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Measuring Inconsistency with the Tableau
Method

Jandson S. Ribeiro
Artificial Intelligence Group, University of Hagen, Germany

jandson.ribeiro@fernuni-hagen.de

Matthias Thimm
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matthias.thimm@fernuni-hagen.de

Abstract
We introduce a novel approach to measure inconsistency in knowledge bases

that is based on the Tableau Method and derivations of contradictions from
a knowledge base. This approach is purely syntactic and differs from previous
approaches by neither taking minimal inconsistent sets nor non-classical seman-
tics into account. We develop three concrete measures that take derivations of
contradictions into account and investigate their compliance w. r. t. rationality
postulates, expressivity, and computational complexity.

1 Introduction
An inconsistency measure I is a function mapping a knowledge base—e. g. a set
of propositional sentences—to a non-negative real value, such that larger values
indicate more severe inconsistency in the knowledge base [7, 9, 21]. Considering,
e. g., the two knowledge bases K1 and K2 defined via

K1 = {a,¬a, b} K2 = {a ∧ b,¬a,¬b}

one can see that both knowledge bases are inconsistent (in the classic-logical sense),
but K2 may be judged “more inconsistent” as it contains contradictory information
about both propositional atoms a and b while K1 has only contradictory information
about a. So an inconsistency measure I focusing on this aspect may give I(K1) <
I(K2). The concept of a degree of inconsistency is not easily characterisable through
either formal properties or a single measure. In fact, there are many proposals for
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Ribeiro and Thimm

desirable properties an inconsistency measure should satisfy and many proposals for
inconsistency measures that satisfy certain subsets of these properties, see [21] for a
survey.

One way to classify inconsistency measures is by differentiating whether they
operate on the formula level or on the language level. The former category is also
called the syntactic approach while the latter is called the semantic approach [9].
Measures belonging to the syntactic approach usually make use of minimal incon-
sistent subsets, i. e., subsets of the knowledge base that are inconsistent but remov-
ing any formula renders them consistent. For example, a simple measure is IMI
[11], which assigns to a knowledge base simply the number of its minimal inconsis-
tent subsets. For the knowledge bases from before we have therefore IMI(K1) = 1
and IMI(K2) = 2, since {a,¬a} is the only minimal inconsistent subset of K1 and
{a ∧ b,¬a} and {a ∧ b,¬b} are the minimal inconsistent subsets of K2. Other mea-
sures also take the relationships between minimal inconsistent subsets into account
[14] or exploit other notions such as maximal consistent subsets [1], but the com-
monality of these approaches is that they focus on conflicts between formulae of the
knowledge base. On the other hand, measures belonging to the semantic approach
focus on conflicts between language components. More precisely, these measures
aim at identifying those atoms of the underlying language that are conflicting and
they usually employ non-classical and many-valued logics as a tool for that [20]. For
example, the measure Ic [8] assigns to a knowledge base the number of propositional
atoms participating in the inconsistency using three-valued paraconsistent seman-
tics. Without going into details, this measure gives Ic(K1) = 1 and Ic(K2) = 2 as
well, as one resp. propositional atoms are participating in the conflicts of K1 resp.
K2.

In this paper, we propose a different perspective for measuring inconsistency
based on derivations of contradictions with logical calculi. In fact, we argue that the
current distinction between syntactic and semantic approaches is mislabelled, as
our new approach is purely syntactic and does not rely on notions such as minimal
inconsistent subsets or maximal consistent subsets, which are actually semantically
defined concepts. We consider the Tableau Method [17] as a prototypical logical
calculus (also called proof system) and consider proofs of contradiction as a sequence
of derivation rules that shows how a logical inconsistency can be derived from the
knowledge base syntactically. We use such proofs as measures of inconsistency by
assuming that 1.) the existence of many such proofs and 2.) the existence of short
proofs indicates a larger degree of inconsistency.

To summarise, the contributions of this paper are as follows:

1. We define three inconsistency measures based on proofs of contradictions (Sec-
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Measuring Inconsistency with the Tableau Method

tion 4). Our inconsistency measures explore the size and number of minimal
tableaux to weigh the inconsistency within a knowledge base.

2. We analyse our measures in terms of rationality postulates (Section 5.1), ex-
pressivity (Section 5.2), and computational complexity (Section 5.3). Besides
comparing our new measures with the existing rationality postulates, we intro-
duce a new postulate with the objective of identifying redundant information
in producing inconsistency, and we show that our measures comply with that
postulate. We show that our measures are maximally expressive, in the sense
that it produces infinitely many values of inconsistency. As for complexity,
due to open problems in the area of proof complexity, EXPSPACE is shown
to be the tightest upper bound for various decision problems related to our
measures.

Sections 2 and 3 provide the formal background and Section 6 concludes.

2 Preliminaries
Let At be an arbitrary fixed finite set of propositional atoms. We assume that the
special symbols ⊤,⊥ (tautology and contradiction, respectively) are always con-
tained in At, i. e., ⊤,⊥∈ At.

Definition 1. Given a set of propositional atoms At, the propositional language
L(At) corresponds to the language generated by the following grammar:

φ := p | ¬φ | φ ∧ φ | φ ∨ φ;

where p ∈ At.

As usual, ¬ denotes negation, ∧ is conjunction, ∨ is disjunction. A knowledge
base K w. r. t. a language L(At) is any finite subset K ⊆ L(At). Let K(At) be the
set of all knowledge bases w. r. t. to the language L(At). For any formula ϕ, let
At(ϕ) ⊆ At be the set of atoms appearing in ϕ. When it is clear from context, we
will omit At and simply write L and K.

Definition 2. Given a set of propositional atoms At, the length of a formula ϕ ∈
L(At) is given by the function len : L(At) → Z≥0 inductively defined as

• if φ ∈ At then len(φ) = 1;

• len(¬φ) = len(φ) + 1;
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• len(φ □ ψ) = len(φ) + len(ψ) + 1 for □ ∈ {∧,∨}.

The size of a set A is denoted by |A|. An interpretation ω on At is a function
ω : At → {true, false} with ω(⊤) = true and ω(⊥) = false. Let Ω(At) be the set of
all interpretations on At. An interpretation ω satisfies an atom a ∈ At, denoted as
ω |= a, iff ω(a) = true. Let ω ̸|= ψ denote that ω does not satisfy a formula ψ. The
relation |= is inductively extended to general formulae as usual, that is,

ω |= φ ∧ ψ iff ω |= φ and ω |= ψ

ω |= φ ∨ ψ iff ω |= φ or ω |= ψ

ω |= ¬φ iff ω ̸|= φ.

If ω |= ϕ we also say that ω is a model of ϕ. Let Mod(ϕ) denote the set of models
of a formula ϕ. A formula ϕ ∈ L(At) is entailed by ψ ∈ L(At), denoted by ψ |= ϕ, if
for all ω ∈ Ω(At), ω |= ψ implies ω |= ϕ. Two formulae ϕ, ψ ∈ L(At) are equivalent,
denoted by ϕ ≡ ψ, if both ϕ |= ψ and ψ |= ϕ. Furthermore, two sets of formulae X1,
X2 are semi-extensionally equivalent if there is a bijection s : X1 → X2 such that
for all α ∈ X1 we have α ≡ s(α) [18]. We denote this by X1 ≡s X2.

3 The Tableau Method
In general, a proof system is a set of schematic inference rules that allows the purely
syntactic transformation of formulae. Well-known proof systems are e. g. Frege’s
propositional calculus [5] and Gentzen-style proof systems [6]. In this section, we
review the Tableau Method for classical propositional logics [17]. The Tableau method
is a proof system based on refutation: given a knowledge base K, it constructs a
binary tree by applying a sequence of rules until either (i) all the branches of the
tree present a contradiction or (ii) no rules can be further applied. In the first case,
the knowledge base K is inconsistent; while in the second case, as long as there is
at least one branch free of contradiction, K is consistent. The constructed tree is
referred to as a tableau. In the remainder of this section, we review the set-labelled
variant of the Tableau Method, where the constructed tableau is a binary tree in
which each node is labelled with a set of formulae.

Definition 3. A set-labelled tree is a tuple T = (N,E, λ) where

• (N,E) is a tree, s.t N is the set of nodes, E ⊆ N ×N the set of edges,

• λ : N → K(At) is a labelling function.
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(¬¬e) K ∪ {¬¬φ}
K ∪ {¬¬φ} ∪ {φ}

(DM∧) K ∪ {¬(φ ∧ ψ)}
K ∪ {¬(φ ∧ ψ)} ∪ {¬φ ∨ ¬ψ} (DM∨) K ∪ {¬(φ ∨ ψ)}

K ∪ {¬(φ ∨ ψ)} ∪ {¬φ ∧ ¬ψ}

(∧e) K ∪ {φ ∧ ψ}
K ∪ {φ ∧ ψ} ∪ {φ,ψ}

(∨e) K ∪ {φ ∨ ψ}
K ∪ {φ ∨ ψ} ∪ {φ} | K ∪ {φ ∨ ψ} ∪ {ψ}

Figure 1: Derivation rules for the Tableau Method.

The labelling function λ maps each node of the tree to a set of formulae in
L(At). Given a set-labelled tree T = (N,E, λ), the children of a node n are given
by children(n) = {n′ ∈ N | (n, n′) ∈ E}, and the leaf nodes of T are given by
leaf(T ) = {n ∈ N | children(n) = ∅}. Moreover, the root of T is given by root(T ).

We will postpone the formal definition of the set-labelled tableau (see Defini-
tion 5) until we have all the necessary ingredients. We start by giving an intuition
of how the tableau method works. As mentioned above, a tableau, which is a set-
labelled binary tree with some further constraints, is constructed by applying a set of
non-deterministic derivation rules, so several tableaux can exist for a same knowl-
edge base K. The procedure for constructing a tableau works by first creating a
tree with only the root node (called a root tree), which is labelled with the knowl-
edge base K itself. This initial root tree is then expanded by applying one of the
derivation rules depicted in Fig. 1. When applied, these rules append new nodes
to one of the leaf nodes of the tree. In the derivation rules DM∧ and DM∨, DM
stands for De Morgan, as these rules correspond to the De Morgan laws. While rules
¬¬e, DM∧, DM∨ and ∧e append a single leaf node, rule (5) opens two branches.

Each node is labelled with a set of formulae, and therefore, there might exist more
than one possible rule to be applied on such a leaf node, or even more than one choice
for a same applicable rule. We define a function σ that exhibits explicitly all the
possible extensions for non-branching rules, that is, rules ¬¬e, DM∧, DM∨ and ∧e.
The set of all possible extensions for the branching rule ∨e is given by the function
γ below. The set of all rule names are given by RT B = {¬¬e, DM∧, DM∨,∧e,∨e}.

Definition 4. Let σ : RT B × K(At) → K(At) be such that
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1. σ(¬¬e,K) = {K ∪ {φ} ∈ K(At) | ¬¬φ ∈ K}

2. σ(∧e,K) = {K ∪ {φ,ψ} ∈ K(At) | φ ∧ ψ ∈ K}

3. σ(DM∧,K) = {K ∪ {¬φ ∨ ¬ψ} ∈ K(At) | ¬(φ ∧ ψ) ∈ K}

4. σ(DM∨,K) = {K ∪ {¬φ ∧ ¬ψ} ∈ K(At) | ¬(φ ∨ ψ) ∈ K}

Let γ : K(At) → K(At) × K(At) be such that

γ(K) = {(X,Y ) ∈ K(At)×K(At) | X = K ∪{φ}, Y = K ∪{ψ}, for some φ∨ψ ∈ K}

Definition 5. A tableau for a knowledge base K ⊆ L(At) is a binary set-labelled
tree (N,E, λ) such that

• λ(r) = K, where r is the root node;

• for each node n ∈ N :

1. λ(n) ̸= λ(n′), for all n′ ∈ children(n);
2. if children(n) = {n1} then λ(n1) ∈ σ(ε, λ(n)), for a derivation rule ε ∈ RT B

;
3. if children(n) = {n1, n2} and n1 ̸= n2 then (λ(n1), λ(n2)) ∈ γ(λ(n)) or

(λ(n2), λ(n1)) ∈ γ(λ(n)).

Conditions 1 to 3 guarantee that a tableau is generated according to the appli-
cation of the rules in RT B. Condition 1 is imposed in order to avoid redundant
tableaux. Specifically, the application of a rule on a node of a tableau needs to yield
children nodes labelled with new formulae. This will become important since we are
interested in minimal proofs of contradiction. The Greek letter π will be used to
denote a tableau.

Example 6. Consider the inconsistent knowledge base K = {a∧ c,¬a, b∨d}. Fig. 2
illustrates two tableaux π1 and π2 for K. The root node of every tableau is labelled
with the knowledge base itself K. There are two possible rules to apply at the root
node: (i) rule ∧e creates a single child node with the added sub-formulae a and c
(tableau π1); (ii) rule ∨e creates two children node, one labelled with the sub-formula
b with K and another with the sub-formula d with K (tableau π2).

If a formula α appears in the leaf node of a tableau π for a knowledge base
K, then we say that K structurally derives α, denoted by K ⊢ α. For instance, in
Example 6 the tableau π1 has the formula c in its leaf node, therefore K ⊢ c.
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π1 : {a ∧ c,¬a, b ∨ d}

{a ∧ c,¬a, b ∨ d, a, c}✗

π2 : {a ∧ c,¬a, b ∨ d}

{a ∧ c,¬a, b ∨ d, b}

{a ∧ c,¬a, b ∨ d, b, a, c}✗

{a ∧ c,¬a, b ∨ d, d}

{a ∧ c,¬a, b ∨ d, d, a, c}✗

Figure 2: Example of two tableaux for the knowledge base K = {a ∧ c,¬a, b ∨ d}.

If a node contains a formula and its negation then we say that such a node has
a clash. More precisely, if there are formulae φ,¬φ ∈ λ(n) then n has a clash. Each
leaf node of the tableaux π1 and π2 from Example 6 has a clash, as each leaf node
has the formula a and its negation ¬a. If every leaf node of a tableau has a clash
then such a tableau is said to be closed. The tableaux π1 and π2 from Example 6
are both closed. The set of all closed tableaux for a knowledge base K is given by
T⊥(K).

Theorem 7. [17] A knowledge base K ∈ K(At) is inconsistent iff T⊥(K) ̸= ∅.

As we are interested in minimal proofs of contradiction, we introduce the notion
of a closed tableau being shorter than other closed tableau.

Definition 8. A closed tableau π is shorter than a closed tableau π′, denoted as
π ⪯ π′, iff there is an injection τ : leaf(π) → leaf(π′) such that λ(n) ⊆ λ(τ(n)).
Given a knowledge base K, a closed tableau π ∈ T⊥(K) is minimal iff for all π′ ∈
T⊥(K), if π′ ⪯ π then π ⪯ π′. The set of minimal tableaux for a given knowledge
base K is given by T min

⊥ (K).

Intuitively, a closed tableau π is shorter than a tableau π′ if each set of formulae
that clashes (what are present in the leaf nodes of the tableaux) are subsets of the
leaf nodes of π′. For instance, the tableau π1 from Example 6 is shorter than the
tableau π2 from the same example. We say that a tableau is redundant if two
different branches lead to the same clash of formulae labelled on their leaf nodes, as
it occurs with the tableau π2 from Example 6. The injection condition guarantees
that redundant tableaux are identified and therefore are not among the minimal
tableaux. For instance, the tableau π1 from Example 6 is minimal, while π2 is not
minimal.
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4 Measuring inconsistency via Tableaux
An inconsistency measure is a function I : K(At) → R∞

≥0 that maps each knowledge
base K to a non-negative real number [7, 22]. Intuitively, larger values I(K) indicate
a larger degree of inconsistency in K, while 0 is reserved to indicate the absence of
inconsistency.

A closed tableau exemplifies the reasoning effort to detect the presence of an
inconsistency and thus gives rise to quantitative measures of inconsistency. The
following principles are our main motivation to study measures based on tableaux:

1. If there are more ways to derive inconsistency in a knowledge base K than there
are in a knowledge base K′, then K should be regarded as more inconsistent
than K′. This principle represents a form of monotonicity of inconsistency
w. r. t. number of closed tableaux.

2. Smaller closed tableaux indicate a larger degree of inconsistency than larger
closed tableaux. The rationale behind this principle can be motivated by the
lottery paradox [15]: if there are many lottery tickets it is rational to assume
for each ticket holder that he will not win and the less tickets there are the
less rational this assumption becomes. In the first case, the inconsistency (on
the fact that one ticket will win and every ticket holder thinks he will not win)
is not that much apparent as in the case of just two tickets. A tableau for the
first case would include many more steps to show the inconsistency than in
the second case.

Both principles capture the intuition that a knowledge base is more inconsistent if
the computational effort to find an inconsistency is low. This is indeed the case
if there are many ways to prove inconsistency (e. g. a random method would more
likely find a proof) and these proofs are short (as the depth of the search of such an
algorithm does not need to be high).

We implement the above principle in the following inconsistency measures:

Definition 9. The three inconsistency measures are I# : K(At) → R≥0, Imin :
K(At) → R≥0, and IΣ : K(At) → R≥0

I#(K) = |T min
⊥ (K)|

Imin(K) =





1
min{|A| | A ∈ T min

⊥ (K)} , if T⊥(K) ̸= ∅
0 otherwise.

650



Measuring Inconsistency with the Tableau Method

IΣ(K) =





∑
A ∈ T min

⊥ (K)

1
|A| if T min

⊥ (K) ̸= ∅

0 otherwise

The inconsistency measure I# focuses on the first principle and simply takes
the number of minimal closed tableaux as the degree of inconsistency. The measure
Imin focuses on the second principle and takes the reciprocal size of a minimal
closed tableau as the degree of inconsistency. Finally, the measure IΣ combines
both principles by summing up the reciprocal sizes of all minimal closed tableaux.

