in today’s environment to

consider anML approach, and train a probabilistic or heuristicmodel

for this task. However, given well-behaved cost functions and the fi-

nancial penalties formisprediction in this setting,wepropose instead

to adopt an exact approach from computational geometry (§2.3): a

convex polytope that represents all feasible and non-dominated con-

figurations. This polytope is both compact (on the order of GBs) and

deterministically optimal.
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Calculating the optimal configuration for a given workload cor-

responds to finding the lowest point on the perimeter of the poly-

tope matching each parameter. Conveniently, this can be computed

quickly and with exact accuracy via a simple geometric calculation

based on ray-shooting, described in §2.3. As the workload shifts, we

can use the precomputed polytope and the fast online ray-shooting

calculation to recompute thesolution for thenewinput. Figure1high-

lights that the cloud oracle returns these optimization results within

milliseconds rather than minutes—orders of magnitude speedup

without loss of accuracy.

We refer to our approach as the cloud oracle approach because at
runtime we are able to quickly extract exact answers from the data

structure (oracle) we built in the offline step. Source code is available

on GitHub: https://github.com/hydro-project/cloud_oracle.

2 FROMPARAMETRIC
OPTIMIZATION TOCLOUDORACLES

In the cloud, the design space is massive, we can reconfigure at will,

and the stakes are high. Under these circumstances, there are two

properties we want from a cloud optimization technique: accuracy
and velocity. Accuracy refers to the distance the computed config-

uration is from the true optimal configuration. Velocity refers to the

frequency with which we can recompute the optimal configuration

online. In this section, we describe the two current approaches to

optimization in the cloud: ILPs (high accuracy, low velocity) and

ML (lower accuracy, high velocity). We argue for a third approach:

explicit cloud oracles based on parametric optimization. This ap-

proach offers the best of both worlds for any problem amenable to

a parametric representation.

2.1 The Rising Star: Machine Learning
The use of ML for decision-making in data systems has rapidly gone

from a vision [1, 30] to a production reality [7, 42, 56, 57]. Funda-

mentally, machine learning does heavyweight offline computation

(training) in order to achieve high-velocity online decision-making

(inference). Its use cases in systems primarily replace the greedy or

heuristic algorithms that were developed in prior decades. In many

scenarios, we see big accuracy improvements frommachine learn-

ing over previous heuristic-based approaches to approximation [50].

These solutions still fall short of perfect accuracy though and their

improved accuracy over classical heuristics comes at a heavy price:

computationally heavy training and lack of explainability.

First, real-world training of machine learning is highly burden-

some. The process of gathering production telemetry at scale, testing

and verifying thesemodels, and preventing performance regressions

has fostered the growthof an entirely newfield of research and indus-

try.ProductionMLops ishighlycomplex [2, 45]andwith increasingly

stringentprivacy regulations, it is onlygettingmore challenging [34].

Second, the lack of predictability and interpretability of decisions

is a major barrier to production adoption of machine learning tech-

niques. At Microsoft, researchers describe the production team’s

preference for heuristics over machine learning and for simple lin-

ear or tree models over the more complex models used in research

settings [56, 57]. These preferences are due to the uninterpretability

ofmodels like deep learningmodels, which are often themodels that

outperform traditional solutions in research studies [50].

For problems that can be expressed analytically, parametric query

optimization offers a workaround to the headaches of ML ops and

gives exact and interpretable answers for all decisions. To under-

stand the parametric approach, we must first understand the linear

programming techniques that it is built on.

2.2 TheClassicist: (Integer) Linear Programming
Linear programming (LP) is a mathematical optimization technique

that has been in use since the mid-20
th
century. LP finds the input

thatminimizes some linear objective function,where the valid inputs

are constrained by a set of linear equations. Many decision problems

can be formulated in this way including data partitioning [9], view

materialization [28], checkpoint selection [55], and resource alloca-

tion [40]. While continuous linear programming problems can be

solved with a runtime complexity of approximately𝑂 (𝑛3) [39], the
integer versions of the problem are exponentially hard [29]. In In-

teger Linear Programming (ILP), only inputs with integer values are

valid. Similarly, Mixed Integer Linear Programming (MILP) requires

that some but not all of the inputs be integers. Both ILP and MILP

problems take exponential time to solve—they are NP-hard [29].

Intuitively, ILP is harder thanLPas the search space in ILP consists

only of discrete points whereas LP considers smooth surfaces that

can be walked, andwhose intersections can be computed cheaply. In

particular, the valid solutions to LPproblems forma convex polytope.

This polytope is the geometric shape enclosed by all the hyper planes

(linear constraints) of theproblem. Finding the intersectionpoints on

the perimeter of this polytope is sufficient for computing the optimal

solution. Throughout this paperwewill see that having this polytope

representation of optimal solutions is very powerful, as we can use

it not just to compute the answer on our current inputs efficiently,

but to do what-if analysis and drift analysis efficiently as well (§3).

2.3 The NewKid: Explicit Cloud Oracles
In this work, we observe that parametric query optimization [10, 16,

26, 48, 49] and cloud optimization are extremely similar. As such,

many of the ideas of PQO can be repurposed for efficient optimiza-

tion in the cloud context. PQO not only has the potential to achieve

both the accuracy of ILPs and the velocity of ML, but it also enables,

as we describe next, highly expressive optimization tasks.

“Parametric query optimization attempts to identify at compile

time several execution plans, each one of which is optimal for a

subset of all possible values of the run-time parameters. At runtime,

when the actual parameter values become known, it is then possible

to choose the final optimal plan with essentially no overhead.” [26]

We propose transferring this idea to cloud optimization in the form

of cloud oracles—a precomputed data structure of optimization de-

cisions, akin to a multidimensional index of the parameter space,

which enables lightning-fast online optimization queries.

Offline Optimization of a Cloud Oracle.As a first step in alleviating
optimization overhead, we advocate for offline precomputation of

cloud oracles based on PQO techniques. This is loosely analogous to

the computation involved in trainingMLmodels, without any of the

ML burdens of training data, model architecture selection, or hyper-

parameter tuning. PQO essentially comprises 1) plan enumeration
in a fairly static problem setting and 2) a linear cost model allowing
for efficient comparison of plans. Decisions in cloud optimization

https://github.com/hydro-project/cloud_oracle
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problems are equally enumerable and also have linear cost models.

We can thus build a cloud oracle as the exhaustive collection of all

optimal decisions over all possible parameters—enumerating and

judging decisions similar to parametric query optimization.

Online Optimization by Geometry.Once the cloud oracle has been
precomputedoffline, thenext step is querying theoracle in away that

is both fast and accurate.We can frame optimization tasks on a cloud

oracle as computational geometry queries on a convex polytope.