Example 10. Consider the knowledge bases K1 and K2 below:

K1 = {a ∧ c,¬a, b} K2 = {a ∧ b, c ∧ d,¬a,¬d}.

Note that K1 has only one minimal tableau:

π =
{a ∧ c,¬a, b}

{a ∧ c,¬a, b, a, c}

Therefore, I#(K1) = 1, and Imin(K1) = IΣ(K1) = 1/2. For K2 we have the
following two minimal closed tableaux

π1 =
{a ∧ b, c ∧ d,¬a,¬d}

{a ∧ b, a, b, c ∧ d,¬a,¬d}
π2 =

{a ∧ b, c ∧ d,¬a,¬d}

{a ∧ b, c ∧ d, c, d,¬a,¬d}

Therefore, I#(K2) = 2, Imin(K2) = 1/2 and IΣ(K2) = 2/2 = 1.

In general, our measures take a radically different perspective on inconsistency
measurement, which is also illustrated by the fact that these measures do not con-
form with many postulates proposed for inconsistency measures so far (see Sec-
tion 5). Our aim with these measures is to investigate a new foundation of incon-
sistency measurement, i. e., one based on syntactic derivations instead of semantical
concepts.

5 Analysis
In this section we conduct an analytical evaluation of our measures, focussing on
compliance to rationality postulates, expressivity, and computational complexity.
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5.1 Rationality Postulates
Many rationality postulates have been proposed for inconsistency measures, see [21]
for a survey. However, many of these postulates are disputed and there is up to now
no consensus on which of these postulates are desirable and which are not, see also
[3] for a discussion. In fact, there is only one postulate which can be regarded as
the defining property of an inconsistency measure I [10]:

Consistency (CO) I(K) = 0 if and only if K is consistent

For all other postulates proposed in the literature, we can find (reasonable) propos-
als of inconsistency measures that violate these postulates, see [21] for an overview.
We compile below the existing rationality postulates from the literature, and we in-
vestigate the compliance of our measures with such postulates. For the presentation
of the postulates, we will first need the following auxiliary definitions:

Definition 11. A set M ⊆ K is a minimal inconsistent subset (MI) of K, if M |=⊥
and there is no M ′ ⊂ M with M ′ |=⊥. Let MI(K) be the set of all MIs of K. A
formula α ∈ K is called free formula if α /∈ ⋃MI(K). Let Free(K) be the set of all
free formulae of K.

Definition 12. A formula α ∈ K is a safe formula if it is consistent and At(α) ∩
At(K \ {α}) = ∅. Let Safe(K) be the set of all safe formulae of K.

Let I be any function I : K → R∞
≥0, K,K′ ∈ K, and α, β ∈ L(At). The rationality

postulates for inconsistency measure in the literature, see [20] for a survey on the
subject, are:

Normalization (NO) 0 ≤ I(K) ≤ 1

Monotony (MO) If K ⊆ K′ then I(K) ≤ I(K′)

Free-formula independence (IN) If α ∈ Free(K) then I(K) = I(K \ {α})

Dominance (DO) If α ̸|=⊥ and α |= β then I(K ∪ {α}) ≥ I(K ∪ {β})

Safe-formula independence (SI) If α ∈ Safe(K) then
I(K) = I(K \ {α})

Super-Additivity (SA) If K ∩ K′ = ∅ then I(K ∪ K′) ≥ I(K) + I(K′)

Penalty (PY) If α /∈ Free(K) then I(K) > I(K \ {α})

MI-separability (MI) If MI(K ∪ K′) = MI(K) ∪ MI(K′) and MI(K) ∩ MI(K′) = ∅
then I(K ∪ K′) = I(K) + I(K′)
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MI-normalization (MN) If M ∈ MI(K) then I(M) = 1

Attenuation (AT) M,M ′ ∈ MI(K) and |M | > |M ′| implies I(M) < I(M ′)

Equal Conflict (EC) M,M ′ ∈ MI(K) and |M | = |M ′| implies I(M) = I(M ′)

Almost Consistency (AC) Let M1,M2, . . . be a sequence of minimal inconsistent
sets Mi with limi→∞ |Mi| = ∞, then limi→∞ I(Mi) = 0

Contradiction (CD) I(K) = 1 if and only if for all ∅ ≠ K′ ⊆ K, K′ |=⊥

Free Formula Dilution (FD) If α ∈ Free(K) then I(K) ≥ I(K \ {α})

Irrelevance of Syntax (SY) If K ≡s K′ then I(K) = I(K′)

Exchange (EX) If K′ ̸|=⊥ and K′ ≡ K′′ then I(K ∪ K′) = I(K ∪ K′′)

Adjunction Invariance (AI) I(K ∪ {α, β}) = I(K ∪ {α ∧ β})

As mentioned above, the postulate CO addresses the basic property of an inconsis-
tency measure to differentiate between consistent and inconsistent knowledge bases.
The postulate NO expresses that the degree of inconsistency is a relative notion
that is normalized in the unit interval. MO states that adding information can only
increase the degree of inconsistency. IN states that adding free formulae cannot
change the degree of inconsistency and DO states that substituting a formula with
a semantically weaker version cannot increase the degree of inconsistency. For a
discussion on the rationale of the other postulates, see [20].

It is important to stress that there is no consensus about which postulates should
be satisfied or which ones should not. However, there are scenarios in which some of
the postulates are clearly unsuitable. This is the case of the following postulates: IN,
PY, DO, SA, MN, CD, MI, AT, EC, EX, SY and AI. We explain below why each one
of such postulates is not adequate under our principles of measuring inconsistency.
In fact, none of our measures satisfy these postulates.

• IN: It states that the removal of a free formula does not decrease the inconsis-
tency degree of a knowledge base. Although this intuition might seem plausible
at a first glance, it is counter-intuitive under our second principle of inconsis-
tency degree. Let K = {(a∨b)∧(a∨¬b),¬b}, and K′ = {(a∨b)∧(a∨¬b),¬b, a}.
Observe that a is free in K′, but the presence of a in K′ makes it much easier
to prove the inconsistency of K′ than in K: to prove the inconsistency of K,
one needs to take the case distinction of both disjunctive formulae a ∨ b and
¬a∨ b; while for K′ the proof of inconsistency is much easier because only the
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case distinction of ¬a ∨ b is necessary due to the presence of a. Therefore,
free formulae should indeed be considered for assessing the degree of inconsis-
tency in a knowledge base. Therefore, under our second principle IN becomes
undesirable.

• PY: this postulate is the dual of IN, removing free-formulae should strictly re-
duce the inconsistency degree. Analogous to our reasons against IN, as adding
free formulae does not necessarily contributes to augmenting the inconsistency
degree, removing them should not contribute to making it less inconsistent
either.

• DO: According to this postulate, stronger formulae can only make a knowledge
base more inconsistent than weaker formulae. This postulate is in conflict
with our second principle of inconsistency. To illustrate this, consider the
knowledge base K = {¬a ∧ ¬b}, and the formulae α = c ∧ (a ∨ b) ∧ (a ∨ ¬b),
and a. Observe that α |= a. It is much easier to prove that K1 = K ∪ {a} is
inconsistent than to prove that K2 = K ∪ {α} is inconsistent, because for the
former the contradiction is evident, while for the latter one needs to consider
the case distinction due to the disjunction a ∨ b. According to our principle,
the knowledge base K1 should be more inconsistent than K2, opposed to DO.

• SA: This postulate imposes a strict form of monotonicity. It states that if two
knowledge bases share no formulae, then their union present an inconsistency
degree equal to or higher than the sum of their individual inconsistency degrees.
However, this should not be taken as a rule. According to our first principle,
the inconsistency degree of a knowledge base should be directly proportional
to the number of minimal tableaux. It turns out that the union of knowledge
bases does not accumulate their minimal tableaux. Consider, for example, the
knowledge bases K1 = {a∧ (a∧¬a)} and K2 = {a,¬a}. Each of them presents
only one minimal proof of inconsistency. Observe that, in both knowledge
bases, the cause of inconsistency is the same: a and ¬a. For the knowledge base
K1, we achieve this by decomposing the conjunctions, while in K2, this conflict
is evident. Therefore, individually, K1 and K2 present inconsistency degree of
1. Thus, according to SA, K1∪K2 must have an inconsistency degree of at least
2. However, K1 ∪ K2 presents only one minimal proof of inconsistency as well:
the explicit conflict a and ¬a. Therefore, in all three measures we proposed,
we have that K1 ∪ K2 presents an inconsistency degree of 1 as well. It is clear
that SA does not present a good behaviour for inconsistency measurement.

• MN and CD: The postulate MN states that all minimal inconsistent sets should
have the same degree of inconsistency 1, while CD states that if every formula in

654



Measuring Inconsistency with the Tableau Method

a knowledge base K is inconsistent then the inconsistency degree of K must be
1. Both postulates are very prohibitive, as they do not allow grading neither
minimal inconsistent sets nor sets containing only inconsistent formulae. If
inconsistency in a minimal inconsistent set is much more apparent than in
another minimal inconsistent set, then according to our two principles, it is
plausible to grade the first one as more inconsistent than the second one.
This argument also applies for bases with only inconsistent formulae. Such
postulates, therefore, are too fragile to give a suitable notion of rationality for
assessing inconsistencies.

• MI: this postulate says that if one can partition the set of minimal inconsistent
subsets of a knowledge base K into two sets A and B then the inconsistency
degree of K corresponds to the sum of the inconsistency degree of the knowl-
edge base obtained from A and obtained from B. Similar to MN, this postulate
disregards that the degree of inconsistency does not depend exclusively on the
minimal inconsistent subsets. As our measures resort to minimal proofs, this
postulate does not pose any criteria for assessing inconsistencies.

• AT and EC: these postulates state that the degree of minimal inconsistent sets
should be graded according to the number of formulae in it. The size of the
minimal inconsistent set, however, is not directly connected to the effort of
proving that a knowledge base is inconsistent. Indeed, smaller inconsistent
sets might present minimal proofs bigger than minimal proofs from greater
sets (see proof of AT in Theorem 13, for an example).

• EX, SY and AI: Two bases can be logically equivalent but present different
reasons of inconsistency, therefore since we are based on the effort of reasoning
to measure inconsistency it is desirable that EX, SY and AI be violated.

CO NO MO IN DO NM SD SI SA PY MI MN AT EC AC CD FD SY EX AI
I#(K) ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Imin(K) ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗

IΣ(K) ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Table 1: Compliance of Imin with rationality postulates for inconsistency measures.

For our measures, we obtain the following.

Theorem 13. The compliance of the measures I#, Imin, and IΣ with the rationality
postulates is as presented in Table 1.
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π1 =

K ∪ {a}

K ∪ {a, a ∨ b,¬a ∧ ¬b}

K ∪ {a, a ∨ b,¬a ∧ ¬b,¬a,¬b}

π2 =

K

K ∪ {a ∨ b,¬a ∧ ¬b}

K ∪ {a ∨ b,¬a ∧ ¬b,¬a,¬b}

K ∪ {a ∨ b,¬a ∧ ¬b,¬a,¬b, a} K ∪ {a ∨ b,¬a ∧ ¬b,¬a,¬b, b}

π3 =

K

K ∪ {a ∨ b,¬a ∧ ¬b}

K ∪ {a ∨ b,¬a ∧ ¬b, a}

K ∪ {a ∨ b,¬a ∧ ¬b, a,¬a,¬b}

K ∪ {a ∨ b,¬a ∧ ¬b, b}

K ∪ {a ∨ b,¬a ∧ ¬b, b,¬a,¬b}

Figure 3: Some minimal tableaux form knowledge bases K = {(a ∨ b) ∧ (¬a ∧ ¬b)}
and K′ = K ∪ {a}.

The measures I# and IΣ do not comply with the MO postulate, which is satisfied
by several inconsistency measures in the literature. Indeed, according to our two
principles, there are cases in which it is plausible to waive MO. For instance, consider
the knowledge K = {(a ∨ b) ∧ (¬a ∧ ¬b)}. This knowledge base has two minimal
closed tableaux: the tableaux π2 and π3 depicted at Fig. 3.

By adding a to K, we obtain the knowledge base K′, which has only one minimal
closed tableau (the tableau π1 above). Therefore, according to our first principle,
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π1 =
{a ∧ b,¬a}

{a ∧ b,¬a, a, b}
π2 =

{c ∨ d}

{c ∨ d, c} {c ∨ d, d}

Figure 4: The only tableaux for knowledge base K and formula α from Example 15.

the inconsistency degree of K′ must be smaller than the inconsistency degree of K.
Although this example works as an argument against MO, we argue that there are
cases in which some form of monotonicity would still be desirable. For this same
example, consider the formula a∨c and the knowledge base K′′ = K∪{a∨c}. Observe
that a ∨ c does not “participate” in making K′′ inconsistent, as it does not produce
any new minimal proof of inconsistency. Towards this end, according to our both
principles, the inconsistency degrees of K and K′′ should be the same. Therefore, for
this specific example, some form of monotonicity should be preserved. Indeed, for
all the three inconsistency measures we defined, K and K′′ present the same degree
of inconsistency. But then, why adding a ∨ c should induce a monotonic behaviour,
whilst adding a should not? In fact, if we inspect a∨ c and a closer, we will see that
a is partially “redundant” while a∨ c is not “redundant”. To be more precise, K ⊢ a,
but K ̸⊢ a ∨ c. Let us properly define our notion of partial redundancy:

Definition 14. A formula α is partially-redundant in K iff there is some formula
φ such that K ⊢ φ and α ⊢ φ.

Example 15. Consider the knowledge base K = {a ∧ b,¬a} and the formula α =
(c ∨ d). Observe that the only common information derived from each consistent
subset of K and α are tautologies. This means that α has no partially-redundant
information with K, that is, K is not partially-redundant. This is because no tableaux
of K shares formulae with any tableaux of {α}. In fact, K and α have each one single
tableau, as illustrated in Fig. 4, and neither has a single formula in common.

In the following, we investigate a further (and new) postulate that describe
our new approaches and point to their specific advantages. In particular, if we
restrict the addition of information to “non-redundant” information our measures
do indeed behave monotonically: This monotonicity of non-redundant information
is formalised as the

Non-redundant Monotonicity (NM): If ϕ is not partially-redundant in K then
I(K) ≤ I(K ∪ {ϕ}).
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The above postulate demands that adding genuinely new information to a knowl-
edge base cannot decrease the degree of inconsistency. Our three measures comply
with this demand.

Theorem 16. The inconsistency measures Imin, I# and IΣ satisfy NM.

In the analyses above, we have shown that our measures do not comply with
the postulate MI. This occurs mainly because there is no correspondence between
minimal inconsistent subsets and minimal tableaux, as Example 17 and Example 18
below illustrate.

Example 17. Consider the knowledge base K = {a∧ c, (¬a∨ d) ∧ (¬c∨ d),¬d} and
the following 2 minimal tableaux of this knowledge base:

π1 =

K

K ∪ {a, b ∧ c}

K ∪ {a, c,¬a ∨ d,¬c ∨ d}

K ∪ {a, c,¬a ∨ d,¬c ∨ d,¬a} K ∪ {a, c,¬a ∨ d,¬c ∨ d, d}

π2 =

K

K ∪ {a, b ∧ c}

K ∪ {a, c,¬a ∨ d,¬c ∨ d}

K ∪ {a, c,¬a ∨ d,¬c ∨ d,¬c} K ∪ {a, c,¬a ∨ d,¬c ∨ d, d}

In Example 17, the knowledge base K is a minimal inconsistent set and has at
least two different minimal tableaux τ1 and τ2.

Example 18. Let K = {a,¬a, b,¬b, a ∨ b}. Observe that this knowledge base has
two minimal inconsistent subsets which are A1 = {a,¬a}, A2 = {b,¬b}. However,
this knowledge base has only one minimal tableau which is

π3 = K
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In Example 18, the minimal tableaux τ3 is associated with the minimal incon-
sistent subsets A1 and A2, since the contradictions in the leaf node, which coincides
with the root node, regard both A1 and A2: {a,¬a} and {b,¬b}. Therefore, none
of the three measures that we proposed are sensible to this interpretation of the
number of sources of conflict. However, we can construct a measure that iteratively
removes the sources of inconsistency based on the minimal tableaux, and accumulate
the values, until no inconsistency is left. For example, as both A1 and A2 are related
to τ3, we can remove A1 from K obtaining the knowledge base K′ = K \ A1. We
then compute the minimal tableau of K′ which contains only one node labelled with
K′. We then remove A2 from it obtaining a consistent knowledge base. Therefore,
in the end, we assign an inconsistency value of 2 to K: since all three measure yield
value 1 on both iterations.

5.2 Expressivity

Besides rationality postulates, another (complementary) dimension of evaluating an
inconsistency measure is its expressivity [19], that is, the number of different in-
consistency values a measure can attain on some certain sets of knowledge bases.
This evaluation measure has been proposed in order to be able to distinguish triv-
ial measures such as the drastic measure—which assigns 0 to consistent and 1 to
inconsistent knowledge bases but still satisfies a reasonable number of rationality
postulates—from more “fine-grained” assessments of inconsistency.

Before defining expressivity characteristics we need some further definitions.

Kv(n) = {K ∈ K | |At(K)| ≤ n}
Kf (n) = {K ∈ K | |K| ≤ n}
Kl(n) = {K ∈ K | ∀ϕ ∈ K : len(ϕ) ≤ n}
Kp(n) = {K ∈ K | ∀ϕ ∈ K : |At(ϕ)| ≤ n}

Informally speaking, Kv(n) is the set of all knowledge bases that mention at most n
different propositions, Kf (n) is the set of all knowledge bases that contain at most
n formulae, Kl(n) is the set of all knowledge bases that contain only formulae with
maximal length n, and Kp(n) is the set of all knowledge bases that contain only
formulae that mention at most n different propositions each.

Definition 19. Let I be an inconsistency measure and n > 0. Let α ∈ {v, f, l, p}.
The α-characteristic Cα(I, n) of I w. r. t. n is defined as Cα(I, n) = |{I(K) | K ∈
Kα(n)}|.
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In other words, Cα(I, n) is the number of different inconsistency values I assigns
to knowledge bases from Kα(n).

The following results show that our new measures are maximally expressive
w. r. t. all four expressivity characteristics.

Theorem 20. For all n > 0 and I ∈ {Imin, I#, IΣ}, Cv(I, n) = Cf (I, n) =
Cp(I, n) = ∞.

Theorem 21.

1. For all n > 1, Cl(I#, n) = ∞.

2. For all n > 3, and I ∈ {Imin, IΣ}, Cl(I, n) = ∞.

All three measures are maximally expressive. All three measures present in-
finitely many values for knowledge bases with at least one atomic propositional
symbol, or knowledge bases with at least one formula. With respect to the length of
the formulae in a knowledge base, the measure I# presents infinitely many values
for knowledge bases containing formulae with length higher than one, while for the
other two measures, for length higher than 3.

5.3 Computational complexity
In the following, we will (briefly) discuss computational complexity issues of our new
measures.

Following [23], we consider the following problems. Let I be some inconsistency
measure.

ExactI Input: K ∈ K, x ∈ R∞
≥0

Output: true iff I(K) = x

UpperI Input: K ∈ K, x ∈ R∞
≥0

Output: true iff I(K) ≤ x

LowerI Input: K ∈ K, x ∈ R∞
≥0 \ {0}

Output: true iff I(K) ≥ x

ValueI Input: K ∈ K
Output: The value of I(K)

The computational complexity of our new measures is tightly linked to the gen-
eral area of proof complexity [4]. As there are exponential lower bounds on the size
of a minimal tableau [2, 16], we cannot expect to provide membership results of any
of the above computational problems to any (deterministic or non-deterministic)
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complexity class within the polynomial hierarchy. The most precise statement on
all our measures we can make is the following.
Theorem 22. For I ∈ {I#, Imin, I#}, ExactI , UpperI , and LowerI are in
EXPSPACE, while ValueI is in FEXPSPACE (the functional variant of EXPSPACE).

It is possible that the above bound could be improved to EXPTIME as it may
not be necessary to explicitly write down every (potential) tableau (but note that
whether EXPTIME ̸=EXPSPACE is also an open question). However, without a proof
system that exhibits minimal proofs of polynomial length for all contradictions,
EXPTIME is a necessary lower bound. This fact establishes our three measures to
be the hardest inconsistency measures among the ones investigated in [23].

6 Summary and Conclusion
In this paper, we proposed novel approaches to measure inconsistency in knowledge
bases. Our approaches are based on the notion of minimal closed tableaux, and we
analysed the behaviour of these novel inconsistency measures in terms of rationality
postulates, expressivity and computational complexity. The central idea of our
approaches is to measure inconsistency via measuring proof complexity, i. e. the
easier it is for a reasoner to detect inconsistency, the larger the inconsistency is to
be regarded.

Using tableaux methods for constructing inconsistency measurement is novel,
but [13] uses a different notion of proof to define an inconsistency measure. There,
instead of minimal tableaux a minimal proof is a (not necessarily consistent) subset
of the knowledge base that entails some formula and inconsistency is measured by
appropriately aggregating the number of proofs of complementary literals. However,
this measure makes no use of proof systems in our sense and it has also been shown in
[20] that it does not satisfy CO and should therefore not be regarded as a meaningful
inconsistency measure. Inconsistency measures based on conflicting variables were
proposed in [12]. In their measure, the inconsistency value of a knowledge base K
corresponds to the ratio between the conflicting variables and all the variables of K.
This focus on variables makes their measure to plateau when the addition/removal of
formulae does not change the amount of conflicting variables. Consider, for example,
the knowledge bases K = {a ∧ b,¬a ∨ ¬b} and K′ = K ∪ {a}. As K′ contains more
conflicting sources of inconsistencies than K (two minimal inconsistencies sets against
one minimal inconsistent set), it would be rational to assess K′ as more inconsistent
than K. However, the measure based on conflicting variables will assess both as
equally inconsistent as they contain the same number of conflicting variables. All
our three measures will assess both knowledge bases differently.
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Our measures provide a new completely syntactical approach to inconsistency
measurement that feature maximal expressivity in differentiating inconsistent knowl-
edge bases (see Section 5.2). However, their computational complexity is a signifi-
cant challenge for their applicability. Future work is about devising (approximate)
algorithmic solutions to overcome this barrier.

Acknowledgements. This research is supported by the German Research Associ-
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A Proofs for Section 5 (Analysis)
The proofs presented in this appendix include set-labelled tableaux in which the
set of formulae labelled to the nodes is significantly big. For clarity, we will depict
tableaux in a concise way. We will draw the root now with the whole knowledge
base. However, for other nodes, instead of presenting the whole set of formulae
labelled in a node, we draw only the fresh formulae added from the parent node to
the child node (as illustrated in Fig. 5). The set of formulae labelled on a node n
can be inferred by taking the union of the formulae from the root node to n.

π : {a ∧ c,¬a, b ∨ d}

{a ∧ c,¬a, b ∨ d, b}

{a ∧ c,¬a, b ∨ d, b, a, c}

{a ∧ c,¬a, b ∨ d, d}

{a ∧ c,¬a, b ∨ d, d, a, c}

{a ∧ c,¬a, b ∨ d}

{b}

{a, c}

{d}

{a, c}

Figure 5: On the left, a closed set-labelled tableau π for the knowledge base K =
{a ∧ c,¬a, b ∨ d}. On the right, the concise way of representing the set-labelled
tableaux π.

Lemma A.1. If π = (N,E, λ) is a tableau for a knowledge base K then At(λ(n)) =
At(K) for every n ∈ N .

Proof. By induction on the level of n.

Base: level(n) is zero, that is, n is the root. Then λ(n) = K. Thus, At(λ(n)) =
At(K).

Induction Hypothesis (IH): if level(n′) < level(n) then At(λ(n′)) = At(K).

Induction Step: level(n) > 1. Thus, n has some parent n′, and either (1)
children(n′) = {n} or (2) children(n′) = {n, n2} with n ̸= n2:

(1) children(n′) = {n}. Then, λ(n) = λ(n)∪A, where one of the following
cases hold:

1. A = {φ}, with ¬¬φ ∈ λ(n). Thus, as At(φ) = At(¬¬φ), we get
that At(λ(n′)) = At(λ(n)). Thus, it follows from HI, that At(λ(n)) =
At(K).
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2. A = {φ,ψ} with φ∧ψ ∈ λ(n′). Thus, as At(φ∧ψ) = At(φ)∪At(ψ),
we get that At(λ(n′)) = At(λ(n)). Thus, it follows from HI, that
At(λ(n)) = At(K).
3. A = {¬φ ∨ ¬ψ} with ¬(φ ∧ ψ) ∈ λ(n′). Thus, as At(¬(φ ∧ ψ)) =
At(¬φ∨¬ψ), we get that At(λ(n′)) = At(λ(n)). Thus, it follows from
HI, that At(λ(n)) = At(K).
4. A = {¬φ ∧ ¬ψ} with ¬(φ ∨ ψ) ∈ λ(n′). Thus, as At(¬(φ ∨ ψ)) =
At(¬φ∧¬ψ), we get that At(λ(n′)) = At(λ(n)). Thus, it follows from
HI, that At(λ(n)) = At(K).

(2) children(n′) = {n, n2} with n ̸= n2. Thus, there is φ ∨ ψ ∈ λ(n′) such
that either (a) λ(n) = λ(n′) ∪ {φ} or (b) λ(n) = λ(n′) ∪ {ψ}. Observe
that At(φ) ⊆ At(φ∨ψ) and At(ψ) ⊆ At(φ∨ψ). Therefore in either cases
(a or b), we get that At(n) = At(n′). Thus, it follows from HI, that
At(λ(n)) = At(K).

Theorem 13. The compliance of the measures I#, Imin, and IΣ with the rationality
postulates is as presented in Table 1.

Proof. In the following, we denote by +X a proof that shows that property X is
satisfied and by −X a proof that shows that property X is violated.

+CO Let K be a knowledge base. K is inconsistent if and only if there is a closed
tableau π. Then, I#(K) = 0 if and only if K is inconsistent. Analogously,
Imin(K) = 0 if and only if K is inconsistent; and IΣ(K) = 0 if and only if K is
inconsistent.

NO The measures I# and IΣ clearly fail NO, while Imin satisfies it.

+ By definition Imin(K) = 0, if K is consistent, and corresponds Imin(K) =
1/n, where n is the size of the minimal closed tableaux in T⊥(K). There-
fore, 0 ≤ Imin(K) ≤ 1.

− Consider the following knowledge base K = {a ∧ ¬a, b ∧ ¬b, c ∧ ¬c}. For
this knowledge base, there are only three minimal closed tableaux, all of
them of size 2. Therefore, I#(K) = 3, and IΣ(K) = 3

2 > 1.

MO The measures I# and IΣ clearly fail MO, while Imin satisfies it.

+ Note that if π is a closed tableau in K then π is also a closed tableau
in K′ for K ⊆ K′. Therefore, the length of a minimal closed tableau can
only decrease when adding information, thus Imin can only increase.
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− Let K = {(a ∨ b) ∧ (¬a ∧ ¬b), a}.
There is only one minimal closed tableau for K, which is π1 below. On
the other hand, there are two minimal closed tableau for K \ {a}, which
are π2 and π3 below (depicted in the concise form). We have

I#(K) = 1 < I#(K \ {a}) = 2
IΣ(K) = 1/3 < IΣ(K \ {a}) = 1/5 + 1/6 = 11/30

π1 =

K

{a ∨ b,¬a ∧ ¬b}

{¬a,¬b}

π2 =

K\{a}

{a ∨ b,¬a ∧ ¬b}

{¬a,¬b}

{a} {b}

π3 =

K\{a}

K ∪ {a ∨ b,¬a ∧ ¬b}

{a}

{¬a,¬b}

{b}

{¬a,¬b}

−IN Consider the counterexample for MO. Recall K = {(a ∨ b) ∧ (¬a ∧ ¬b), a}.
Observe that a is free, and I#(K) ̸= I#(K \ {a})), Imin(K) ̸= Imin(K \ {a}))
and IΣ(K) ̸= IΣ(K \ {a})).

−DO Let K = {¬a,¬b,¬c}, and formulae α = a and β = (a∨ b) ∧ (a∨ c). Note that
K ≡ β. The knowledge base K∪{α} has only one closed tableau which has size
1 (π1 = K ∪ {α}), while K ∪ {β} has two closed tableaux (π1 and π2 below),
both with size 4. Thus, I#(K∪{α}) = 1, I#(K∪{β}) = 2, Imin(K∪{α}) = 1,
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Imin(K ∪ {β}) = 1/4, IΣ(K ∪ {α}) = 1, IΣ(K ∪ {β}) = 2/4 = 1/2.

π2 =

K ∪ {β}

K ∪ {(a ∨ b), (a ∨ c), β}

K ∪ {a, (a ∨ b), (a ∨ c), β} K ∪ {b, (a ∨ b), (a ∨ c), β}

π3 =

K ∪ {β}

K ∪ {(a ∨ b), (a ∨ c), β}

K ∪ {a, (a ∨ b), (a ∨ c), β} K ∪ {c, (a ∨ b), (a ∨ c), β}

+SI Let α be a safe-formula in K. From Proposition A.9, we have that α is non-
redundant with K \ {α}. Thus α is consistent and not-redundant in K \ {α}.
Thus, from Theorem A.14, T min

⊥ (K) = ⋃
π∈T min

⊥ (K\α) π[α]. This implies that
I(K) = I(K \ {α}), for all three measures.

−SA Let K = {a ∧ (b ∧ ¬b)} and K′ = {a,¬a}. Note that both K and K′ have only
one tableau (π1 below, and K′ also has only one closed tableau which is the
tableau π′ with only the root node labelled with K′ itself. Moreover, K ∪ K′

has only one tableau: the tableau with only the root node. Thus,
K K′ K ∪ K′ I(K) + I(K′)

I# 1 1 1 2
Imin 1/4 1 1 4/3
IΣ 1/4 1 1 4/3

π1 =

K

K ∪ {a, b ∧ ¬b}

K ∪ {a,¬b, b, b ∧ ¬a}
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−PY Let K = {a,¬a, a ∧ b}. Observe that MI(K) = {{a,¬a}, {a ∧ b,¬a}}. Thus,
a∧ b is not free. However, both K and K′ = K \ {a∧ b} have only one minimal
closed tableau each: K and K′, respectively. Thus penalty is violated for all
three measures.

−MI Let K = {¬a, a ∧ b} and K′ = {a ∧ b, (¬a ∧ b) ∧ c}. Note that MI(K) = {K},
MI(K′) = {K′}, and MI(K ∪ K′) = {K,K′}. Thus, MI(K) ∩ MI(K′) = ∅ and
MI(K) ∪ MI(K′) = MI(K ∪ K′). The minimal closed tableau of K is π1, the
minimal closed tableau of K′ is π2 and the minimal closed tableau of K ∪ K′ is
π3. All of them are shown below. Thus,

K K′ K ∪ K′ I(K) + I(K′)
I# 1 1 1 2

Imin 1/2 1/3 1/2 1/2 + 1/3
IΣ 1/2 1/3 1/2 1/2 +1/3

π1 =
K

K ∪ {a, b}
π2 =

K′

K’ ∪ {c,¬a ∧ b}

K’ ∪ {c,¬a, b}

π3 =
K ∪ K′

K ∪ K′ ∪ {a, b}

−MN Let K = {¬a∧ (¬b∧ ¬c), (a∨ b) ∧ (a∨ c)}. Note that K ∈ MI(K). The minimal
closed tableaux of K are π1 and π2 below.
Thus, I#(K) = 2, Imin(K) = 1/6 and IΣ(K) = 2 · 1/6 = 1/3.

π1 =
K

K ∪ {¬a,¬b ∧ ¬c}

K ∪ {¬a,¬b,¬c,¬b ∧ ¬c}

K ∪ {a ∨ b, a ∨ c,¬a,¬b,¬c,¬b ∧ ¬c}

K ∪ {a, a ∨ b, a ∨ c,¬a,¬b,¬c,¬b ∧ ¬c} K ∪ {b, a ∨ b, a ∨ c,¬a,¬b,¬c,¬b ∧ ¬c}
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π2 =
K

K ∪ {¬a,¬b ∧ ¬c}

K ∪ {¬a,¬b,¬c,¬b ∧ ¬c}

K ∪ {a ∨ b, a ∨ c,¬a,¬b,¬c,¬b ∧ ¬c}

K ∪ {a, a ∨ b, a ∨ c,¬a,¬b,¬c,¬b ∧ ¬c} K ∪ {c, a ∨ b, a ∨ c,¬a,¬b,¬c,¬b ∧ ¬c}

−AT Let K = {a ∧ (¬a ∧ ¬b), a,¬a}, M = {a ∧ (¬a ∧ ¬b)} and M ′ = {a,¬a}.
Observe that M,M ′ ∈ MI(K) and |M | < |M ′|. The only closed tableau of M
is π1, and π2 = M ′ is the only proof of closed tableau of M ′. Thus,

M M ′

I# 1 1
Imin 1/3 1
IΣ 1/3 1

π1 =

M

M ∪ {a,¬a ∧ b}

M ∪ {a,¬a, b,¬a ∧ b}

−EC Let K = {(a∧ (b∧c))∧ (¬a∨¬b)∧ (¬a∨¬c)}. It has only two closed tableaux,
π1 and π2 below. Thus, I#(K) = 2, Imin(K) = 1/7, and IΣ(K) = 1/7

Below for clarity, we do not draw the whole sets in each node, but instead,
only the fresh formulae just added.
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π1 =
K

K ∪ {(a ∧ (b ∧ c)), (¬a ∨ ¬b) ∧ (¬a ∨ ¬c)}

K ∪ {a, b ∧ c, (¬a ∨ ¬b) ∧ (¬a ∨ ¬c)}

K ∪ {a, b, c, (¬a ∨ ¬b) ∧ (¬a ∨ ¬c)}

K ∪ {a, b, c, (¬a ∨ ¬b), (¬a ∨ ¬c)}

K ∪ {¬a, a, b, c, (¬a ∨ ¬b), (¬a ∨ ¬c)} K ∪ {¬b, a, b, c, (¬a ∨ ¬b), (¬a ∨ ¬c)}

π2 =
K

K ∪ {(a ∧ (b ∧ c)), (¬a ∨ ¬b) ∧ (¬a ∨ ¬c)}

K ∪ {a, b ∧ c, (¬a ∨ ¬b) ∧ (¬a ∨ ¬c)}

K ∪ {a, b, c, (¬a ∨ ¬b) ∧ (¬a ∨ ¬c)}

K ∪ {a, b, c, (¬a ∨ ¬b), (¬a ∨ ¬c)}

K ∪ {¬a, a, b, c, (¬a ∨ ¬b), (¬a ∨ ¬c)} K ∪ {¬c, a, b, c, (¬a ∨ ¬b), (¬a ∨ ¬c)}

+-AC The inconsistency measures I# and IΣ violates AC.

− I#. Consider the sequence Mi, i ∈ N of minimal inconsistent sets given
via

Mi = {a1, . . . , ai,¬a1 ∨ (¬a2 ∨ (. . . ∨ ¬ai) . . .)}

We have lim
i→∞

|Mi| = ∞. Observe that each Mi has only one minimal
closed tableau. Thus, I#(Mi) = 1, which means lim

i→∞
I#(Mi) = 1,
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− IΣ. Consider the sequence Mi, i ∈ N of minimal inconsistent sets given
via

M1 = {¬a1, a1}
M2 = {¬a1,¬a2, (a1 ∨ a2) ∧ (a2 ∨ a1)}
M3 = {¬a1,¬a2,¬a3, (a1 ∨ a2) ∧ (a2 ∨ a3) ∧ (a3 ∨ a1)}
. . .