Rather than indexing the decisions, we point out that the exhaustive

set of their linear cost functions forms a single convex polytope. We

find thatwe can efficiently query the convex polytope evenwhen the

cloud oracle comprises millions of decisions with high-dimensional

cost functions. This is in part thanks to the ability to reuse GPU

hardware and linear algebra packages commoditized byML. These

can be used to perform highly optimized computational geometry

queries on this convex polytope. Moreover, having access to the

exhaustive set of all optimal decisions allows us to venture out to

further optimization tasks beyond plain minimization tasks.

More formally, we represent the convex polytope as a dense ma-

trix of hyperplanes derived from the cost functions of the decisions

contained in the cloud oracle. That is, the linear cost function of

a decision has the type 𝑓 : R𝑛 → R, which can also be viewed as

a hyperplane in R𝑛+1 space—the 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 ×𝑐𝑜𝑠𝑡 space of the pa-
rameters and the resulting costs. The space enclosed by all these

hyperplanes is the convex polytope and the surface of this convex

polytope represents the lowest costs for all parameters.

In §4 we discuss the set of problems currently amenable to such

cloud oracle constructions and the open research avenues to expand-

ing that setofproblems.Butfirst, letus jump intoaconcreteexample.

3 CASE STUDY:
FAULT-TOLERANTOBJECT PLACEMENT

Tomake things concrete, we explore the situation of building a cloud

oracle for fault-tolerant object storage andwalk through three online

decision scenarios:which configuration is optimal now,what if
we were to make a large change to the workload, andwhenwill we

need to reconfigure in the future.

For our case study, consider an online retailer who uses object

storage to manage its warehouse inventory—storing for each inven-

tory item in each warehouse one object in Cloudflare’s R2 object

store [25]. The retailer wants to keep operating even in the face of

disaster, e.g., power outage, but seeks to minimize access latency for

their globally distributed clients. Specifically, the retailer wants to

store two up-to-date copies of each object in two of Cloudflare’s 300

data centers [14] that are at least 200km apart. Clients are permitted

to read any one of the copies but must update both, so that the read

latency is the minimum of the network latency between a client and

the two data centers while the write latency is the maximum.

We define the fault-tolerant object placement problem for an ob-

ject𝑜 as follows. Let𝑐 ∈𝐶 be the client data centers fromwhich object

𝑜 is accessed. Let𝑑 ∈𝐷 be the data centers that may host object 𝑜 . Let

®𝑙 be the matrix with the network latency between clients and data

centers. Let ®𝑤 and ®𝑟 be the workload vectors containing the write
frequencies and read frequencies of all clients. If object 𝑜 is hosted

in data centers 𝑑 and 𝑑′, the overall access latency is calculated as in
Equation 2. The objective is to minimize overall access latency while

choosing two data centers with ≥200km distance:

Algorithm 1 ILP formulation for the optimal decisions of the

fault-tolerant object placement problem with distance constraint.

The distance constraint is linearized via auxiliary variables and

constraints, as its straightforward formulation would be quadratic.

𝑚𝑖𝑛
∑︁
𝑐∈𝐶

𝑧𝑐 +
∑︁
𝑑∈𝐷

𝑙𝑐,𝑑𝑟𝑐𝑦𝑐,𝑑 s.t. #minimize total latency (5)∑︁
𝑑∈𝐷

𝑥𝑑 =2,∀𝑐 ∈𝐶 #write 2 DCs (6)∑︁
𝑑∈𝐷

𝑦𝑐,𝑑 =1,∀𝑐 ∈𝐶 #read 1 DC (7)

𝑥𝑑 ≥𝑦𝑐,𝑑 ,∀𝑐 ∈𝐶,∀𝑑 ∈𝐷 #read only if writing (8)

𝑥𝑑 ,𝑦𝑐,𝑑 ∈ {0,1},∀𝑐 ∈𝐶,∀𝑑 ∈𝐷 # no/yes decisions (9)

𝑧𝑐 ≥ 𝑙𝑐,𝑑𝑟𝑐𝑥𝑑 ,∀𝑑 ∈𝐷,∀𝑐 ∈𝐶 #aux. write lat.𝑚𝑎𝑥 (𝑙𝑐,𝑑𝑟𝑐𝑥𝑑 ) (10)

𝑧𝑐 ∈R,∀𝑐 ∈𝐶 #aux. var for write latency (11)

200𝑣𝑑,𝑑 ′ ≤𝑑𝑖𝑠𝑡𝑑,𝑑 ′ ,∀𝑑,𝑑′ ∈𝐷 #linear dist. constraint (12)

2𝑣𝑑,𝑑 ′ ≤𝑥𝑑 +𝑥𝑑 ′ ,∀𝑑,𝑑′ ∈𝐷 #aux. mapping of 𝑣 to 𝑥 : (13)

𝑣𝑑,𝑑 ′ ≥𝑥𝑑 +𝑥𝑑 ′−1,∀𝑑,𝑑′ ∈𝐷 #𝑣𝑑,𝑑 ′ ⇐⇒ 𝑥𝑑∧𝑥𝑑 ′ (14)

𝑣𝑑,𝑑 ′ ∈ {0,1},∀𝑑,𝑑′ ∈𝐷 #aux. for dist. constraint (15)

∀𝑑,𝑑′ ∈𝐷 : 𝑓𝑑,𝑑 ′ :=R
|𝐶 |×R |𝐶 |→R (1)

𝑓𝑑,𝑑 ′ ( ®𝑤,®𝑟 )=
∑︁
𝑐∈𝐶

𝑚𝑎𝑥 (®𝑙𝑐,𝑑 ,®𝑙𝑐,𝑑 ′ ) ®𝑤𝑐 +𝑚𝑖𝑛(®𝑙𝑐,𝑑 ,®𝑙𝑐,𝑑 ′ )®𝑟𝑐 (2)

argmin

𝑑,𝑑 ′∈𝐷
𝑓𝑑,𝑑 ′ ( ®𝑤,®𝑟 ) (3)

𝑠 .𝑡 . 𝑑𝑖𝑠𝑡 (𝑑,𝑑′) ≥ 200 (4)

The Classic ILP Formulation: Traditionally, one would encode this
problem into the ILP in Algorithm 1. If you’re not familiar with ILP

formulations it is okay to ignore this diagram.