Mi = {¬a1,¬a2, . . . ,¬ai, (a1 ∨ a2) ∧ (a2 ∨ a3) ∧ . . . ∧ (ai ∨ a1)}
. . .

Each Mi has exactly i minimal closed tableau. The M1 has one with
size one, M2 has two, each with size 4. For the following ones, we can
enumerate their minimal tableaux in the following way. The Mi has i− 2
minimal tableaux, such that their sizes correspond exactly to the size of
the tableaux of Mi−1, while the last 2 minimal tableaux have size i + 2.
In summary, (the number between commas represents the size of each
tableau).

M1 = 1
M2 = 2 · 4
M3 = 4, 2 · (3 + 2)
M4 = 4, (3 + 2), 2 · (4 + 2)
M5 = 4, (3 + 2), (4 + 2), 2 · (5 + 2)
. . .

Mi = 4, (3 + 2), (4 + 2), . . . (i− 1 + 2), 2 · (i+ 2)

Thus,

IΣ(M1) = 1

IΣ(M2) = 2
4 = 1

2
IΣ(M3) = 1

4 + 2
(3 + 2)

. . .
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IΣ(Mi) = 1
4 + 1

(3 + 2) + 1
(4 + 2) + . . .+ 1

(i− 1 + 2) + 2
(i+ 2)

Note that IΣ(Mi) < IΣ(Mi+1). Thus, lim
i→∞

IΣ(Mi) = ∞.

+ Imin. Let Mi be a minimal inconsistent set, and π one of its minimal
tableau. Observe that, due to the sub-formulae derivation structure of
the tableau, |π| ≥ |Mi|. Thus, the bigger is the set, the bigger is the
tableau, which means that the smaller is its inconsistent value according
to Imin. Therefore, for an infinity sequence of minimal inconsistent sets,
if lim

i→∞
|Mi| = ∞, then lim

i→∞
Imin(Mi) = 0.

−CD Let K = {a ∧ ¬a}. The knowledge base has only one minimal closed tableau
and its size is 2. Thus, Imin(K) = IΣ(K) = 1/2. For Imin, let K′ = {¬a∧ (a∨
b) ∧ (a ∨ ¬b) ∧ (a ∨ c) ∧ (a ∨ ¬c)}. Observe that K′ has two minimal closed
tableaux. Therefore, I#(K) = 2.

FD − I# and IΣ. See counterexample for MO.

+ Imin. If follows from MO.

−SY Let K = {a,¬a} and K′ = {(a ∨ b) ∧ (a ∨ ¬b) ∧ (a ∨ c) ∧ (a ∨ ¬c),¬a}. Note
that K ≡s K′ Observe that K has only one closed tableau which is K, while
K′ has two closed tableaux: π1 and π2 below. Thus, I#(K) = 1, I#(K′) = 2,
Imin(K) = 1, Imin(K′) = 1/7 and IΣ(K) = 1, IΣ(K′) = 1/7. Below for
clarity, we do not draw the whole sets in each node, but instead, only the fresh
formulae just added.

π1 =

K

K ∪ {(a ∨ b) ∧ (a ∨ ¬b), }

K ∪ {(a ∨ b), (a ∨ ¬b)}

K ∪ {a, (a ∨ ¬b), (a ∨ c) ∧ (a ∨ ¬c)} K ∪ {b, (a ∨ ¬b)}

K ∪ {a, b, (a ∨ ¬b)} K ∪ {b,¬b, (a ∨ ¬b)}
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π2 =

K

K ∪ {(a ∨ b) ∧ (a ∨ ¬b), (a ∨ c) ∧ (a ∨ ¬c)}

K ∪ {(a ∨ b) ∧ (a ∨ ¬b), (a ∨ c), (a ∨ ¬c)}

K ∪ {a, (a ∨ c), (a ∨ ¬c)} K ∪ {c, (a ∨ c), (a ∨ ¬c)}

K ∪ {a, c, (a ∨ c), (a ∨ ¬c)} K ∪ {¬c, c, (a ∨ c), (a ∨ ¬c)}

−EX See counterexample for SY

−AI See counter-example for SY

The following definition will be useful for proving the following results regarding
non-redundant formulae.

Definition A.2. The sub-structural formulae of a given formula ϕ are defined in-
ductively as

• subs(φ) = {φ}, if φ is a literal;

• subs(φ □ ψ) = {φ ∧ ψ} ∪ subs(φ) ∪ subs(ψ), for □ ∈ {∧,∨};

• subs(¬(φ □ ψ)) = {¬(φ □ ψ)} ∪ subs(¬φ) ∪ subs(¬ψ), for □ ∈ {∧,∨}.

Definition A.3. Let π = (N,E, λ) be a tableau for a knowledge base K, we define
π[α] = (N,E, λ′) such that λ′(n) = λ(n) ∪ {α}.

The tableau π[α] stands for a tableau that augments each node of π with the
formula φ.

Proposition A.4. For every knowledge base K, if α is not partially-redundant in
K and π is a tableau for K then π[α] is a tableau for K ∪ {α}.

Proof. Let π = (N,E, λ) be a tableau for K, and α a not partially-redundant formula
in K. We will show that π[α] = (N,E, λ′) satisfies all conditions of a tableau:

• λ′(r) = K ∪ {α}, where r is the root of π[α]. By definition, λ′(r) = λ(r) ∪ {K}
and λ(r) = K. Thus, λ′(r) = K ∪ {α}.
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• Let n ∈ N :

1. we will show λ′(n) ̸= λ′(n′), for all n′ ∈ children(n). Let n′ ∈ children(n).
As π is a tableau, λ(n) ⊂ λ(n). By hypothesis, α is not partially-
redundant in K which means that φ ̸∈ λ(w), for all w ∈ N . There-
fore, λ(n) ∪ {α} ⊂ λ(n′) ∪ {α}. By definition, λ′(n) = λ(n) ∪ {α}
and λ′(n′) = λ(n′) ∪ {α}. Therefore, λ′(n) ⊂ λ′(n′) which means that
λ′(n) ̸= λ′(n′)

2. assume children(n) = {n1}. We will show that λ′(n1) ∈ σ(ε, λ′(n)), for
some ε ∈ RT B \ {∨e}. As π is tableau for K, we have that λ(n1) ∈
σ(ε, λ(n)) for some ε ∈ RT B \ {∨e} = {∧e,¬¬e, DM∧, DM∨}:

– “ε = ¬¬e”. Thus,

λ(n1) = λ(n) ∪ {φ}, for some ¬¬φ ∈ λ(n).

By definition, λ′(n1) = λ(n1) ∪ {α}, and λ′(n) = λ(n) ∪ {α} which
implies that ¬¬φ ∈ λ′(n) and

λ′(n1) = λ(n) ∪ {φ} ∪ {α}
= λ′(n) ∪ {φ}

By definition, σ(¬¬e, λ
′(n)) = {λ′(n) ∪ {ψ} | ¬¬ψ ∈ λ′(n)}. Thus,

as ¬¬φ ∈ λ′(n), we get λ′(n) ∪ {φ} ∈ σ(¬¬e, λ
′(n)) which means

λ′(n1) ∈ σ(¬¬e, λ
′(n)).

– “ε = ∧e”. Thus,

λ(n1) = λ(n) ∪ {φ,ψ}, for some φ ∧ ψ ∈ λ(n).

By definition, λ′(n1) = λ(n1) ∪ {α}, and λ′(n) = λ(n) ∪ {α} which
implies that φ ∧ ψ ∈ λ′(n) and

λ′(n1) = λ(n) ∪ {φ,ψ} ∪ {α}
= λ′(n) ∪ {φ,ψ}

By definition, σ(∧e, λ
′(n)) = {λ′(n) ∪ {φ′, ψ′} | φ′ ∧ ψ′ ∈ λ′(n)}.

Thus, as φ ∧ ψ ∈ λ′(n), we get λ′(n) ∪ {φ,ψ} ∈ σ(¬¬e, λ
′(n)) which

means λ′(n1) ∈ σ(∧e, λ
′(n)).

– “ε = DM∧”. Thus,

λ(n1) = λ(n) ∪ {¬φ ∨ ¬ψ}, for some ¬(φ ∧ ψ) ∈ λ(n).
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By definition, λ′(n1) = λ(n1) ∪ {α}, and λ′(n) = λ(n) ∪ {α} which
implies that ¬(φ ∧ ψ) ∈ λ′(n) and

λ′(n1) = λ(n) ∪ {¬φ ∨ ¬ψ} ∪ {α}
= λ′(n) ∪ {¬φ ∨ ¬ψ}

By definition, σ(DM∧, λ′(n)) = {λ′(n) ∪ {¬φ′ ∨ ¬ψ′} | ¬(φ′ ∧ ψ′) ∈
λ′(n)}. Thus, as ¬(φ ∧ ψ) ∈ λ′(n), we get λ′(n) ∪ {¬φ ∨ ¬ψ} ∈
σ(DM∧, λ′(n)) which means λ′(n1) ∈ σ(DM∧, λ′(n)).

– “ε = DM∨”. Thus,

λ(n1) = λ(n) ∪ {¬φ ∧ ¬ψ}, for some ¬(φ ∨ ψ) ∈ λ(n).

By definition, λ′(n1) = λ(n1) ∪ {α}, and λ′(n) = λ(n) ∪ {α} which
implies that ¬(φ ∨ ψ) ∈ λ′(n) and

λ′(n1) = λ(n) ∪ {¬φ ∧ ¬ψ} ∪ {α}
= λ′(n) ∪ {¬φ ∧ ¬ψ}

By definition, σ(DM∨, λ′(n)) = {λ′(n) ∪ {¬φ′ ∧ ¬ψ′} | ¬(φ′ ∨ ψ′) ∈
λ′(n)}. Thus, as ¬(φ ∨ ψ) ∈ λ′(n), we get λ′(n) ∪ {¬φ ∧ ¬ψ} ∈
σ(DM∨, λ′(n)) which means λ′(n1) ∈ σ(DM∨, λ′(n)).

Thus, we conclude that λ′(n1) ∈ σ(ε, λ′(n)), for some ε ∈ RT B \ {∨e}.
3. assume children(n) = {n1, n2} with n1 ̸= n2. We will show that ei-

ther (λ′(n1), λ′(n2)) ∈ γ(λ′(n)) or (λ′(n2), λ′(n1)) ∈ γ(λ′(n)). Since π is
tableau for K, we have that (λ(n1), λ(n2)) ∈ γ(λ(n)) or (λ(n2), λ(n1)) ∈
γ(λ(n)). Without loss of generality, let us assume that (λ(n1), λ(n2)) ∈
γ(λ(n)). Thus, there is some φ ∨ ψ ∈ λ(n) such that

λ(n1) = λ(n) ∪ {φ} and
λ(n2) = λ(n) ∪ {ψ}

By definition, λ′(n) = λ(n)∪{α}, while λ′(n1) = λ(n1)∪{α} and λ′(n2) =
λ(n2) ∪ {α}. Thus, φ ∨ ψ ∈ λ′(n) and

λ′(n1) = λ(n) ∪ {φ} ∪ {α}
= λ′(n) ∪ {φ}

λ′(n2) = λ(n) ∪ {ψ} ∪ {α}
= λ′(n) ∪ {ψ}
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By definition, γ(λ′(n)) = {(λ′(n) ∪ {φ′}, λ′(n) ∪ {ψ′}) | φ′ ∨ ψ′ ∈ λ′(n)}.
Thus, as φ ∨ ψ ∈ λ′(n), we get that

(λ′(n) ∪ {φ}, λ′(n) ∪ {ψ}) ∈ γ(λ′(n)),

which implies (λ′(n1), λ′(n2)) ∈ γ(λ′(n)).
Thus, (λ′(n1), λ′(n2)) ∈ γ(λ′(n)) or (λ′(n2), λ′(n1)) ∈ γ(λ′(n)).

Proposition A.5. Let K be a knowledge base, π a tableau for K and π′ a tableau
for K ∪ α. If α is not partially-redundant in K then

(a) λπ[α](n) ∩ subs(α) = {α}, and

(b) if for all node n of π′, λ′(n) ∩ subs(α) = {α} then for every formula
β ∈ λ′(n) \ {α}, (subs(β) ∩ subs(α) = ∅,

Proof. Let K be a knowledge base, π a tableau for K and π′ a tableau for K ∪ α,
and α a formula not partially-redundant in K

(a) λπ[α](n)∩subs(α) = {α}. As α is not partially-redundant in K, we get that
λ(n) ∩ subs(α) = ∅. Thus,

λπ[α](n) ∩ subs(α) = (λ(n) ∪ {α}) ∩ subs(α)
= (λ(n) ∩ subs(α)) ∪ ({α} ∩ subs(α))
= ∅ ∪ {α} = {α}.

1. (b) for every formula β ∈ λ′(n) \ {α}, (subs(β) ∩ subs(α) = ∅. The proof is by
induction on the level of n

Base: level of n is 0, that is, n is the root node. Thus λ′(n) \ {α} = K. By
hypothesis, α is not redudant in K which means that subs(α) ∩ subs(β) =
∅, for all β ∈ K.

Induction Hypothesis: for all node n′ such that level(n′) < level(n),
subs(α) ∩ subs(β) = ∅, for all β ∈ λ′(n′) \ {α}

Induction Step: level(n) > 0. Thus, n has a parent node n′, and either (i)
children(n′) = {n} or (ii) children(n′) = {n, n2}

(i) children(n′)={n}. By the definition of Tableau, λ′(n)∈σ(ε, λ′(n′)),
for some ε ∈ RT B \ {∨e} = {∧e,¬¬e, DM∧, DM∨}:
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– “ε = ¬¬e”. Thus,

λ′(n) = λ′(n′) ∪ {φ}, for some ¬¬φ ∈ λ′(n′)

which implies

λ′(n) = (λ′(n′) \ {α}) ∪ ({φ} \ {α}.

As n′ is the parent of n, we have that level(n′) < level(n). We have
two cases: either α = φ or α ̸= φ

• α = φ. Thus, λ′(n) = (λ′(n′) \ {α}). Thus, from IH: subs(α) ∩
subs(β) = ∅, for all β ∈ λ′(n′)\{α}, taht is, subs(α)∩subs(β) = ∅,
for all β ∈ λ′(n).
• α ̸= φ. Let β ∈ λ′(n) \ {α}. Thus, β ∈ λ′(n′) \ {α} or β = φ.
For the former, it follows from IH tha subs(β) ∩ subs(α) = ∅.
For the latter, recall that ¬¬φ ∈ λ′(n′) and that from hypothesis
λ′(n′) ∩ subs(α) = {α}. Therefore, α ̸= ¬¬φ as α ̸= φ and
φ ∈ subs(¬¬φ). Thus ¬¬φ ∈ λ′(n′) \ {α}, which implies from IH
that subs(¬¬φ) ∩ {α} = ∅. Thus, as φ ∈ subs(¬¬φ), we get that
subs(φ) ∩ subs(α) = ∅. Thus, subs(β) ∩ subs(α) = ∅, as β = φ.

– the other cases are analagous.
(ii) children(n′) = {n, n2}. Analogous to the ∧e case.

Proposition A.6. Let K be a knowledge base and α a formula which is not partially-
redundant in K. If π is a tableau for K∪{α}, and for all n ∈ π, subs(α)∩λ(n) = {α}
then there is some tableau π′ of K such that π = π′[α].

Proof. Let K be a knowledge base, α be a formula that is not partially-redundant
in K, and π = (N,E, λ) be a tableau for K ∪ {α} such that subs(α) ∩ λ(n) = {α},
for all n ∈ π. Let π′ = (N,E, λ′) such that λ′(n) = λ(n) \ {α}. We will show that
(a) π′ is a tableau for K and (b) π′[α] = π.

(a) We will show that π′ satisfy all the conditions of a tableau. Let r be the
root of π′, and therefore also the root of π.

• λ′(r) = K. By definition, λ(π) = K ∪ {α} and λ′(r) = λ(r) \ {α}. Thus,
λ′(r) = K.

• let n ∈ N :
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1. let n′ ∈ children(n). As π is a tableau λ(n) ⊂ λ(n′). Thus, as α
is labelled in both n and n′, we have that λ(n) \ {α} ⊂ λ(n′) \ {α}
which means λ′(n) ⊂ λ′(n). Thus, λ′(n) ̸= λ′(n′).

2. assume children(n) = {n1}. We will show that λ′(n1) ∈ σ(ε, λ′(n)),
for some ε ∈ RT B \ {∨e}. As π is tableau for K, we have that
λ(n1) ∈ σ(ε, λ(n)) for some ε ∈ RT B\{∨e} = {∧e,¬¬e, DM∧, DM∨}:

– “ε = ¬¬e”. Thus,

λ(n1) = λ(n) ∪ {φ}, for some ¬¬φ ∈ λ(n).

As π is a tableaux, λ(n) ⊂ λ(n1). Thus, as by hypothesis α ∈
λ(n), we get φ ̸= α. Also, observe that α ̸= ¬¬φ. Otherwise,
we would have that φ ∈ subs(α), and therefore, we would get
{α,φ} ⊆ λ(n1)∩subs(α), a contradiction as by hypothesis λ(n1)∩
subs(α) = {α}. Thus, we have

α ̸= φ and α ̸= ¬¬φ.

By definition, λ′(n1) = λ(n1) \ {α} which implies

λ′(n1) = (λ(n) ∪ {φ}) \ {α}.

Thus, as φ ̸= α, we get

λ′(n1) = (λ(n) \ {α}) ∪ {φ}

By definition, λ′(n) = λ(n) \ {α}. Thus,

λ′(n1) = λ′(n) ∪ {φ}.