Overall, 0-1 variables 𝑥𝑑 encode the binary decision of whether to

storeanobject ina specificdata center𝑑 and𝑦𝑐,𝑑 encodes thedecision

ofwhich client readswhich copy. The cost of these decisions in terms

of write/read latency for the given write/read frequencies ( ®𝑤 , ®𝑟 ) and
network latencies

®𝑙 is encoded in the linear coefficients 𝑙𝑐,𝑑 . How-

ever, themax terms and distance constraints do not permit straight-

forward linear encode. Their linear formulation requires auxiliary

variables and constraints—Eq. 10–11 and Eq. 12–15, respectively. As

a result, the ILP grows large and complex even for relatively few data

centers, and we will see its prohibitive overhead in Section 3.2.

3.1 Offline Computation of the Cloud Oracle
Fortunately, we can compute a cloud oracle for the fault-tolerant

object placement problem parameterized on the read and write fre-

quencies (the workload which changes over time). The cloud oracle

computation is possible because our three conditions all hold:

• Condition 1–Fixed cost model: Cloud vendors like Cloudflare offer
reliable network latency [17, 18, 36]. In practice, we hence can

consider the network latencies
®𝑙 as static coefficients rather than

parameters in our cost function (Eq. 2).
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Figure 2: Worst-case single-threaded computation time for
cloud oracles when scaling the number of data centers consid-
ered for storing objects and the number of client data centers
determining the read/write frequencyparameter dimensions.

• Condition 2–Tractable cost model: Our offline computation can

easily resolve themax andmin terms to plain linear coefficients

(explained in Algorithm 2). This makes the cost model linear and

tractable.

• Condition 3–Tractable decision space: Object stores promise elastic

capacity for reasonable workloads [8, 13, 25, 44]. We can assume

that objects do not compete for capacity, so that the decisions

space collapses to the placement of a single object. Also, we can

assume that the optimal data centers always have capacity, so that

we can prune out non-optimal decisions without regret.

Algorithm 2 implements the offline computation of a cloud oracle

for given client/storage data centers (𝐶 , 𝐷) and network latencies

between those (
®𝑙 ). At a high level, we enumerate the data center pairs

that satisfy the fault tolerance requirements and compute their read

andwrite latencies. Thenwepruneout strictlynon-optimal pairs and

add the remaining pairs to amatrix representation.More specifically:

• Lines 4–10: We enumerate the entire search space, apply the con-

straint (Eq. 4), and importantly compute themin andmax terms

of the objective function to get the concise network latency
®𝑙𝑝 of

each valid placement 𝑝 .

• Lines 12–15: We now filter out irrelevant placement decisions.

Without knowing the actual write and read frequencies ( ®𝑤 , ®𝑟 ),
we can clearly tell that a placement decision never yields lowest

total access latency when its latency coefficients are dominated

(
®𝑙𝑝 > ®𝑙𝑝′ ). The result is a compact yet accurate set of placement

decisions that are optimal for some write/read frequencies.

• Lines 17–19: We finally construct the cloud oracle as a matrix

containing the latencies of all optimal placement decisions. We re-

formulate the linear coefficients
®𝑙𝑝 as hyperplanes in 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟×

𝑙𝑎𝑡𝑒𝑛𝑐𝑦 space, adding an additional −1 coefficient. This is the text-

book reformulation:
®𝑙𝑝 · ®𝑎 ⇔ 𝑥 = ®𝑙𝑝 · ®𝑎 ⇔ 0 = ®𝑙𝑝 · ®𝑎 − 𝑥 , where

®𝑎= [ ®𝑤0,..., ®𝑤 |𝐶 | ,®𝑟0,...,®𝑟 |𝐶 | ]. We now have a dense linear representa-

tion of all optimal placement decisions, allowing fast and accurate

online optimization.

Figure 2 shows the worst-case computation time of Algorithm 2

under a rangeof problemsizes.Here,we scale thenumber of data cen-

ters that may store objects and the number of read/write frequency

parameters of client data centers—scaling the decision space and the

Algorithm 2 Algorithm for computing a cloud oracle for fault-

tolerant object placement problem, given data centers𝐷 that may

store objects, client data centers 𝐶 that access objects, and the

network latency
®𝑙 between those data centers.

1: procedure compute_oracle(𝐶 ,𝐷 , ®𝑙 )
2: 𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑠←{} ⊲ Initialize decisions of oracle
3: ⊲ Enumerate valid data center pairs as potential placements ⊳
4: for all 𝑑,𝑑′ ∈𝐷 do
5: if 𝑑𝑖𝑠𝑡 (𝑑,𝑑′) ≥ 200 then ⊲ Check distance constraint
6: 𝑝←(𝑑,𝑑′) ⊲ Valid placement p
7: ⊲Write/read latencies of p by element-wise max/min ⊳
8:

®𝑙𝑝←[𝑚𝑎𝑥 (𝑙
0,𝑑 ,𝑙0,𝑑 ′ ),...,𝑚𝑎𝑥 (𝑙 |𝐶 |,𝑑 ,𝑙 |𝐶 |,𝑑 ′ ),

9: 𝑚𝑖𝑛(𝑙
0,𝑑 ,𝑙0,𝑑 ′ ),...,𝑚𝑖𝑛(𝑙 |𝐶 |,𝑑 ,𝑙 |𝐶 |,𝑑 ′ )]

10: 𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑠←𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑠
⋃(𝑝,®𝑙𝑝 )

11: ⊲ Filter out placements with strictly higher latency ⊳

12: for all (𝑝,®𝑙𝑝 ),(𝑝′,®𝑙𝑝′ ) ∈𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑠 do
13: if ®𝑙𝑝′ <®𝑙𝑝 then
14: 𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑠←𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑠\{(𝑝,®𝑙𝑝 )}
15: break
16: ⊲ Convert into matrix of planes with coeff. ®𝑙𝑝 and extra -1 ⊳

17: 𝑝𝑙𝑎𝑛𝑒𝑠←

®𝑙0,𝑝 ··· ®𝑙

2 |𝐶 |,𝑝 −1
.
.
.

,∀(𝑝,®𝑙𝑝 ) ∈𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑠

18:

19: returnOracle(𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑠 , 𝑝𝑙𝑎𝑛𝑒𝑠)

cost model dimensions. We report the computation time for single-

threaded computation for the case that all possible data center pairs

turn out to be optimal placement decisions. We can observe steeply

increasing, as can be expected from the nested loops of the algorithm.

Though, the single-threaded computationonly takes 20minatCloud-

flare’s scale (300 data centers). Beyond this scale, computation takes

>7h where filtering of non-optimal placements dominates.

Implications: While seeming brute-force, the offline precom-

putation of the cloud oracle for fault-tolerant object placement is

tractable. Enumerating the quadratic search space is manageable

for the number of data centers that cloud vendors have today, and

data-parallel computation will further offset overhead. We point out

PQO techniques and further research avenues for precomputation

of cloud oracles for more challenging cases in §4.