Moreover, as ¬¬φ ∈ λ(n) and α ̸= ¬¬φ, we get that ¬¬φ ∈ λ′(n).
By definition,

σ(¬¬e, λ
′(n)) = {λ′(n) ∪ {ψ} | ¬¬ψ ∈ λ′(n)}.

Thus, as ¬¬φ ∈ λ′(n), we get that λ′(n) ∪ {φ} ∈ σ(¬¬e, λ
′(n)),

which means λ′(n1) ∈ σ(¬¬e, λ
′(n)).

– “ε = ∧′′
e . Thus,

λ(n1) = λ(n) ∪ {φ,ψ}, for some φ ∧ ψ ∈ λ(n).
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Before we proceed, we need first to show that α ̸= φ, α ̸= ψ
and α ̸= φ ∧ ψ. If α = φ ∧ ψ then we would have that φ,ψ ∈
subs(α), and therefore, we would get {α,φ, ψ} ⊆ λ(n) ∩ subs(α),
a contradiction as by hypothesis λ(n) ∩ subs(α) = {α}. It it
was that case that α = φ then we would have that φ ∧ ψ,φ ∈
λ(n). This implies that φ ∧ ψ ∈ λ(n) \ {α}. Note that subs(φ ∧
ψ) ∩ subs(α) ̸= ∅. However, from Proposition A.5, we have that
subs(φ ∧ ψ) ∩ subs(α) = ∅ a contradiction. Analogously, we get
at the same contraction for α = ψ. Therefore,

α ̸= φ, α ̸= ψ and α ̸= φ ∧ ψ.

By definition, λ′(n1) = λ(n1) \ {α} which implies

λ′(n1) = (λ(n) ∪ {φ,ψ}) \ {α}.

Thus, as α ̸= φ and α ̸= ψ, we get

λ′(n1) = (λ(n) \ {α}) ∪ {φ,ψ}

By definition, λ′(n) = λ(n) \ {α}. Thus,

λ′(n1) = λ′(n) ∪ {φ,ψ}.

Moreover, as φ ∧ ψ ∈ λ(n) and α ̸= φ ∧ ψ, we get that φ ∧ ψ ∈
λ′(n). By definition,

σ(∧e, λ
′(n)) = {λ′(n) ∪ {φ′, ψ′} | φ′ ∧ ψ′ ∈ λ′(n)}.

Thus, as φ∧ψ ∈ λ′(n), we get that λ′(n) ∪ {φ,ψ} ∈ σ(∧e, λ
′(n)),

which means λ′(n1) ∈ σ(∧e, λ
′(n)).

– “ε = DM ′′
∧. Thus,

λ(n1) = λ(n) ∪ {¬φ ∨ ¬ψ}, for some ¬(φ ∧ ψ) ∈ λ(n).

As π is a tableaux, λ(n) ⊂ λ(n1). Thus, as by hypothesis α ∈
λ(n), we get α ̸= ¬φ ∨ ¬ψ. Also observe that α ̸= ¬(φ ∧ ψ).
Otherwise, we would have that ¬φ∨¬ψ ∈ subs(α), and therefore,
we would get {α,¬φ∨ ¬ψ} ⊆ λ(n1) ∩ subs(α), a contradiction as
by hypothesis λ(n1) ∩ subs(α) = {α}. Thus, we have

α ̸= ¬(φ ∧ ψ) and α ̸= ¬φ ∨ ¬ψ.
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By definition, λ′(n1) = λ(n1) \ {α} which implies

λ′(n1) = (λ(n) ∪ {¬φ ∨ ψ}) \ {α}.

Thus, as α ̸= ¬φ ∨ ψ,

λ′(n1) = (λ(n) \ {α}) ∪ {¬φ ∨ ψ}

By definition, λ′(n) = λ(n) \ {α}. Thus,

λ′(n1) = λ′(n) ∪ {¬φ ∨ ψ}.

Moreover, as ¬(φ ∧ ψ) ∈ λ(n) and α ̸= ¬(φ ∧ ψ), we get that
¬(φ ∧ ψ) ∈ λ′(n). By definition,

σ(DM∧, λ′(n)) = {λ′(n) ∪ {¬φ′ ∨ ¬ψ′} | ¬(φ′ ∧ ψ′) ∈ λ′(n)}.

Thus, as ¬(φ∧ψ)∈λ′(n), we get λ′(n)∪{¬φ∨ψ}∈σ(DM∧, λ′(n)),
which means λ′(n1) ∈ σ(DM∧, λ′(n)).

– “ε = DM ′′
∨. Analogous to case ε = DM∧.

3. let children(n)={n1, n2} with n1 ̸= n2. We will show (λ′(n1), λ′(n2))∈
γ(λ′(n)) or (λ′(n2), λ′(n1)) ∈ γ(λ′(n)). Since π is tableau for K,
we have that (λ(n1), λ(n2)) ∈ γ(λ(n)) or (λ(n2), λ(n1)) ∈ γ(λ(n)).
Without loss of generality, let us assume that (λ(n1), λ(n2))∈γ(λ(n)).
Thus, there is some φ ∨ ψ ∈ λ(n) such that

λ(n1) = λ(n) ∪ {φ} and
λ(n2) = λ(n) ∪ {ψ}

Before we proceed, we need to show that α ̸= φ, α ̸= ψ and α ̸= φ∨ψ.
If α = φ∨ψ then we would have that φ,ψ ∈ subs(α), and therefore, we
would get {α,φ, ψ} ⊆ λ(n)∩subs(α), a contradiction as by hypothesis
λ(n) ∩ subs(α) = {α}. It it was that case that α = φ then we would
have that φ∨ψ,φ ∈ λ(n). This implies that φ∨ψ ∈ λ(n)\{α}. Note
that subs(φ ∨ ψ) ∩ subs(α) ̸= ∅. However, from Proposition A.5, we
have that subs(φ∨ψ) ∩ subs(α) = ∅ a contradiction. Analogously, we
get at the same contraction for α = ψ. Therefore,

α ̸= φ, α ̸= ψ and α ̸= φ ∨ ψ

By definition, λ′(n) = λ(n) \ {α}, while λ′(n1) = λ(n1) \ {α} and
λ′(n2) = λ(n2) \ {α}. Thus, as α ̸= φ ∨ ψ and φ ∨ ψ ∈ λ(n) we get
that φ ∨ ψ ∈ λ′(n). Moreover, as α ̸= φ and α ̸= ψ, we get
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λ′(n1) = (λ(n) ∪ {φ}) \ {α}
= (λ(n) \ {α}) ∪ {φ}
= λ′(n) ∪ {φ}

λ′(n2) = (λ(n) ∪ {ψ}) \ {α}
= (λ(n) \ {α}) ∪ {ψ}
= λ′(n) ∪ {ψ}

By definition, γ(λ′(n)) = {(λ′(n) ∪ {φ′}, λ′(n) ∪ {ψ′}) | φ′ ∨ ψ′ ∈
λ′(n)}. Thus, as φ ∨ ψ ∈ λ′(n), we get that

(λ′(n) ∪ {φ}, λ′(n) ∪ {ψ}) ∈ γ(λ′(n)),

which implies (λ′(n1), λ′(n2)) ∈ γ(λ′(n)). Thus, (λ′(n1), λ′(n2)) ∈
γ(λ′(n)) or (λ′(n2), λ′(n1)) ∈ γ(λ′(n)).

(b) We only have to show that λπ′[α](n) = λ(n), for all n ∈ N . Let n ∈
N . By definition λ′(n) = λ(n) \ {α}, and λπ′[α](n) = λ′(n) ∪ {α}. Thus,
λπ′[α](n) = (λ(n) \ {α}) ∪ {α}. By hypothesis, α ∈ λ(n), as subs(α) ∩ λ(n) =
{α}. Therefore, λπ′[α](n) = λ(n).

Proposition A.7. Let K be a knowledge base and α a formula which is not partially-
redundant in K. If π and π′ are tableaux for K then: π ⪯ π′ iff π[α] ⪯ π′[α]

Proof. Let K be a knowledge base, α be a formula that is not partially-redundant
in K, and π and π′ be tableaux for K.

“⇒”. Let π ⪯ π′. Thus there is an injection τ : leaf(π) → leaf(π′) such that

λπ(n) ⊆ λπ′(τ(n)) (1)

Observe, from the definition of π[α] and π′[α], that leaf(π) = leaf(π[α]),
leaf(π′) = leaf(π′[α]). Therefore, τ is also an injection from the leaf nodes
of π[α] to the leaf nodes of π′[α]. We only need to show that, λπ[α](n) ⊆
λπ′[α](τ(n)), for all n ∈ leaf(π[α]). Let n ∈ leaf(π[α]). From Eq. (1), we have
that

λ(n) ∪ {α} ⊆ λ′(τ(n)) ∪ {α}.

By definition, λπ[α](n) = λπ(n) ∪ {α} and λπ′[α](τ(n)) = λπ′[α](τ(n)) ∪ {α}.
Therefore, λπ[α](n) ⊆ λπ′[α](τ(n)).

682



Measuring Inconsistency with the Tableau Method

• “⇐”. Let π[α] ⪯ π′[α]. Thus there is an injection τ : leaf(π[α]) → leaf(π′[α])
such that

λπ[α](n) ⊆ λπ′[α](τ(n)) (2)
Observe, from the definition of π[α] and π′[α], that leaf(π) = leaf(π[α]),
leaf(π′) = leaf(π′[α]). Therefore, τ is also an injection from the leaf nodes
of π to the leaf nodes of π′. We only need to show that λπ(n) ⊆ λπ′(τ(n)), for
all n ∈ leaf(π). Let n ∈ leaf(π).
By definition, λπ[α](n) = λπ(n)∪{α} and λπ′[α](τ(n)) = λπ′(τ(n))∪{α}. Thus,
from Eq. (2) above we get

λπ(n) ∪ {α} ⊆ λπ′(τ(n)) ∪ {α} (3)

As α is not partially-redundant in K, we have that α is not labelled in any of
the tableaux of K. This means that α ̸∈ λπ(n) and α ̸∈ λπ′(τ(n)). This jointly
with Eq. (3) implies

λπ(n) ⊆ λπ′(τ(n)).

Proposition A.8. If α is not partially-redundant in K then
( ⋃

π∈T min
⊥ (K)

π[α]
)

⊆ T min
⊥ (K ∪ {α}).

Proof. Let us suppose for contradiction that there is a π ∈ T min
⊥ (K) such that

π[α] ̸∈ T min
⊥ (K ∪ {α}). Thus, there is a π′ ∈ T min

⊥ (K ∪ {α}) such that π′ ≺ π[α].
This means that there is some leaf nodes n′ ∈ π′ and n ∈ π[α] such that

λπ′(n′) ⊂ λπ[α](n). (4)

Observe that α ∈ λ(m), for all node m of every tableau of K ∪ {α}. This means
that,

{α} ⊆ λπ′(n′) ∩ subs(α) and {α} ⊆ λπ[α](n) ∩ subs(α)
Thus, we have two cases: either (i) {α} = λπ′(n′)∩subs(α) or (ii) {α} ⊂ λπ′(n′)∩

subs(α). We get a contradiction in either case:

• (i) {α} = λπ′(n′) ∩ subs(α). Thus from Proposition A.6, there is a a tableau
πy for K such that π′ = πy[α]. From Proposition A.7 we get that πy ≺
π iff πy[α] ≺ π[α]. Thus, as π′ = πy[α], we get

πy ≺ π iff π′ ≺ π[α].
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By hypothesis, π′ ≺ π[α] which implies that πy ≺ π. Therefore, π ̸∈ T min
⊥ (K)

which is a contradiction.

• (ii) {α} ⊂ λπ′(n′) ∩ subs(α). It follows from Eq. (4) above that λπ′(n′) ∩
subs(α) ⊆ λπ[α](n) ∩ subs(α). Therefore,

{α} ⊂ λπ′(n′) ∩ subs(α) ⊆ λπ[α](n) ∩ subs(α)

which implies that {α} ⊂ λπ[α](n)∩subs(α). This means that {α} ̸= λπ[α](n)∩
subs(α). However, from Proposition A.5, we have that {α} = λπ[α](n)∩subs(α)
which is a contradiction.

Theorem 16. The inconsistency measures Imin, I# and IΣ satisfy NM.

Proof. It follows directly from MO that Iminsatisfies NM. For the other two mea-
sures, we prove compliance with NM separately:

• I#: Let K be a knowledge base and α a non-redundant formula with K.
Therefore, from Proposition A.8, we get that |T min

⊥ (K)| ≤ |T min
⊥ (K ∪ {α})|.

Thus, I#(K) ≤ I#(K ∪ {α}).

• IΣ: Let K be a knowledge base and α a non-partially-redundant formula with
K. Observe that |π| = |π[α]|. Therefore,

∑

π∈T min
⊥ (K)

1
|π| =

∑

π∈T min
⊥ (K)

1
|π[α]|

which implies
IΣ(K) =

∑

π∈T min
⊥ (K)

1
|π[α]| (5)

Let X = ⋃
π∈T min

⊥ (K) π[α]. From Proposition A.8, we get X ⊆ T min
⊥ (K ∪ {α}).

Thus, T min
⊥ (K ∪ {α}) = X ∪ (K ∪ {α} \X). Therefore,

IΣ(K ∪ {α}) =
(∑

π∈X

1
|π|

)
+




∑

π∈X\T min
⊥ (K∪{α})

1
|π|




=




∑

π∈T min
⊥ (K)

1
|π[α]|


+




∑

π∈X\T min
⊥ (K∪{α})

1
|π|


 .
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Thus, from Eq. (5), we get

IΣ(K ∪ {α}) = IΣ(K) +




∑

π∈X\T min
⊥ (K∪{α})

1
|π|


 .

Thus, IΣ(K ∪ {α}) ≥ IΣ(K).

Proposition A.9. If a formula α is safe within K then α is not partially-redundant
with K \ {α}.

Proof. Let π be a tableau for K \ {α}, and π′ a tableau for {α}, we will show that
there is no formula φ that is labelled in both π and π′. From Lemma A.1, we have
that At(φ) ⊆ At(K \ {α}) and At(ψ) ⊆ At(α), for all φ that appears in π and all
ψ ∈ π′. Thus, as α is safe with K, we have that At(K \ {α}) ∩ At(α) = ∅, which
means At(φ) ∩ At(ψ) = ∅. Therefore, there is no common formula between π and
π′, that is, α is not-partially-redundant.

Proposition A.10. If a formula α is not partially-redundant with a knowledge base
K and α is consistent then α is safe in K ∪ {α}.

Proof. Let us suppose for contradiction that for some knowledge base K there is a
consistent formula α that is not partially-redundant with K, but it is not safe in
K ∪ {α}. First, observe that each propositional atom in α appears in some tableau
of α. By hypothesis, α is not safe in K ∪ {α}, which means there is a formula
φ ∈ K that shares some atomic proposition p with α, that is p ∈ At(φ) ∩ At(α). But
then p appears in some tableau of K and in some tableau of α which means that
α is partially-redundant with K. This contradicts our hypothesis. Therefore, α is
safe.

To prove compliance of our measures with the postulate SI, we will need some
extra constructions. First, given a tableau π for a knowledge base K, and a node n
of π, we denote by subT(n) all the nodes of the subtree rooted on n. A node n has
two children, say n1 and n2, only when such children were obtained by applying the
disjunction rule DM∨, that is, λ(n1) \ λ(n) = {φ}, λ(n2) \ λ(n) = {ψ}, and either
φ ∨ ψ ∈ λ(n) or ψ ∨ φ ∈ λ(n). We say that such a node n is a disjunctive node.
In addition, if At(φ ∨ ψ) ∩ At(α) ̸= ∅ then we say that such a disjunctive node n
is α-connected. Given a tableau π for K, let π[\α] = (N,E, λ) be a sub-labelled
tree of π, such that for each α-connected disjunctive node n of π, we remove exactly
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one of the sub-trees rooted on one of the two children of n. Given a π[\α], we
define the function fπ[α] : N → 2N where f(n) = {n′ ∈ N | (λ(n) \ forms(α)) ∪ α}.
Imagine that we re-label each node of the tableau by removing any formula that
shares some atomic proposition with α, except α itself. By doing so, some nodes
might present the same new label. The function fπ[α] identifies such nodes whose
new labels collapse. The image of fπ[α] is denoted by Img(fπ[α]).

We define the collapsed sub-labelled tree of π[\α] = (N ′, E′, λ′) as the labelled
tree π̃[\α] = (Ñ , Ẽ, λ̃), where

• Ñ = Img(fπ[α]);

• Ẽ = {(A,B) ∈ Ñ × Ñ | A ̸= B, (n, n′) ∈ E′, for some n ∈ A and n′ ∈ B};

• λ̃(A) = (λ(n′) \ forms(α)) ∪ {α}, for some n′ ∈ A

Lemma A.11. If n is a disjunctive α-connected node, and n′ is a child of n then
(λ(n′) \ forms(α)) ∪ {α} = (λ(n) \ forms(α)) ∪ {α}.

Proof. As n is a disjunctive node and n′ is a child of it, we get that λ(n′) = λ(n)∪{φ}.
As n is α-connected, we get that φ ∈ forms(α). Thus,

(λ(n) ∪ {φ}) \ forms(α) = λ(n) \ forms(α)
λ(n′) \ forms(α) = λ(n) \ forms(α)

(λ(n′) \ forms(α)) ∪ {α} = (λ(n) \ forms(α)) ∪ {α}

Proposition A.12. If π is a tableau of a knowledge base K, and α ∈ K is safe then
the collapsed sub-labelled tree π̃[\α] = (Ñ , Ẽ, λ̃), is a tableau of K, for every π[\α].

Proof. Let us show that each condition of the tableau is satisfied:

• λ̃(r) = K. By definition, λ̃(r) = (λ(r) \ forms(α)) ∪ α and λ(r) = K. Thus,
λ̃(r) =

(K \ forms(α)
) ∪ α. By hypothesis, α is safe in K, therefore,

(
(K) \

forms(α)
)

= K \ {α}. This implies that λ̃(r) = (K \ α) ∪ α = K.