3.2 Efficient & AccurateMinimization
Which? Consider the processes of deciding which two data centers
are the optimal places to store the copies of an object, as a function of

recordedwrite/read frequencies ( ®𝑤,®𝑟 ) and thenetwork latency®𝑙 . This
maps directly to the typical minimization task of Eqs.3–4. Rather

than solving the complex ILP of Algorithm 1, the existence of a cloud

oracle allows solving this task orders ofmagnitude faster but equally

accurately through simple geometric intersection search—namely

vertical ray-shooting.
We illustrate vertical ray-shooting on a simplified oracle in Fig-

ure 3.We consider the “bounding box” (i.e., convex polytope) formed

by the 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟×𝑙𝑎𝑡𝑒𝑛𝑐𝑦 hyperplanes of all placement decisions



Optimizing the cloud? Don’t train models. Build oracles! CIDR ’24, January 14–17, 2024, Chaminade, USA

Write
frequency ( ~wi

)
0

5
10

15
20Read frequency (~ri)

0 5 10 15 20

L
aten

cy

0

20

40

60

80

100

120

Figure 3: Illustration of vertical and directed
ray-shooting onto the hyperplanes that
represent the latency of decisions under any
read/write frequency.
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Figure 4: Minimization with the cloud oracle versus the ILP. (a) shows the
scalability in the number of decisions in the search space (data centers 𝐷)
under |𝐶 |=300 and (b) in the dimensions of the cost model (client data centers
𝐶) under |𝐷 |=300. (c) shows the accuracy of the cloud oracle relative to the ILP.

Algorithm 3Algorithm for querying the oracle 𝑜 for the optimal

decisions with minimal latency under the given parameter ®𝑎= [ ®𝑤,®𝑟 ].
1: procedureqery_minimum(𝑜 , ®𝑎)
2: ⊲ Vertical ray-shooting: argmin on matrix-vector mul. ⊳

3: 𝑖𝑑𝑥, 𝑣𝑎𝑙𝑢𝑒←argmin (𝑜.−−−−−→𝑝𝑙𝑎𝑛𝑒𝑠 · ®𝑎)
4: return (𝑜.𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑠𝑖𝑑𝑥 , 𝑣𝑎𝑙𝑢𝑒)

in the oracle. Each point on the surface of this polytope is an opti-

mum latency for some vector of input parameters ®𝑤 and ®𝑟 . Given a
specific input, we can start at the “floor” of the 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟×𝑙𝑎𝑡𝑒𝑛𝑐𝑦
space where latency=0 (i.e., [ ®𝑤,®𝑟,0]), and compute the closest inter-

section point along a vertical line with the planes above. This point

in 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 × 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 space identifies the plane with the lowest

latency for the given parameter—the optimal placement decision.

Algorithm3implementsvertical ray-shootingwithasinglematrix-

vector multiplication. As shown, vertical ray-shooting is a special

case that allows aggressive simplification compared to the general

ray-shooting used later. As such, the minimization task on the cloud

oracle is very cheap and well suited for GPU-acceleration. Also, the

results are exact by construction—given that the optimal decisions

are contained in the cloud oracle.

Figure 4 shows the significant optimization speedup of minimiza-

tion tasks with the cloud oracle compared to the traditional ILP. In

these benchmarks we compare the optimization time of solving the

ILP with Gurobi on a 40-core CPU and the cloud oracle on the CPU

as well as a Nvidia V100 GPU
1
.

Figure 4(a) shows the optimization timewhen scaling the number

of data centers𝐷 and hence the number of feasible placement deci-

sions under |𝐶 |=300—note the log scales. This affects the complexity

of solving the ILP and the size of the cloud oracle. We see the high

optimization overhead of the ILP, starting at >10ms for only 2 data

centers and reaching >1000s for 100 data centers. Even for 1000 data

centers, the cloud oracle remains sub second on the CPU and sub 10

milliseconds on the GPU. The cloud oracle is more than 4 orders of

magnitude faster than the ILP.

1
ILP solvers rely on sequential refinement of solutions that preclude parallelism. Com-

mercial solvers thus operate only on CPUs and do not support GPU acceleration [19].

Figure 4(b) shows the optimization time when instead scaling

the number of client data centers |𝐶 |, i.e., the number of parameters

of the write/read frequencies in the model, under |𝐷 | = 300. Also

under high-dimensional parameters, the cloud oracle is orders of

magnitude faster.

Finally, Figure 4(c) shows the accuracy of the cloud oracle com-

pared to the ILP for both of the above experiments. The cloud oracle

is perfectly accurate—it yields exactly the same optimization results.

Implications: Cloud oracles are fast while achieving exact ac-
curacy! Minimization tasks that use the cloud oracle are orders of

magnitude faster than ILPs, even if the cloud oracle has to cover

a large search space, e.g., all 300 Cloudflare data centers, and the

cost functions have hundreds of parameter dimensions. Using cloud

oracles makes accurate minimization affordable at cloud scale and

benefits from accelerator hardware.

3.3 Efficient Scenario Planning
What If? Consider now a situation in which our online retailer

wants to expand from the US to the EU and has to negotiate dis-

counted contracts for reserving capacity in specific EU data centers.

The retailer must explore “what if” scenarios to determine how the

choice of data centers will change the access patterns and thus affect

optimal object placements and access latencies. Such scenario plan-

ning is based on “what if” analyses, which typically uses stochastic

simulation to iteratively explore a vast number of possible scenarios

to present anticipated latency profiles.

Simulation techniques like Monte Carlo simulation essentially

consist of an outer loop that draws sample parameters from a trace

or model, and an inner loop that computes the optimal decision and

resulting costs for a given sample [31]. These simulations need to

evaluate many samples to confidently judge scenarios. This is infea-

sible if the inner loop is an ILP that takes seconds or even minutes

to compute. Our cloud oracle approach can be used as an alternative

lightning-fast inner loop, allowing these simulations to dowhat they

are intended to do: aggressively exploremany samples and scenarios.

Algorithm 4 shows that Monte Carlo simulation immediately fol-

lows the implementation of the minimization task. Notably, besides

solving for a single sample quickly through vectorization, this sim-

ulation also easily scales across several GPUs, simply by replicating

the cloud oracle matrices and partitioning the samples.
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Algorithm 4 Algorithm for simple Monte Carlo simulation

computing the expected latency improvement between two

scenarios. 𝑜 is the cloud oracle for the US-only scenario and 𝑜′ the
cloud oracle for the expansion to US+EU.