• let A ∈ Ñ :

1. λ̃(A) ̸= λ̃(A′), for all children A′ of A. By definition, A ̸= B.
2. if children(A) = {A1}, then λ(A1) ∈ σ(ε, λ(A)), for some derivation rule
ϵ ∈ RT B. As A′ is single child of A, we have that there are some n ∈ A
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and n′ ∈ A′ such that n′ is child of n in π. Let us fix such a n and n′. As
A1 is child of A, we have that A ̸= A1 which implies that

(λ(n) \ forms(α)) ∪ {α} ̸= (λ(n′) \ forms(α)) ∪ {α}.

Thus, from the contrapositive of Lemma A.11, we have that n is not a
disjunctive α-connected node. By definition, λ̃(A) = (λ(n) \ forms(α)) ∪
{α} and λ̃(A1) = (λ(n′) \ forms(α)) ∪ {α}. Therefore,

λ̃(A) ̸= λ̃(A1).

Therefore, n has only one single node which means that λ(n′)∈σ(ε, λ(n)),
for some derivation rule ϵ ∈ RT B:

– λ(n′) = λ(n) ∪ {φ}, with ¬¬φ ∈ λ(n). Observe that if φ ∈ forms(α),
then we would have (λ(n)\forms(α))∪{α} = (λ(n′)\forms(α))∪{α}.
But we have from above that this is not the case, therefore φ ̸∈
forms(α), which means {φ} \ forms(α) = {φ}. This implies that,

λ(n′) \ forms(α) = (λ(n) ∪ {φ}) \ forms(α)
= (λ(n) \ forms(α)) ∪ {φ}

Thus,

λ(n′) \ forms(α) ∪ {α} = (λ(n) \ forms(α)) ∪ {α} ∪ {φ}
λ̃(A1) = λ̃(A1) ∪ {φ}.

Thus, λ̃(A1) ∈ σ(DM∧, λ(A)).
– the other cases are analogous.

3. if children(A) = {A1, A2} with A1 ̸= A2 then there are nodes n ∈ A,
n1 ∈ A1 and n2 ∈ A2 such that both n1 and n2 are children of n is π.
The proof is analogous to item 2 above.

Proposition A.13. Let π be a tableau for a knowledge base K. If α is safe in K
and there is a node n such that At(λ(n) \ {α}) ̸= ∅ then π is not minimal.

Proof. The idea is simple, let us take a collapsed tableau π̃ of π. As At(λ(n)\{α}) ̸=
∅, there is some formula β ∈ λ(n) such that β ∈ forms(α) and β ̸= α. Consider the
following injection g : leaf(π̃) → leaf(π) with g(A) = m ∈ A such that m is a leaf.
By definition, λ̃(A) = λ(m) \ forms(α) ∪ {α} ⊆ λ(m). Therefore, π̃ ⪯ π. As both π
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and π̃ are tableaux, we have that all leaf nodes reachable from n in π contains β. Let
m be one of such leaf nodes reachable from n. Thus, λ̃(A) = λ(m) \ forms(α) ∪ {α}.
As β ∈ forms(α), β ̸= α and β ∈ λ(m), we get that λ(m) \ forms(α) ∪ {α} ⊂ λ(m).
This means λ̃(A) ⊂ λ(m). Therefore, π ̸⪯ π̃. Thus, π̃ ≺ π which means π is not
minimal.

Theorem A.14. If α is safe in K then

T min
⊥ (K) =

⋃

π∈T min
⊥ (K\α)

π[α]

Proof. As α is safe in K,we have that α is consistent and non-partially-redundant
in K \ {α} which implies from Proposition A.8 that ⋃π∈T min

⊥ (K\α)π[α] ⊂ T min
⊥ (K).

Let X = ⋃
π∈T min

⊥ (K\α) π[α]. Thus, T min
⊥ (K) = X ∪ (T min

⊥ (K) \ X). As α is safe
in K, it follows from Lemma A.1 that for every tableau π ∈ X, and each node
n of π: At(λ(n)) ∩ At(α) = ∅. Therefore, from Proposition A.13, we get that
(T min

⊥ (K) \X) = ∅. Therefore, T min
⊥ (K) = X.

Theorem 20. For all n > 0 and I ∈ {Imin, I#, IΣ}, Cv(I, n) = Cf (I, n) =
Cp(I, n) = ∞.

Proof. We will have to split the proof for I# from Imin and IΣ, for each item 1 and
2.

• I#. Let us consider the following formulae

αi = (
i∧

1
a)

And for i ∈ N, consider the family of knowledge bases Ki defined via

Ki = {(α1 ∧ ¬α1) ∧ (α2 ∧ ¬α2) ∧ · · · ∧ (αi ∧ ¬αi)}

For example,

K1 = {(a ∧ ¬a)}
K2 = {(a ∧ ¬a) ∧ ((a ∧ a) ∧ ¬(a ∧ a)

)}
K3 = {(a ∧ ¬a) ∧ ((a ∧ a) ∧ ¬(a ∧ a)

) ∧ ((a ∧ a ∧ a) ∧ ¬(a ∧ a ∧ a)
)}
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Each Ki has exactly i minimal closed tableaux. To see this, observe that we
can apply rule ∧e to obtain one of the conjunctions αj ∧ ¬αj , for 1 ⩽ j ⩽ i.
Then we can apply rule ∧e again to get a clash. This generates a minimal
closed tableau. As we have i conjunctions αj ∧¬αj , we obtain i minmal closed
tableaux.
Thus, I#(Ki) = i, for all i > 0. This means that each {I#(Ki) | i > 0} is
an infinite set. Also note that |Ki| = 1, At(Ki) = {a}, and for all φ ∈ Ki,
At(φ) = {a}. Therefore, for n > 0, Cv(I#, n) = Cf (I#, n) = Cp(I#, n) = ∞.

• Imin, IΣ. Consider the following family of knowledge bases

K+
i = {α+

i ∧ ¬a},

where

α+
1 = a

α+
i+1 = a ∨ (α+

i )

For example,

K1 = {a ∧ ¬a}
K2 = {(a ∨ a) ∧ ¬a}
K3 = {(a ∨ (a ∨ a)

) ∧ ¬a}

Each Ki has only one minimal closed tableau, and its size is 2i, thus Imin(Ki) =
IΣ(Ki) = 1

2i . This implies that for all i, j > 0, if i ̸= j then Imin(Ki) ̸=
Imin(Kj) and IΣ(Ki) ̸= IΣ(Kj). Thus, the sets {Imin(Ki) | i > 0} and
{IΣ(Ki) | i > 0} are infinite sets. Also note that |Ki| = 1, At(Ki) = {a},
and for all φ ∈ Ki, At(φ) = {a}. Therefore, for n > 0, Cv(I, n) = Cf (I, n) =
Cp(I, n) = ∞, for I ∈ {Imin, IΣ}.

Theorem 21.

1. For all n > 1, Cl(I#, n) = ∞.

2. For all n > 3, and I ∈ {Imin, IΣ}, Cl(I, n) = ∞.
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Proof. 1. Consider the following family of knowledge bases

K1 = {a1,¬a1}
Ki+1 = Ki ∪ K{ai+1,¬ai+1}

Each Ki has exactly i minimal closed tableaux. Thus, I#(Ki) = i, for all i > 0.
Observe that for all i > 0, and φ ∈ Ki, |φ| ≤ 2. Thus, the set {I#(Ki) | i > 0}
is infinite which implies that Cl(I#, n) = ∞, for all n > 1.

2. Consider the following family of knowledge bases

K+
1 = {a1,¬a1}

K+
2 = {a1,¬a1 ∨ a2,¬a2}

K+
3 = {a1,¬a1 ∨ a2,¬a2 ∨ a3,¬a3}
. . .

K+
i+1 = {a1,¬a1 ∨ a2,¬a2 ∨ a3, . . . ,¬ai ∨ ai+1,¬ai+1}

For, i > 0, each Ki has exactly one minimal closed tableau π, and it is size is
|πi| = 2i + 1. Thus, Imin(Ki) = IΣ(Ki) = 1

2i+1 . Observe that, if i ̸= j, then
Imin(Ki) ̸= Imin(Kj) and IΣ(Ki) ̸= IΣ(Kj). Therefore, the set {I(Ki) | i > 0}
is infinite, for every I ∈ {Imin, IΣ}. Also note that for all i > 0, and φ ∈ Ki,
|φ| ≤ 4. Thus, Cl(I, n) = ∞, for all n > 3, and I ∈ {Imin, IΣ}.

Theorem 22. For I ∈ {I#, Imin, I#}, ExactI , UpperI , and LowerI are in
EXPSPACE, while ValueI is in FEXPSPACE (the functional variant of EXPSPACE).

Proof. First, we show that ValueI is in FEXPSPACE. From this, we prove that the
other problems are in EXPSPACE.

• ValueI is in FEXPSPACE, for all I ∈ {I#, Imin, I#}.
Given a knowledge base K, we will show first how one can compute I(K),
for all I ∈ {I#, Imin, I#}. The idea is simple, we enumerate all tableaux,
and we mark all minimal tableaux, thereafter we count and check the size
of each minimal tableaux. First, note that we do not allow two nodes on
the same branch of a tableau to have the same label (if the application of a
rule repeats some label on the branch, we ignore this application and look for
another rule application). As K is finite and each formula is finite, at each
derivation step there is only a finite number of possible derivations and the
number of possibilities reduces in the following derivation step. Therefore, the
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procedure eventually finishes. Each branch has at most linear size on the sum
of the sizes of the formulae in K, while a tableau can have exponential size
on the sum of the sizes of the formulae in K. And we have an exponential
number of tableaux on the size of the sum of the sizes of the formulae in K.
To determine I(K), for any I ∈ {I#, Imin, I#}, we (1) enumerate all such
tableaux, (2) check which ones of them are minimal, and (3) for I#(K), we
count the number of such minimal tableaux. For Imin, we visit each minimal
tableaux, keeping the size of the minimal tableau visited so far. The value of
Imin(K) corresponds to the value obtained when we finish visiting all minimal
tableaux. For IΣ, the process is analogous, we just need to keep a counter that
is incremented every time that we find a minimal tableau with the same size
as the least tableau so far computed. However, if a smaller tableau is found,
then we reset this counter to one. At the end of the procedure, we obtain
the correct value of IΣ(K). This strategy takes an exponential space, since
we have an exponential number of tableaux (as explained above), and each of
them has at most exponential size.

• The problems Lower, Upper and Exact are easily solved by using the TM
that computes ValueI . In the input K ∈ K, x ∈ R∞

≥0 \ {0}, simulate the TM
M that solves ValueK, that we presented above. To compute Lower, Upper
and Exact, we only need to compare x with the value returned by M .
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Abstract

Artificial Intelligence is now recognized as a general-purpose technology with
ample impact on human life. This work aims at understanding the evolution
of AI and, in particular Machine learning, from the perspective of researchers’
contributions to the field. In order to do so, we present several measures al-
lowing the analyses of AI and machine learning researchers’ impact, influence,
and leadership over the last decades. This work also contributes, to a certain
extent, to shed new light on the history and evolution of AI by exploring the
dynamics involved in the field’s evolution by looking at papers published at the
flagships AI and machine learning conferences since the first International Joint
Conference on Artificial Intelligence (IJCAI) held in 1969. AI development and
evolution have led to increasing research output, reflected in the number of ar-
ticles published over the last sixty years. We construct comprehensive citation-
collaboration and paper-author datasets and compute corresponding centrality
measures to carry out our analyses. These analyses allow a better understand-
ing of how AI has reached its current state of affairs in research. Throughout the
process, we correlate these datasets with the work of the ACM Turing Award
winners and the so-called two AI winters the field has gone through. We also
look at self-citation trends and new authors’ behaviors. Finally, we present a
novel way to infer the country of affiliation of a paper from its organization.
Therefore, this work provides a deep analysis of Artificial Intelligence history
from information gathered and analysed from large technical venues datasets
and suggests novel insights that can contribute to understanding and measuring
AI’s evolution.

1 Introduction

Artificial Intelligence is now seen as a general-purpose technology that impacts the
world’s economy in significant ways Crafts [2021]. AI research started in academia,
where seminal works in the field defined trends first in machine intelligence Mc-
Culloch and Pitts [1943], Turing [1950] and later on the early development and
organization of the area ranging from symbolic to connectionist approaches Feigen-
baum and Feldman [1963], Minsky [1961]. However, AI has become more than a
research field explored in-depth in academia and research organizations. Applied AI
research has led to uncountable products, technologies, and joint research between
universities and industry, see e.g., Gomez-Uribe and Hunt [2016], Ramesh et al.
[2021], Amini et al. [2020]. Recent business research Gartner [2019] has shown that
AI is now being implemented widely in organizations, at least to some extent. AI
research has led to groundbreaking results that caught the media’s attention. For
instance, in the 1990s, Deep Blue Campbell et al. [2002] became the first computing

694



On the Evolution of A.I. and Machine Learning

system to win a chess match against the then reigning chess world champion, Garry
Kasparov, under tournament conditions.

Later, AI research would eventually lead to even higher grounds in many appli-
cations. AlphaGo Silver et al. [2016] has won a series of matches against Go world
champions, Brown et al. [2020] can generate texts that suggest a future of possibly
human-like competence in text generation, Cobbe et al. [2021] has shown how to
solve math word problems, Jumper et al. [2021] significantly improved 3D protein
structure prediction, and Park et al. [2019] can render seemingly authentic life-like
images from segmentation sketches, to name a few.

Even though the area has seen a noticeable technological impact and progress,
we claim that there is a need to analyse the history and evolution of AI and the
dynamics involved in transforming it into a well-established field within Computer
Science. Some influential researchers, such as Gary Marcus, have discussed the
developments that happened in the area in recent years Marcus [2018]. Moreover,
Marcus reflected upon what is to come in the next decade Marcus [2020]. The
current debate has also motivated the research on new approaches to integrating
the symbolic and connectionist paradigms, leading to Neurosymbolic AI d’Avila
Garcez and Lamb [2003, 2006], d’Avila Garcez et al. [2009]. This approach aims
to achieve more robust AI systems endowed with improved semantic understanding,
cognitive reasoning, and learning abilities d’Avila Garcez and Lamb [2023], Riegel
et al. [2020], Besold et al. [2022]. Further, it is even more evident now than in
the dawn of AI that the field not only draws inspiration from – but also inspires
advances in other areas – including cognitive psychology, neuroscience, economics,
and philosophy see, e.g., Booch et al. [2020], Marcus and Davis [2021], Smolensky
et al. [2022]. Kautz has recently pointed out that given AI’s recent contributions,
"we may be at the end of the cyclical pattern; although progress and exuberance will
likely slow, there are both scientific and practical reasons to think a third winter is
unlikely to occur.Kautz [2022]" making the case that we might not see another AI
Winter shortly. The section on AI history briefly details the field’s evolution.

A Note on Methodology and Contributions
In this paper, we look further back in Artificial Science history, explore its evolution,
and contribute to understanding what led to the AI impacts we have in society
today. To do so, we will investigate how the collaboration and citation networks
of researchers evolved since 1969 1 within three major AI conferences. We start
our analyses with IJCAI, AAAI, and NeurIPS, together with flagship conferences

1The date was chosen because it marks the first International Joint Conference on Artificial
Intelligence - IJCAI-69.
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of related research areas which are impacted and influenced by AI, namely ACL,
EMNLP, NAACL, CVPR, ECCV, ICCV, ICML, KDD, SIGIR, and WWW. Even
though not all of these conferences had many AI-related papers published in their
early years, more recently, it is clear that AI techniques are playing a more prominent
role in these research communities. Therefore, we add them to our analyses to
compose a “big picture” of how AI has not only grown itself but also gradually started
to influence other fields. These include, e.g., computer vision, image processing,
natural language processing, and information retrieval.

We proceed by exploring and enhancing an extensive dataset of papers published
in Computer Science and AI venues since 1969, the v11 Arnet datasetTang et al.
[2008]. We use version v11 from this data dataset, containing data originating from
DBLP with further disambiguation regarding paper authorship, spanning from 1969
to 2019. There are Arnet versions v12 and v13 available with data until 2021. How-
ever, the data for the recent years are somewhat degraded in these recent datasets,
thus rendering their statistical analysis inadequate and error-prone (See Section 3.1
to understand our trade-offs on using v11 instead of v13). We then use this dataset
to create a new dataset of our own, modeled in several different graph represen-
tations of the same data, allowing us to explore them in a true network fashion.
With their centralities already computed, these graphs are available for future re-
search. The process to generate them involves using considerable compute power,
with amounts of memory and processing not easily found outside laboratories at
large-scale research universities or corporations.

Using citation and collaboration networks, our analyses then use centralities
to rank both papers and authors over time. We then correlate these rankings to
external factors, such as conferences’ localization or the ACM’s Turing Award – the
most prestigious research recognition in Computer Science. These data will allow us
to explore what/who, were/are the influential papers/authors in every area/venue
under study here. Additionally, we will also examine the dynamics of where all
this research is being produced, trying to understand the recent growth of scientific
output in China concerning the other countries that led the first decades of AI
research.

In these analyses (Section 4), we try to understand and show how authors do
not maintain their influence in the field for an extended period. We also analyse
this influence regarding ranking papers by importance, as papers can be considered
relevant for a more extended period. We also show that the average number of au-
thors per paper is increasing in the analysed venues and the number of self-citations
too. Furthermore, we also investigate the authors who introduce most co-authors to
these conferences. We also show the dynamics behind citations between conferences,
showing how some meetings work better together than others.
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Because of the nature of our work – converting large amounts of non-organized
data into a structured data format – we also generate some side contributions be-
sides our main work. These contributions are: (i) a new and efficient Python library
to convert XML to JSON that uses file streams instead of loading the whole data
in memory; (ii) a parallel Python implementation to compute some centrality mea-
sures for graphs, using all physical threads available in a machine, and (iii) a novel
structure to avoid reprocessing data already processed when its underlying structure
is a graph.

Paper Structure
We organize our paper as follows: Section 2 provides a brief history of Artificial
Intelligence2, some background information on the analysed computer science con-
ferences, the ACM’s Turing Award, and a review of graph theoretical concepts.
Section 3 describes the methodology, including information about the underlying
dataset and the process behind the generation of the graphs/charts used throughout
this work. Section 4 presents and discusses the analyses of the aforementioned data
from various perspectives. Section 5 concludes our work and presents suggestions for
future work using the new datasets. The Appendix brings some tables and figures
that we avoid including in the main body of the paper to facilitate the reading flow.

2 Background
2.1 A Short on Artificial Intelligence History
Artificial Intelligence history is generally defined in terms of main time periods,
where the field grew stronger, interluded by two periods (the so-called AI Winters)
where the area was somewhat discredited and underfunded and thought to be of
limited real-world impact. The coming material is not exhaustive but provides
historical background to understand how the data analysed here relates to these
periods. Several works describe aspects of AI history under different perspectives
on how the field evolved in time, see e.g. Kautz [2022], Russell and Norvig [2020].

2We present a brief, non-comprehensive history of AI, focusing only on topics related to the
analysed AI publications. Our historical account is by no means comprehensive. We choose to
focus only on the topics related to the AI venues analysed in this paper. Of course, a comprehensive
history of AI would not fit into the space of a research paper. Therefore, the reader should not see
or interpret our brief historical account as definitive.
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2.1.1 The Dawn of AI (1940-1974)

Although debatable, some of the first XX-century “modern artificial intelligence”
papers were published in the 1940s. One of the first artificial neural network-related
papers arguably dates back to 1943, when Warren McCulloch and Walter Pitts
formally defined how simple logical operations from propositional logic could be
computed in a connectionist setting McCulloch and Pitts [1943]. Later, in 1950, Alan
Turing published the widely cited “Computing Machinery and Intelligence” paper
Turing [1950], one of the first philosophical papers reflecting upon the interplay of
intelligence and machines and on the possibility of building intelligent machines.
In this paper, Turing reflects if machines are able to think and also proposes the
“imitation game” (now widely known as the Turing Test) in order to verify the
reasoning and thinking capabilities of computing machines. Nevertheless, it was in
1956 that the term Artificial Intelligence (AI) was coined by John McCarthy during
the Dartmouth Summer Research Project on Artificial Intelligence workshop. From
the workshop onward, A.I. rapidly evolved into a potentially world-changing research
field – at that time, especially focusing on the symbolic paradigm, influenced by
logical reasoning and its computational implementations. One of the first collections
of artificial intelligence articles would be published in Feigenbaum and Feldman
[1963].

A well-known example of rule-based systems of the 1960s is Eliza Weizenbaum
[1966], the first-ever chatbot, created in 1964, by Joseph Wiezenbaum at the Artifi-
cial Intelligence Laboratory at MIT. Today’s chatbot market is considerably large,
powering multi-million dollar companies revenues like Intercom3 or Drift4. Eliza was
created to be an automated psychiatrist, as if the human was talking to someone who
understood their problems, although the system worked in this rule-based format,
replying to the user with pre-fed answers. Besides the main artificial intelligence
approach, we can already see how related areas are easily influenced with a chatbot
clearly involving natural language processing as well.

It would also be in 1964 that Evans [1964] would show that a computer could
solve what they described as "Geometry Analogy Problems", which correlates with
the problems usually displayed in IQ tests where one needs to solve a question in the
format “figure A is to figure B as figure C is to which of the given answer figures?”
such as the one represented in Figure 1

Important research would also vouch in favor of the area, causing DARPA (the
American Defense Advanced Research Projects Agency) to fund several different AI-
related projects from the mid-1960s onward, especially at MIT. This era was marked

3https://www.intercom.com/
4https://www.drift.com/
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Evans [1964]’s Figure 1

Figure 1: Geometry Analogy Problem example, which correlates with problems
usually deployed in IQ tests where one needs to solve a question in the format
“figure A is to figure B as figure C is to which of the given answer figures?”

by the extreme optimism in the speeches of the area practitioners. Marvin Minsky
said in a 1970s Life magazine interview – one year after receiving the Turing Award
(See Section 2.2) – that “from 3-8 years we will have a machine with the general
intelligence of a human being”. He would also, in the same interview, claim that
“If were lucky, they might decide to keep us as pets.”. Science Fiction fully adopted
the Artificial Intelligence utopia, with the release of famous movies like the French
“Alphaville” in 1965 by Jean-Luc Godard, and “2001: A Space Odyssey” by Stanley
Kubrick (and screenplay from Arthur C. Clarke) in 1968.

Prior to its first Winter, however, AI had grown into a sizeable academic com-
munity. The First International Joint Conference on Artificial Intelligence (IJCAI),
was then held at Stanford, in 1969. In it, out of the 63 published papers, some
have been influential, such as Stanford’s AI work in a “system capable of interesting
perceptual-motor behavior” Feldman et al. [1969], Nilsson [1969]’s Mobius automa-
tion tool, and Green [1969]’s QA3 computer program that can write other computer
programs and solve practical problems for a simple robot.

It was also before the first winter that Alain Colmerauer and Robert Kowalski
would develop Prolog, now a prominent programming language, which was widely
deployed in the 1970s and 1980s Kowalski [2014], Körner et al. [2022] that also
influenced the field of inductive logic programming and statistical relational learning
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Raedt et al. [2016]. The feature that makes Prolog stand out among other languages
is the fact that it is mostly a declarative language: the program logic is expressed in
terms of logic predicates (relations), represented as facts and rules. A computation
is initiated by running a query over these relations Lloyd [1984]. More recently,
Prolog would become a programming language also used in Watson5, IBM’s question-
answering computer system.

2.1.2 The First AI Winter (1974-1980)

The first AI winter was defined by the hindrances found by researchers and prac-
titioners while trying to develop deployable artificial intelligence technologies. The
biggest challenge is today recognized as the lack of computing power needed by ar-
tificial intelligence algorithms, which simply did not exist at the time. Computers
did not have enough memory to store the overwhelming amount of data required to
build these complex rule-based systems or just did not have enough computational
power to solve problems fast enough.

Minsky and Papert [1969] may have played a part in this process. Criticism of
the “perceptron” (seen as a learning algorithm used in binary classifiers) possibly
has influenced the Artificial Intelligence research agenda on going deeper into neural
networks – highly influential now – and instead focusing on symbolic methods.6 New
results in NP-Completeness established by Cook [1971] and Karp [1972] in the early
1970s could have also played a role in raising skepticism, as results in computational
complexity showed that many problems can only be solved in exponential time. This
posed a risk to AI because it meant that some of the basic problems being solved
by the era models would probably never be used in real-life data, where data is not
represented by just a few data points. The well-known Lighthill report Lighthill
[1973] also played a role, as it was interpreted as being critical of the state of AI
research and its deployed results in the last 25 years leading to its publication in
1972.

2.1.3 The First AI Summer: Knowledge, Reasoning and Expert Systems
(1980-1987)

The external perception of AI research results slowly recovered again in the early
1980s, mainly due to increasing commercial interest in expert systems. At that time,
the symbolic school achieved higher prominence than other fields, and developments

5https://www.ibm.com/watson
6Pollack [1989] reviews Minsky and Papert’s Perceptrons and clarifies several issues around this

influential book.
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in non-monotics and temporal logic have had a lasting influence on the field. Sym-
bolic and logical analyses of time, in particular, led to two Turing Award recognitions:
Amir Pnueli (for introducing the methods of temporal logic in Computer Science)
and Edmund Clarke, Allen Emerson, and Joseph Sifakis for their work on program
verification and model checking, which are based upon the theoretical foundations of
temporal logics. During the 1980s, we also witnessed the creation of the US-centered
National Conference on Artificial Intelligence (AAAI), now a flagship international
conference. Besides that, the funds that were somewhat reduced in the first AI
winter would also be back on the table, with the Japanese government funding AI
research as part of their Fifth Generation Computer Project (FGCP). Prolog had a
central role in the fifth generation project and this led to several developments in
computational logic at the time, as reported in Shapiro [1983].7 Some other coun-
tries would also restart their funding projects, like UK’s Alvey project and DARPA’s
Strategic Computing Initiative.

After the Perceptrons book criticism, connectionism would come back to promi-
nence in the early 1980s. Hopfield [1982] proved that what we today call a “Hopfield
network” could learn in a different way than what it was being done before with per-
ceptrons and simple artificial neural networks. Also, at the same time, Rumelhart
et al. [1986] and the "PDP research group" would show the potential of "Backpropa-
gation", a new method to easily train and "backpropagate" the gradient in (neural)
machine learning models.

2.1.4 The Second AI Winter (1987-2000)

Criticisms over the deployment of expert systems in real-world applications, however,
may have caused the second AI winter (from the late 1980s to the early 2000s), which
ended up reducing AI research funding.

Hans Moravec wrote in Moravec [1988] that “it is comparatively easy to make
computers exhibit adult level performance on intelligence tests or playing checkers,
and difficult or impossible to give them the skills of a one-year-old when it comes to
perception and mobility”. This, with some contributions from Rodney Brooks and
Marvin Minsky, would emphasize what is now known as Moravec’s Paradox: the
idea that reasoning per se does not require much computation power, and can easily
be thought/learned to/by an AI machine, but building an intelligent machine able
to do what is “below conscience level for humans”, i.e. motor or "soft" skills, is what

7Please note that a comprehensive history of symbolic AI and of the impact of logic in Artificial
Intelligence is well beyond the scope of this paper. For a complete analyses of the many contributions
of logic to AI and an understanding of the developments of logic-based AI methods, see Gabbay
et al. [1998, 2014].
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actually required enough computation power that did not yet exist at the time.
However, much happened in the 1990s as regards AI technology and its impacts.

IBM success, represented by Campbell et al. [2002] Deep Blue’s greatest achievement
– finally beating in a match series under tournament rules the then world chess cham-
pion Garry Kasparov in 1997. Previously, in 1994, Tesauro [1994] TD-GAMMON
program would illustrate the potential of reinforcement learning, by creating a self-
teaching backgammon program able to play it at a master-like level. Also, although
self-driving cars are usually considered recent technology, the ground for it was laid
in this era, with Ernst Dickmmans’s “dynamic vision” concept in Dickmanns [1988]
and Thomanek and Dickmanns [1995] work where they had a manned car riding in
a Paris’ 3-lane highway with normal traffic at speeds of up to 130 km/h.

The late 1990s would also see an increase of research in information retrieval
with the World Wide Web’s boom, with research in web and AI-based information
retrieval/extraction tools Freitag [2000].

2.1.5 Recent Advances in the XXI Century (2000-present)

The 2000s present us with wider public recognition of AI, especially if we look at the
commercial impact of Machine Learning (ML), specifically Deep Learning (DL). In
this context, NeurIPS (at the time, NIPS) arose, again, as perhaps the most promi-
nent AI conference, where several influential DL papers have been published, fea-
turing convolutional neural networks, graph neural networks, adversarial networks,
and other (deep) connectionist architectures.

In the early 2000’s we would see AI reaching a broader customer base in most
developed countries. iRobot8 introduced its Roomba Robot Vacuum in 2002. Apple,
Google, Amazon, Microsoft, and Samsung released Siri, Google Assistant, Alexa,
Cortana, and Bixby, respectively, AI-based personal assistants capable of better
understanding natural language and executing a wider variety of tasks. Admittedly,
they did not work that well at the beginning, circa 2010, but these technologies have
improved over the last decade.

Most of the visibility in the area since 2000 is related to Deep Learning, basing
itself in the Artificial Neural Network (ANN) concept, a system that tries to mimic
how our brain cells work.9 It is interesting to observe that already in 1943, in
McCulloch and Pitts [1943], efforts were made to define artificial neural networks.10

8https://www.irobot.com/
9Of course, explaining the technical details of how artificial neural networks are deployed in

machine learning, the many ANN models successfully developed over the last 40/50 years, and
their technical complexities are beyond the scope of this work.

10Perhaps it is curious and relevant to observe that McCulloch and Pitts described how propo-
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However, the immense computing power we have now allowed us to stack several
layers of "neurons" one after the other – thus "deep" neural networks – and compute
the results extremely fast. Also, given the natural parallelism of the process, the
advent of Graphics Processing Units (GPUs) created the necessary hardware that
led to the increasing number of deep models and their applications.

Some of the most noticeable recent achievements base themselves on Genera-
tive Adversarial Networks (GANs). They are a “framework for estimating gen-
erative models via an adversarial process, in which we simultaneously train two
models: a generative model G that captures the data distribution, and a discrimina-
tive model D that estimates the probability that a sample came from the training
data rather than G” Goodfellow et al. [2014]. This framework is responsible for
a wave of photo-realistic procedurally-generated content at the likes of some vi-
ral websites, such as https://this-person-does-not-exist.com/en, https://
thiscatdoesnotexist.com/, http://thiscitydoesnotexist.com/, or the recur-
sive https://thisaidoesnotexist.com/.

GANs are associated with what one colloquially calls “deepfakes” – a mash of
“deep learning” with “fake”. They work by superimposing one’s face with another
face through a machine-learning model. Some more recent deepfakes can also alter
the subject’s voice, improving the experience. These are especially bad from an
ethics standpoint when one imagines that these can be used to fake audio and
images of influential people Hwang [2020]. A thorough review of the area can be
found in Nguyen et al. [2019].

Several researchers have recently received the ACM Turing Award for work re-
lated to AI, (probabilistic) reasoning, causality, machine learning, and deep learning.
In 2010 Leslie Valiant was awarded for his foundational articles dating back to the
’80s and ’90s, with some of his most prominent works associated with AI and Machine
learning having defined foundational concepts in Computational Learning Theory
(specifically, PAC Learning) Valiant [1984]. Judea Pearl won it in the following year,
2011, for his "contributions [...] through the development of a calculus for proba-
bilistic and causal reasoning" with a representation of these contributions illustrated
in Pearl [1988] and Pearl [2009]. Deep learning pioneers were recognized in 2018:
Geoffrey Hinton, Yoshua Bengio, and Yann LeCun are widely recognized for their
work on deep (belief) networks Hinton et al. [2006], image recognition Krizhevsky
et al. [2012], text recognition and convolutional neural networks Lecun et al. [1998],
LeCun et al. [1989], GANs Goodfellow et al. [2014] and neural translation Bahdanau
et al. [2014] among many relevant contributions. However, it is essential to recognize

sitional logic inference could be described via neural networks. At that time, AI was not an
established field, and thus no division among what came to be known as the connectionist and
symbolic schools of AI.
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that back in the 1980s, the PDP research group played a crucial role in showing the
effectiveness of neural learning through backpropagation Rumelhart et al. [1985].

As regards the impact of Deep Learning reported in the media, in particular in
the growing industry of entertainment and games, Google’s AlphaGo won a series of
matches against the Chinese Go grandmaster Ke Jie in 201711, after having already
won 4 out of 5 matches against Go player Lee Sedol in 201612. Also in 2017, OpenAI’s
Dota 2 bot13 won a 1v1 demonstration match against the Ukrainian pro player
Dendi, a noticeable demonstration of power in a game with imperfect information,
with almost infinite possible future states. Later, in 2019, a new version of the
same bot, called OpenAI Five, won back-to-back 5v5 games against the then-world-
champion Dota team, OG14. Also in 2019 DeepMind’s AlphaStar bot reaches the
most significant possible tier in Starcraft II15.

In recent years another sign of the impressive growth in AI research is the in-
creasing number of submitted (and published) papers in the three biggest AI-related
venues. Figure 6 shows that we have over 1500+ papers at these conferences in re-
cent years. For exact numbers, please check Table 8. By checking the figure above, it
is also important to notice how Computer Vision arguably became the most visible
of the related areas, with CVPR having the biggest number of papers in their pro-
ceedings, thanks to the boom in applications for image recognition and self-driving
cars. We give more details of AI-related publications in Section 4.

2.1.6 Going Beyond Deep Learning: The Recent Debate on Robust and
Neurosymbolic AI

The impacts of AI go beyond the results achieved by deep learning. Recently, the
AI community witnessed a debate on how to build technologies that are explain-
able, interpretable, ethical, and trustworthy Rossi and Mattei [2019]. These led to
increased attention to other fields that contribute to the challenge of constructing
robust AI technologies. In particular, research that combines learning and reasoning
in a principled way, for instance, neurosymbolic AI and hybrid models, have been
the subject of growing research interest in academia and industry d’Avila Garcez
et al. [2009], Marcus [2020], Riegel et al. [2020], Besold et al. [2022]. Further, in a re-
cent Communications of the ACM article Hochreiter [2022], Sepp Hochreiter - deep
learning pioneer and proponent of the Long Short-Term Memories (LSTM), one of

11https://wired.com/2017/05/googles-alphago-continues-dominance-second-win-china/
12https://www.bbc.co.uk/news/technology-35797102
13https://openai.com/blog/dota-2/
14https://openai.com/five/
15https://www.ft.com/content/d659b056-fb28-11e9-a354-36acbbb0d9b6
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the most deployed deep learning models - reflects upon a broader AI that "is a so-
phisticated and adaptive system, which successfully performs any cognitive task by
virtue of its sensory perception, previous experience, and learned skill." Hochreiter
states that graph neural networks (GNNs) can play a key role in building neurosym-
bolic AI technologies: "GNNs are a very promising research direction as they operate
on graph structures, where nodes and edges are associated with labels and charac-
teristics. GNNs are the predominant models of neural-symbolic computing Lamb
et al. [2020]." Further, Hochreiter defends that "the most promising approach to a
broad AI is a neuro-symbolic AI, that is, a bilateral AI that combines methods from
symbolic and sub-symbolic AI" Hochreiter [2022]. He also states that contributions
to neurosymbolic AI can come from Europe, which "has strong research groups in
both symbolic and sub-symbolic AI, therefore has the unprecedented opportunity
to make a fundamental contribution to the next level of AIa broad AI" Hochreiter
[2022]. Although much is yet to be done and shown by AI researchers and profes-
sionals, it is clear that the field has grown in stature over the last decades. Also,
testimony to the impact of AI is the prominence and growth in the areas of AI
ethics, policies, and regulations, as well as annual AI global impact analyses made
by several leading research organizations Mishra et al. [2020], Zhang et al. [2021].