1: procedure simulate_scenario(𝑜 , 𝑜′, 𝑆𝑎𝑚𝑝𝑙𝑒𝑠)

2: 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠←{} ⊲ Latency improvements of ®𝑎 ∈𝑆𝑎𝑚𝑝𝑙𝑒𝑠

3: for all ®𝑎 ∈𝑆𝑎𝑚𝑝𝑙𝑒𝑠 do
4: ⊲ Ratio of new optimal latency vs. prior optimal latency ⊳
5: 𝑖←𝑚𝑖𝑛(𝑜′ .𝑝𝑙𝑎𝑛𝑒𝑠 · ®𝑎)/𝑚𝑖𝑛(𝑜.𝑝𝑙𝑎𝑛𝑒𝑠 · ®𝑎)
6: 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠←𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠

⋃{𝑖}
7: return𝑚𝑒𝑎𝑛(𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠), 𝑐𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 (𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠)
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(b) Simulation results (illustration)

Figure 5: Monte Carlo simulation with the cloud oracle for
300 data centers (𝐷) and client data centers (𝐶). (a) Scalability
of the cloud oracle in the number of samples optimized on
1 GPU and 8 GPUs. (b) An illustration how simulation results
(median and 95-confidence interval) converge under the
number of samples from a trace.

Figure 5 demonstrates the Monte Carlo simulation on top of the

cloud oracle for judging the latency improvement when expand-

ing from the US to the EU.We randomly generate access frequency

samples and compute the expected latency reduction at the scale of

Cloudflare (|𝐷 | = |𝐶 | = 300). Figure 5(a) shows that the simulation

time scales linearly in thenumber of samples andGPUs. Figure 5(b) il-

lustrates that thousands of samples froma tracemaybenecessary for

the median and 95-confidence-interval to converge. In combination,

we can see that the cloud oracle on the GPU can provide confident

simulation results within milliseconds to seconds—interactive re-

sponse time.

Implications: The cloud oracle approach makes stochastic sim-

ulation feasible at the scale of the modern clouds. This unlocks a

wide range of planning and forecasting scenarios. One interesting

family of applications are system configuration tasks like storage

placement or other system parameter (“knob”) tuning. A wide range

of performance profiles can be created with very low overhead and

either presented visually to a human for decision-making, or fed into

an automatic configuration service. In either case, decisions can be

made to account for a wide variety (or a probability distribution) of

“what if” scenarios, each one accurately assessed via the cloud oracle.

Stochasticmethods are not only interesting for applications on top of

cloud oracles, but are also interesting avenues for the construction of

robust cloudoraclesoveruncertaincostmodels, aswepointout in§4.

Algorithm 5 Algorithm for querying the oracle 𝑜 for the next

optimal decision under the drift
®𝑑 of parameter ®𝑎.

1: procedureqery_drift_directed(𝑜 , ®𝑎, ®𝑑)
2: 𝑐𝑢𝑟𝑟,𝑐𝑜𝑠𝑡←qery_minimium(𝑜,®𝑎)
3:

−−−−→
𝑝𝑙𝑎𝑛𝑒←𝑜.

−−−−−→
𝑝𝑙𝑎𝑛𝑒𝑠𝑐𝑢𝑟𝑟 ⊲ Plane of current optimum

4: ®𝑠←[®𝑎,𝑐𝑜𝑠𝑡] ⊲ Start point on plane

5:
®𝑑′← ®𝑑−(( ®𝑑 ·−−−−→𝑝𝑙𝑎𝑛𝑒)∗−−−−→𝑝𝑙𝑎𝑛𝑒) ⊲ Projected drift along plane

6:

−−−−→
𝑂𝑡ℎ𝑒𝑟←𝑜.

−−−−−→
𝑝𝑙𝑎𝑛𝑒𝑠\{−−−−→𝑝𝑙𝑎𝑛𝑒} ⊲Matrix of remaining planes

7: ⊲ Ray-shooting from start ®𝑠 in direction of projected drift ®𝑑′ ⊳
8:

−−−−−−−→
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒←(−−−−→𝑂𝑡ℎ𝑒𝑟 ·−®𝑠)/(−−−−→𝑂𝑡ℎ𝑒𝑟 · ®𝑑′)

9: for all 𝑖 ∈0..𝑛 do ⊲ Find closest positive distance

10: if
−−−−−−−→
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖 >0&&

−−−−−−−→
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖 <𝑚𝑖𝑛_𝑑𝑖𝑠𝑡 then

11: 𝑚𝑖𝑛_𝑖𝑑𝑥←𝑖,𝑚𝑖𝑛_𝑑𝑖𝑠𝑡←−−−−−−−→𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖

12:

−−−−−→
𝑐𝑙𝑜𝑠𝑒𝑠𝑡←®𝑠+( ®𝑑′∗𝑚𝑖𝑛_𝑑𝑖𝑠𝑡) ⊲ Closest intersection point

13: 𝑛𝑒𝑥𝑡←𝑜.𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠𝑚𝑖𝑛_𝑖𝑑𝑥 ⊲ Next optimal decision

14:

−−−−−−−−−−−→
𝑝𝑎𝑟𝑎𝑚_𝑛𝑒𝑥𝑡←−−−−−→𝑐𝑙𝑜𝑠𝑒𝑠𝑡0,...,𝑛−1 ⊲ Next parameter vector

15: 𝑐𝑜𝑠𝑡_𝑛𝑒𝑥𝑡←−−−−−→𝑐𝑙𝑜𝑠𝑒𝑠𝑡𝑛 ⊲ Next latency
16: return (𝑛𝑒𝑥𝑡,−−−−−−−−−−−→𝑝𝑎𝑟𝑎𝑚_𝑛𝑒𝑥𝑡,𝑐𝑜𝑠𝑡_𝑛𝑒𝑥𝑡,𝑚𝑖𝑛_𝑑𝑖𝑠𝑡)

3.4 EfficientMigration Planning
When? Finally, consider the task of migration planning for large

objects with changing access pattern, e.g., due to diurnal or seasonal

popularity in different regions of the globe [22, 47]. Our retailer may

want to migrate objects to improve access latency. However, migrat-

ing large objects takes time. Suppose the online retailer monitors the

access pattern and can estimate themigration duration (𝑥 ), knowing

the available network bandwidth. They want to start migrating at

𝑡−𝑥 , where 𝑡 is the time when the current placement starts to become
suboptimal. But when is time 𝑡?

With current approaches, one would have to solve a series of

ILPs over quantized time steps to find time 𝑡 . This exacerbates the

alreadyhigh overhead, forcing current large-scale industrial systems

to take a reactive migration approach [6]. In this situation, we can

take advantage of the geometric nature of the cloud oracle to answer

new classes of queries.

Planning under predictable drift. Consider predictable diurnal ac-
cess pattern. Our retailer may want to migrate objects to evening

locations, when people get home and have time for online shopping.

In this situation, the cloud oracle can answer the query: How far
can the parameters drift in a given direction without changing the
optimum? If we know the direction and rate of change, we can use

such a query to tell us precisely when the current optimumwill no

longer apply; this allows us to plan ahead for that eventuality.

We can directly compute when to migrate under given drift via

directed ray-shooting on the hyperplanes of the convex polytope rep-
resenting the cloud oracle. As illustrated in Figure 3, we can view the

problem as a point in𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟×𝑙𝑎𝑡𝑒𝑛𝑐𝑦 space thatmoves in the di-

rection and speed of a given parameter drift vector. The point moves

along the hyperplane of the current optimumand eventually collides

with a neighboring hyperplane—at 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟×𝑙𝑎𝑡𝑒𝑛𝑐𝑦 coordinates
where the current optimum has the same latency as its neighbor.

This intersection point identifies the next optimal decision including
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the parameters, latency (cost), and time when this next optimum is

reached. Due to linearity and convexity, linear intersection search

in the direction of the drift suffices to find the intersection point.

Algorithm5implements thequery fordirecteddrift. Itfirstprojects

the given drift
®𝑑 onto the current optimal hyperplane in𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟×

𝑙𝑎𝑡𝑒𝑛𝑐𝑦 space and then computes the closest intersection with the

remaining hyperplanes from the current 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟×𝑙𝑎𝑡𝑒𝑛𝑐𝑦 point.

Planning under undirected drift.
Now consider predictable access peaks. Before events like Black

Friday, our retailermust planmigrationof all their objects in advance.

Based on historic information, the retailer can estimate the access

frequency of each object and anticipate its optimal placement under

some confidence. One may apply Monte Carlo simulation but in this

situation the simulation for each object would require significant

computation time, even with the cloud oracle. The cloud oracle of-

fers a shortcut via the query:What is the least parameter drift that
changes the optimal configuration? This query tells us if migration of

an object will be necessary. If the confidence interval is smaller than

the output drift, then the object will have a single optimal placement.

Otherwise, computationally intensive simulation needs to anticipate

a migration plan.

We can efficiently compute closest neighboring optimum in any

drift direction via intersection search—after relaxing the problem.

This query can be viewed as a point drifting within the current hy-

perplane and we have to find the closest intersection point with the

remaining hyperplanes in any drift direction. We are not given a drift

vector, instead we have to compute the vector
®𝑑∗ that lies inside the

current hyperplane and minimizes the distance from the current

point on 𝑥0 to some intersection point 𝑥∗:

𝑚𝑖𝑛 𝑡, s.t. # minimal distance 𝑡 (16)

𝑥0+𝑡 ®𝑑∗=𝑥∗∧∃𝑝 ∈𝑃 :𝑥∗ ∈𝑝 # intersection with 𝑝𝑖 (17)

®𝑑∗ · ®𝑛=0 # parallel to current plane (18)

| | ®𝑑∗ | |2=1 # normalized distance (19)

Rather than falling back to an expensive solver, we can utilize the

cloud oracle when relaxing the problem. That is, we can utilize La-
grangian relaxation to formulate an unconstrained minimization

problem for the closest intersection to each neighboring hyper-

plane individually. We can efficiently compute this relaxed prob-

lem and then simply take the minimum to find the overall closest

intersection—the least drift that changes the current optimum. Ap-

pendix A details our relaxation that Algorithm 6 implements to

answer the undirected drift query.

Figure 6 shows the optimization time of the advanced drift queries

in comparison to the simple minimization task. Here, we repeat the

scaling experiment from earlier. We can see that even for these ad-

vanced optimization tasks the optimization time remains sub 10

milliseconds on the GPU and overall very manageable compared to

the ILP solving the simple minimization.

Implications:The low-overheaddriftquerieshighlight thepower
of geometric computations on the cloud oracle and indicate interest-

ing applications in dynamic optimization. Not only do drift queries

allowus to plan ahead for a given drift, but theymay also benefit time

series-baseddynamicoptimization.Acommonapproach is topredict

Algorithm6Algorithm for querying the oracle for the next optimal

decision under unknown drift of parameter ®𝑎.
1: procedureqery_drift_undirected(𝑜 : Oracle, ®𝑎: Parameter)

2: 𝑐𝑢𝑟𝑟,𝑐𝑜𝑠𝑡←qery_minimium(𝑜,®𝑎)
3:

−−−−→
𝑝𝑙𝑎𝑛𝑒←𝑜.

−−−−−→
𝑝𝑙𝑎𝑛𝑒𝑠𝑐𝑢𝑟𝑟 ⊲ Plane of current optimum

4:

−−−−→
𝑂𝑡ℎ𝑒𝑟←𝑜.

−−−−−→
𝑝𝑙𝑎𝑛𝑒𝑠\{−−−−→𝑝𝑙𝑎𝑛𝑒} ⊲Matrix of remaining planes

5: ®𝑠←[®𝑎,𝑐𝑜𝑠𝑡] ⊲ Start point at parameter and cost coordinates
6: ⊲ Solving closest intersection for each plane via relaxation ⊳

7: for all ®𝑝𝑖 ∈
−−−−→
𝑂𝑡ℎ𝑒𝑟 do

8: 𝛼𝑖← ®𝑝𝑖 ·
−−−−→
𝑝𝑙𝑎𝑛𝑒

9: ®𝑣𝑖←(𝛼𝑖
−−−−→
𝑝𝑙𝑎𝑛𝑒− ®𝑝𝑖 )/

√︃
1−𝛼2

𝑖

10: 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖←( ®𝑝𝑖 ·−®𝑠)/( ®𝑝𝑖 · ®𝑣𝑖 )
11: 𝑚𝑖𝑛_𝑖𝑑𝑥,𝑚𝑖𝑛_𝑑𝑖𝑠𝑡←argmin(−−−−−−−→𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)
12:

−−−−−→
𝑐𝑙𝑜𝑠𝑒𝑠𝑡←®𝑠+( ®𝑉𝑚𝑖𝑛_𝑖𝑑𝑥 ∗𝑚𝑖𝑛_𝑑𝑖𝑠𝑡) ⊲ Closest intersection

13: 𝑛𝑒𝑥𝑡←𝑜.𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠𝑚𝑖𝑛_𝑖𝑑𝑥 ⊲ Next optimal decision

14:

−−−−−−−−−−−→
𝑝𝑎𝑟𝑎𝑚_𝑛𝑒𝑥𝑡←−−−−−→𝑐𝑙𝑜𝑠𝑒𝑠𝑡0,...,𝑛−1 ⊲ Next parameter vector

15: 𝑐𝑜𝑠𝑡_𝑛𝑒𝑥𝑡←−−−−−→𝑐𝑙𝑜𝑠𝑒𝑠𝑡𝑛 ⊲ Next latency
16: return (𝑛𝑒𝑥𝑡,−−−−−−−−−−−→𝑝𝑎𝑟𝑎𝑚_𝑛𝑒𝑥𝑡,𝑐𝑜𝑠𝑡_𝑛𝑒𝑥𝑡,𝑚𝑖𝑛_𝑑𝑖𝑠𝑡)
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Figure 6: Scalability of the drift optimization tasks compared
to the simple minimization on the cloud oracle. (a) shows
the scalability in the number of decisions in the search space
(data centers 𝐷) under |𝐶 | = 300 and (b) in the dimensions of
the cost model (client data centers𝐶) under |𝐷 |=300.

a time series of workload parameters and then optimize over quan-

tized time slots [12, 20, 37, 43, 51]. Fine-grained time slots allow for

high accuracy but suffer from high overhead while coarse-grained

time slots minimize overhead but also worsen accuracy. Instead,

traveling the surface of the time series and the cost functions has

the potential to offer high accuracy and avoid high overhead (see

annealing methods described in §4.2).

4 TOWARDCLOUDORACLES
Wehaveonemajorquestion left toaddress: Forwhatkindofproblems

canwe compute a cloud oracle?Akin to PQO, offline optimization for

a cloud oracle requires enumeration of candidate decisions and sub-

sequent selection of optimal decisions based on a cost model [16, 49].

The three conditions enabling efficient offline optimization are: 1)

a relatively fixed cost model; 2) a mostly linear cost model; 3) inde-

pendence of decisions.
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The placement problem for Durable Objects fulfills these three

conditions andhasa small search space.This enables straightforward

enumeration and selection of decisions for the cloud oracle.We have

seen that the resulting cloud oracle offers large speedups and im-

proved accuracy for a range of important optimization tasks. Indeed,

this beneficial scenario applies to placement problems that do not

require replication and have elastic capacity. For example, cost op-

timization of S3 objects has a linear pay-per-use pricing model and a

search space of 99 AZswith each 6 storage tiers (594 decisions) [4, 5].

In contrast, “bin-packing-style” problems violate condition 3,

hence making offline optimization extremely difficult. For example,

consider data placement to minimize average access latency for a

DBMS that runs on aVMwith local and remote storage. Local storage

has low access latency but limited capacity, sowemust decidewhich

tables to pack in there. For optimal placement,wemust jointly decide

for all tables at once, which blows up the problemwith little chance

of pruning. Compared to independent decisions, this bin-packing

problem appears combinatorially intractable to precompute offline.

Along the following three research questions, we now discuss

problems that challenge the application of cloud oracles but offer

promising directions:

(1) How to make enumeration of candidate decisions tractable in

large configuration spaces of cloud-scale systems?

(2) How to select optimal decisions under non-linear cost models?

(3) How to select optimal decisions under variance in cost models,

e.g., network latency?

4.1 Enumeration in Large Search Spaces
Placementwith replication still fits our three conditions, but optimiz-

ing for combinations of placements blowsup the search space. For ex-

ample, consider geo-replication of objects for latency minimization

orgeo-replicationofDBMSs for fault-tolerance.Theseproblemschal-

lenge efficient candidate enumeration. Facing amassive search space,

one important lesson to learn from (parametric) query optimization

is that effective pruning is imperative [10, 33, 48]. Nomatter how effi-

cient the selection, excessive enumeration of candidateswill prohibit

tractable offline optimization. Pruning is critical, but it is heuristic.

Thechallenge is thatpruningmust exploitproblemstructure,making

algorithms hard to design and their performance case-sensitive.

An interesting direction for effective pruning in the cloud is algo-

rithmic meta-optimization [15, 21, 53]. Given the scale and diversity

of the cloud, manual design and selection of pruning algorithms is

challenging. Instead,meta-optimization of pruning algorithms could

be an approach for automatic classification of problem structure and

algorithm specialization. Algorithmic meta-optimization is an ongo-

ing research effort and may benefit from cost estimation and other

techniques à la query optimization.

4.2 Decisions Selection under Non-linear Costs
Life is not always linear, and neither are cost models. For exam-

ple, state-of-the-art cost models for runtime estimation are learned

models. For application to these problems the computation of cloud

oracles has to support learned cost models. These cost models pre-

cisely capture complex relationships between workload parameters

and costs, as shown for cardinality and cost estimation [23, 24, 38, 50].

However, this complicates the navigation of their cost surface, re-

quired for selecting the optimal decisions for the cloud oracle.

Gradient descent, annealing, and differential evolution [26, 41, 46]

offer directions for computing cloud oracles onmodelswith complex

cost surfaces. Convex linear models allow efficient computation in

cloud oracles, as their smooth surfaces obviate the optimal lowest-

cost decisions. Learned models have rough surfaces with hills that

obfuscate lowest-cost decisions. A simple idea to compute optimal

decisions under complex cost models is the pair-wise comparison of

candidates, similar to the multi-objective PQO approach [48]. That

is, the cost of two candidates are the learned functions 𝑓 ∗ ( ®𝑎) and
𝑔∗ ( ®𝑎). The cost difference between the two candidates is the function
ℎ( ®𝑎)= 𝑓 ∗ ( ®𝑎)−𝑔∗ ( ®𝑎). Ifℎ has a negative value, there exists a param-

eter for which 𝑓 ∗ is cheaper than 𝑔∗ otherwise 𝑓 ∗ is dominated and

never optimal. We can use annealing methods—that Ioannidis et

al. [26] originally proposed for PQO—to search the surface ofℎ for

negative values. Afterwards, we can construct a cloud oracle with

a compact model as lookup structure for selected optimal decisions.

Research on robust knowledge distillation of a compact “student

model” for given decisions is required, see [3]. Also, efficient meth-

ods for computing optimal decisions are required for problems with

large parameter and search spaces.

Note that annealing techniques are similarly interesting for solv-

ing complex optimization tasks on the surface of the cost model, like

our drift query.

4.3 Decisions Selection under Uncertainty
Random variables that capture uncertainty challenge the static con-

dition (1) for offline optimization. For example, placement of objects

onto edge locations may involve significant variation in network

latency. Also, monitoring of workload parameters like access fre-

quency in a large distributed systems will not be exact, but may

involve uncertainty due to sampling. Particular challenges are how

to derive a probabilistic cost model with random cost coefficients

and how to select optimal decisions offline in the presence of random

cost coefficients and randomworkload parameters.

Interesting directions are learned cost models capturing uncer-

tainty and robust parametric optimization. For example, one may

explore the transfer of learned cardinality estimation with uncer-

tainty [35]. A starting point for robust optimization is the work [32],

which considers robust load distribution for distributed streaming

systems. Offloading robust optimization to the precomputation of

cloud oracles not only leads to fast and robust online optimization

for cloud systems, but may also provide opportunities for offline

verification. The behavior of online optimization under uncertainty

as well as pure ML-based optimization is difficult to foresee. The

materialized decisions in a cloud oracle instead are known explicitly,

thus enabling more stringent offline verification.

CONCLUSION
The cloud is both powerful and complex. To harness its power to

the fullest, we need to make accurate and rapid choices in enor-

mous decision spaces. Classical ILP does this accurately, but slowly.

Machine learning approaches trade accuracy for speed,while often

introducing ongoing costs of ML ops. We have proposed a best-of-

both-worlds design, cloud oracles. This approach follows the ML

script of slow offline training combined with fast online inference

but does so with the data-independent explainable solutions of ILP.
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Appendix A UNDIRECTEDDRIFT:
LAGRANGIANRELAXATION

We present a derivation to compute the closest intersection point

fromagivenparameter along the current optimal plane, as utilized in

Section 3.4. Figure 7 illustrates two hyperplanes inR𝑛 , denoted as 𝑃0
and 𝑃𝑖 , each defined by their respective unit normal vectors 𝒏0 and
𝒏𝑖 . Consider a point 𝒙0 on 𝑃0 and a unit vector 𝒗0 originating from
𝒙0 and lying tangentially to 𝑃0. Importantly, 𝒗0 is perpendicular to
𝒏0. Our goal is to determine the intersection point 𝒙𝑖 on 𝑃𝑖 , where
a ray in the direction of 𝒗0 intersects 𝑃𝑖 .

The intersection point 𝒙𝑖 can be expressed as

𝒙𝑖 =𝒙0+𝑡𝒗0, (A.1)

where 𝑡 is a scalar. To find 𝑡 , we consider an arbitrary point 𝒐 on 𝑃𝑖
and the orthogonality of 𝒏𝑖 with 𝑃𝑖 , giving (𝒙𝑖−𝒐) ·𝒏𝑖 =0. Assuming

𝑃𝑖 passes through the origin, we can simplify the formulation by

setting 𝒐 to the origin, leading to 𝒙𝑖 ·𝒏𝑖 =0. Taking the dot product
of equation (A.1) with 𝒏𝑖 , and solving for 𝑡 results in

𝑡 =−𝒙0 ·𝒏𝑖
𝒗0 ·𝒏𝑖

. (A.2)

Our interest lies in identifying an optimal direction 𝒗0 that min-

imizes the distance between 𝒙𝑖 and 𝒙0.

Proposition 1. Suppose 𝒙0 ∈ 𝑃0 is fixed and the unit vector 𝒗0 can
vary while passing through 𝒙0 and remaining tangent to 𝑃0. Under the
condition that 𝑃0 and 𝑃𝑖 are non-parallel, the distance ∥𝒙𝑖 −𝒙0∥2 is

Figure 7: Schematic representation of the ray shooting
method from point 𝒙0 in direction 𝒗0 on hyperplane 𝑃0 to
locate point 𝒙𝑖 on hyperplane 𝑃𝑖 .

minimized if
𝒗0=±

𝛼𝒏0−𝒏𝑖√
1−𝛼2

, (A.3)

where 𝛼B𝒏𝑖 ·𝒏0.

Proof. From equation (A.1) and the unit norm of 𝒗0, we get

∥𝒙𝑖 −𝒙0∥2 = |𝑡 |. Minimizing |𝑡 | involves maximizing the absolute

value of the denominator in equation (A.2), as thenumerator remains

constant. The optimization problem is thus defined as

max

𝒗0∈R𝑛
|𝒗0 ·𝒏𝑖 |,

subject to the constraints

𝒗0 ·𝒗0=1 and 𝒗0 ·𝒏0=0,
which ensure that 𝒗0 remains a unit vector tangent to 𝑃0. Using the

method of Lagrange multipliers, we define the Lagrangian function

as

L(𝒗0,𝜆,𝜇)B |𝒗0 ·𝒏𝑖 |+𝜆(𝒗0 ·𝒗0−1)+𝜇𝒗0 ·𝒏0,
with𝜆 and 𝜇 as Lagrangianmultipliers. The optimal solution is found

at the stationary point of L, where its partial derivatives vanish.
Namely,

𝜕L
𝜕𝒗0

=𝑠𝒏𝑖+2𝜆𝒗0+𝜇𝒏0=0, (A.4a)

𝜕L
𝜕𝜆

=𝒗0 ·𝒗0−1=0, (A.4b)

𝜕L
𝜕𝜇

=𝒗0 ·𝒏0=0, (A.4c)

where 𝑠B sgn(𝒗0 ·𝒏𝑖 ).
Todetermine 𝜇,we take thedot product of equation (A.4a)with𝒏0.

Incorporating the constraint from equation (A.4c) and recognizing

that 𝒏0 ·𝒏0 = 1, we deduce that 𝜇 = −𝑠𝒏𝑖 ·𝒏0 = −𝑠𝛼 . Consequently,
resolving equation (A.4a) for 𝒗0 leads us to 𝒗0 = 𝑠 (𝛼𝒏0 −𝒏𝑖 )/(2𝜆).
The next step involves the determination of 𝜆.

We proceed by taking the dot product of equation (A.4a) with 𝒗0
and subsequently applying equations (A.4b) and (A.4c), which yields

2𝜆 = −𝑠𝒏𝑖 ·𝒗0. On the other hand, we also take the dot product of

equation (A.4a)with𝑠𝒏𝑖 , considering the fact that𝒏𝑖 ·𝒏𝑖 =1 and𝑠2=1.
This operation results in the equation 1+ 2𝜆(𝑠𝒏𝑖 ·𝒗0) −𝛼2 = 0. By

eliminating 𝑠𝒏𝑖 ·𝒗0 from these two equations and solving for 2𝜆, we

find that 2𝜆=±
√
1−𝛼2. Hence, we derive 𝒗0=±𝑠 (𝛼𝒏0−𝒏𝑖 )/

√
1−𝛼2.

Given the arbitrary nature of the sign in this expression, we can

equate ±𝑠 to ±1, thereby completing the proof. □

Remark 1. When 𝑃0 and 𝑃𝑖 are parallel, equation (A.3) becomes

undefined, as 𝛼 =±1. In this case, 𝑡 =0, leading to the trivial solution
𝒙𝑖 =𝒙0.
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