2.2 The Association for Computing Machinery Alan M. Turing
Award

The annual ACM A.M. Turing Award is regarded as the foremost recognition in com-
puter science. It is bestowed by the Association for Computing Machinery (ACM)
to people with outstanding and lasting contributions to computer science.

The award was introduced in 1966, named after the British Mathematician
and Computer Science pioneer Alan M. Turing. Turing influenced several different
branches of science, formalizing the concept of computation that led to the concept
of a universal computing machine (today’s "Turing Machines") through influential
publications Turing [1936]. Turing is also considered by most as a modern AI pio-
neer after having designed the Turing test to decide if a machine is “intelligent” or
not Turing [1950]. He is also known for his work in the Second World War, helping
the British to decode the Nazi German Enigma machine with his Bombe machines,
named after the Polish bomba kryptologiczna decoding machine. Since 2014, how-
ever, the winners receive US$1 million, financed by Google CACM [2014] for their
exceptional achievement.16

The prize has been awarded to 62 researchers in diverse areas of computer science
research - Table 11 lists every Turing Award winner and their nationalities. 37% of

16https://amturing.acm.org
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the winners were not born in the United States (some places of birth are not listed
in the table) - and only 27%17 of them credit a country other than the United States
as the country where they did their main contribution. The first woman to receive
the prize, Frances “Fran” Allen, received the prize for her work on the theory and
practice of optimizing compiler techniques only in 2006.

For our AI evolution analyses, the relevant Turing Award Winners are those who
had important contributions to this field. The Turing Award has recognized since
1966 seven researchers for their contributions to AI. The following information is
provided by ACM at https://amturing.acm.org/byyear.cfm:

• Marvin Minsky (1969): For his central role in creating, shaping, promoting,
and advancing the field of Artificial Intelligence;18

• John McCarthy (1971): Dr. McCarthy’s lecture "The Present State of Re-
search on Artificial Intelligence" is a topic that covers the area in which he has
achieved considerable recognition for his work;19

• Herbert Simon and Allen Newell (1975): In joint scientific efforts extend-
ing over twenty years, initially in collaboration with J. C. Shaw at the RAND
Corporation, and subsequentially with numerous faculty and student collegues
at Carnegie-Mellon University, they made basic contributions to artificial in-
telligence, the psychology of human cognition, and list processing;2021.

• Edward Feigenbaum and Raj Reddy (1994): For pioneering the design
and construction of large-scale artificial intelligence systems, demonstrating the
practical importance and potential commercial impact of artificial intelligence
technology;2223

• Leslie Valiant (2010): For transformative contributions to the theory of com-
putation, including the theory of probably approximately correct (PAC) learn-
ing, the complexity of enumeration and of algebraic computation, and the the-
ory of parallel and distributed computing;24

17See every author page in their ACM Turing Award website: https://amturing.acm.org/
byyear.cfm

18https://amturing.acm.org/award_winners/minsky_7440781.cfm
19https://amturing.acm.org/award_winners/mccarthy_1118322.cfm
20https://amturing.acm.org/award_winners/simon_1031467.cfm
21https://amturing.acm.org/award_winners/newell_3167755.cfm
22https://amturing.acm.org/award_winners/feigenbaum_4167235.cfm
23https://amturing.acm.org/award_winners/reddy_9634208.cfm
24https://amturing.acm.org/award_winners/valiant_2612174.cfm
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• Judea Pearl (2011): For fundamental contributions to artificial intelligence
through the development of a calculus for probabilistic and causal reasoning;25

• Geoffrey Hinton, Yann LeCun, and Yoshua Bengio (2018): For con-
ceptual and engineering breakthroughs that have made deep neural networks a
critical component of computing.262728

2.3 Computer Science and AI Conferences
Today, there are thousands of conferences in Computer Science. In our analyses,
we obviously had to narrow them down to the ones considered the flagship venues
in order to properly analyse the field at its core. CSRankings is a metrics-based
ranking of top computer science research institutions29, which identifies the works
from each institution for each venue. They comprise a small set of conferences
considered as the top ones in the subfields of computing: In this work, we will only
focus on institutions available in the CSRankings "AI" category, which are briefly
described below. Some conferences are acronyms borrowed from namesake scientific
associations - such as AAAI.

2.3.1 IJCAI

The International Joint Conferences on Artificial Intelligence (IJCAI) was first held
in California in 1969, being the first comprehensive AI-related conference. The
conference was held in odd-numbered years, but since 2016 it has happened annually.
It has already been held in 15 different countries, while the 2 most COVID-19
pandemic years were virtually held in Japan and Canada. The next editions will
be held in Austria (2022), South Africa (2023), and China (2024), increasing the
number of countries that hosted the conference to 17 – China has already hosted
it before. Similarly to AAAI, IJCAI is a comprehensive AI conference, with some
publications ranging from the philosophy of AI to symbolic AI, and machine learning
and applications. IJCAI has over the years published important papers from Turing
Award winners, e.g. Avin et al. [2005], Feigenbaum [1977], McCarthy [1977], Valiant
[1985], Verma et al. [2019].

25https://amturing.acm.org/award_winners/pearl_2658896.cfm
26https://amturing.acm.org/award_winners/hinton_4791679.cfm
27https://amturing.acm.org/award_winners/lecun_6017366.cfm
28https://amturing.acm.org/award_winners/bengio_3406375.cfm
29http://csrankings.org
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2.3.2 AAAI

The Association for the Advancement of Artificial Intelligence (AAAI – pronounced
“Triple A I”) was founded in 1979 as the American Association for Artificial Intelli-
gence. This association is responsible for promoting some prominent AI conferences
since 1980, including The AAAI Conference on Artificial Intelligence (formerly the
National Conference on AI). The conference used to be held once every one or two
years (depending on whether IJCAI was organized in North America or not). AAAI
has been held yearly since 2010. It is worthy of note that although the conference
was renamed, it has actually only been held in North America (and remotely in
2021 due to the COVID-19 pandemic). The conference covers AI comprehensively
as its (older) sister conference IJCAI. Similarly to IJCAI, AAAI has published sev-
eral papers from influential researchers and Turing laureates, see e.g. Hinton [2000],
de Mori et al. [1988], Pearl [1982], Valiant [2006].

2.3.3 NeurIPS (formerly NIPS)

The Conference and Workshop on Neural Information Processing Systems (NeurIPS)
is a machine learning and computational neuroscience conference held every Decem-
ber since 1987. It has been held in the USA, Canada, and Spain. NeurIPS published
hundreds of influential papers over the years on several learning models and architec-
tures ranging from Long Short-Term Memories Hochreiter and Schmidhuber [1996],
to Transformer architectures Vaswani et al. [2017]. The Conference Board decided
to change the meeting name to NeurIPS 30 in 2018.

CSRankings defines it as a “Machine Learning & Data Mining” conference, pub-
lishing important papers, recently featuring technologies such as GPT-3 Brown et al.
[2020] and PyTorch’s technical papers Paszke et al. [2019], which have 31 and 21
authors, respectively. The sheer size of the venue is noticeable, with 2,334 papers ac-
cepted in 2021, outnumbering every other conference studied in this work. The "most
influential papers in the recent years" snippet, is due to https://www.paperdigest.
org/.

2.3.4 CVPR

The Conference on Computer Vision and Pattern Recognition (CVPR) is an annual
conference on Computer Vision and Pattern Recognition, regarded as one of the
most important conferences in its field, with 1,294 accepted papers in 2019. It will
in 2023, for the first time, be organized outside the United States in Vancouver,

30https://www.nature.com/articles/d41586-018-07476-w
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Canada. It was first held in 1983 and has since 1985 been sponsored by IEEE,
and since 2012 by the Computer Vision Foundation, responsible for providing open
access to every paper published in the conference. CVPR is a flagship Computer
Vision venue and witnessed groundbreaking work in the past including Siamese
Representation Learning Chen and He [2020], GANs Karras et al. [2018], and Dual
Attention Networks Fu et al. [2018]. Turing award laureate Yann LeCun published
in this conference on several occasions, e.g. Boureau et al. [2010], LeCun et al.
[2004].

2.3.5 ECCV

ECCV stands for European Conference on Computer Vision, being CVPR’s Euro-
pean arm – even though ECCV 2022 is going to be held in Tel Aviv - Israel. It
is held biennially on even-numbered years since 1990, when it was held in Antibes,
France. Even though it is considered CVPR’s small sister, it had 1,360 accepted
papers in 2019, also heavily focusing on Computer Vision with some publications
of note such as RAFT Teed and Deng [2020], a model able to segment and predict
image depth with high accuracy.

2.3.6 ICCV

Similar to ECCV, the International Conference on Computer Vision is CVPR’s
International arm, being held every odd-numbered year since 1987, when it was
held in London, United Kingdom, been held in 14 other countries ever since. 1,077
papers made the cut in 2019, such as Shaham et al. [2019] who won the 2019’s best
paper award.

2.3.7 ACL

ACL is the Association for Computational Linguistics’s conference held yearly since
2002, having surprisingly been held in 15 different countries in the last 20 years. The
website announces ACL as “the premier international scientific and professional so-
ciety for people working on computational problems involving human language, a
field often referred to as either computational linguistics or natural language process-
ing (NLP). The association was founded in 1962, originally named the Association
for Machine Translation and Computational Linguistics (AMTCL), and became the
ACL in 1968.” Commonly referred to as an NLP-related conference, it has some
highly-cited work in recent years such as Strubell et al. [2019]’s work in investigat-
ing the environmental effects of creating large language models.
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2.3.8 NAACL

NAACL is the conference held by the North American Chapter of the Association
for Computational Linguistics, therefore also referred to as an NLP conference. The
conference is actually named NAACL-HLT (or HLT-NAACL, sometimes) – North
American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies. It has been held since 2003, and it was co-located with ACL on
the occasions ACL happened in North America. One of the most cited papers on
the use of transformers in recent years was published there, the BERT model Devlin
et al. [2018].

2.3.9 EMNLP

EMNLP stands for Empirical Methods in Natural Language Processing. The confer-
ence started in 1996 in the US based on an earlier conference series called Workshop
on Very Large Corpora (WVLC) and has been held yearly since then. The recent
conferences are marked by works trying to improve the BERT model Devlin et al.
[2018] already explained above, such as Jiao et al. [2019], Feng et al. [2020] and
Beltagy et al. [2019].

2.3.10 ICML

ICML is the International Conference on Machine Learning, a leading international
academic conference focused on machine learning. The conference is held yearly
since 1987, with the first one held in 1980 in Pittsburg, USA. The first conferences
were all held in the United States, but the 9th conference, in 1992, was held in
Aberdeen, Scotland. Since then it has been held in 10 other countries, and twice
virtually because of the COVID-19 pandemic. It contains some seminal papers
in Machine Learning from Pascanu et al. and Ioffe and Szegedy, and some more
recent excellent research like Zhang et al. [2018] and Chen et al. [2020]. Besides
Bengio’s aforementioned seminal paper, Turing Award laureate Geoffrey Hinton also
published important papers on ICML e.g. Nair and Hinton [2010].

2.3.11 KDD

The SIGKDD Conference on Knowledge Discovery and Data Mining is an annual
conference hosted by ACM, which had its first conference in 1989’s Detroit. Al-
though it is usually held in the United States, it has already been hosted by a few
other countries, namely Canada, China, France, and the United Kingdom. It is the
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most important conference encompassing the Knowledge Discovery and Data Min-
ing field, with 394 accepted papers in 2021: a smaller number if we compare with
the other conferences we investigate in this paper. The conference recent years have
seen a significant presence of AI-related research, mostly defined by Graph Neural
Networks (GNNs), with works from Qiu et al., Wu et al., Jin et al., and Liu et al.,
all of them accepted in 2020’s SIGKDD. It is interesting to note how many of the
authors of such influential papers in the 2020 conference are from China; perhaps a
trend – see some insights about it in Section 4.6.

2.3.12 SIGIR

SIGIR stands for Special Interest Group on Information Retrieval, an ACM group.
It has its own annual conference that started in 1978 and has happened every sin-
gle year since then. It is considered to be the most important conference in the
Information Retrieval (how to acquire useful and organized information from raw,
unorganized, and unstructured data) area. After 43 editions, it has been hosted in
21 different countries. It used to alternate between the USA and a different country,
but this rule does not hold anymore, with only one conference in the US in the last
8 years. Many papers in recent years have tackled recommender systems such as He
et al., Wu et al., and Wang et al..

2.3.13 WWW

The Web Conference (WWW) is the top conference in the field. It "brings to-
gether key researchers, innovators, decision-makers, technologists, businesses, and
standards bodies working to shape the Web"31. It is a yearly event that started at
CERN in Geneva, Switzerland, in 1994. The conference heavily focuses on Semantic
web and Data mining with some important results in recommender systems as well.

2.4 A Brief on Graphs and Centrality Measures
Next, we briefly introduce the concepts of graph theory used in this paper. Sec-
tions 2.4.2 to 2.4.5 describe the most widely used graph centralities from the litera-
ture. Then in Section 2.4.6 we go over some other centrality measures for complete-
ness’ sake.

A graph G is represented by a tuple G = (V, E), where V is a set of nodes
(vertexes) and E a set of edges eu,v connecting nodes u to v where u, v ∈ V . These
edges can be directed or undirected – thus making us able to differentiate between

31https://dl.acm.org/conference/www
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directed and undirected graphs. In the directed case of eu,v we call u as being the
source node and v the destination node. We will always use n to represent the
number of nodes in a graph, and m to represent the number of edges in it. Also, a
pair of nodes (u, v) might have more than one edge connecting them: in this case, we
call the graph a multigraph. Similarly, these edges might have a weight w making the
graph a weighted graph. Furthermore, we can also have labeled graphs, where nodes
and edges can be of different types. These are useful in knowledge representation
systems, such as the graph built in Section 3.3.4. We call p = u1, u2, ..., up a path
between u1 and up in G if ∃ eui,ui+1 ∀ 1 <= i <= p − 1. Basically, we have a path
if we can go from node u1 to up through a sequence of connected edges. We can
also define the shortest path between a pair of nodes (u, v) as the path with the
minimum possible quantity of intermediate nodes – note, however, that we can have
more than one shortest path between any pair of nodes (u, v).

2.4.1 Centrality Measures

The interest in Graph centrality measures dates back to the 1940s, but it was more
formally incorporated into graph theory in the 1970s Freeman [1978]. A fundamental
motivation for the study of centrality is the belief (or relevance) that node position
(that can represent a person’s position) in a network impacts their access to infor-
mation, status, power, prestige, and influence Grando et al. [2019], Wan et al. [2021].
Therefore, throughout this work when we want to identify the above concepts we
will use graph centralities for the different networks we built. Grando et al. serves
as a tutorial and survey for those interested in applying machine learning to this
field.

2.4.2 Degree Centrality

We represent the degree of a node u as ku meaning the number of other nodes
connected to this node. In a directed graph we can further split this metric into two:
kin

u is the in-degree, representing the number of nodes v ∈ V that have an edge ev,u

with v as source and u as destination (i.e. number of nodes with an edge pointing
to u); the opposite metric kout

u is the out-degree, representing the number of nodes
v ∈ V that have an edge Eu,v. Therefore, it is possible to extend this metric to a
centrality called Degree Centrality defined as:

CDg(u) = ku

n− 1 , (1)

where n represents the number of nodes V in the graph G.
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Also, in the same way we have in-degree and out-degree metrics, we can ex-
tend Equation 1 and define In-Degree Centrality and Out-Degree Centrality,
respectively:

CDgin(u) = kin
u

n− 1 (2)

CDgout(u) = kout
u

n− 1 (3)

These degree metrics are used to identify how well a node is directly connected
to other nodes, without considering the influence a node can pass to its neighbors.

2.4.3 Betweenness Centrality

The Betweenness Centrality was defined in Freeman [1977], and its measure of
the importance of a node u is how many shortest paths in the graph go through u.
It is defined as

CB(u) =
∑

s ̸=u̸=t
∂s,t(u)

∂s,t

(n− 1)(n− 2)/2 ∀s, u, t ∈ V, ∃ es,t (4)

where ∂s,t(u) is the number of shortest paths between s and t that go through
u, and ∂s,t is simply the number of shortest paths between s and t. Note that we
are only ever counting paths between the pair (s, t) if there is a path between (s, t).

Betweenness is related to the notion of connectivity, where a node with a bigger
betweenness actually means that it is a point of connection between several nodes. In
a graph with a single connected component, a node can have the highest betweenness
if it works as a bridge between two individually disconnected components. It is
regarded as a measure of a nodes control over communication flow Freeman [1978].

2.4.4 Closeness Centrality

Closeness Centrality was created in Sabidussi [1966] representing the closeness of
a node with every other node in the graph. It is the inverse of the farness which in
turn is the sum of distances with all other nodes Saxena and Iyengar [2020]. It is
defined by
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CC(u) = n− 1∑
v ̸=u d(u, v) ∀u, v ∈ V (5)

where d(u, v) is the distance between the nodes u and v. This distance is simply
the number of edges in the shortest path p between the pair (u, v) if the graph
is unweighted, while it is the sum of every edge in the path in case the graph is
unweighted. Since distance is not defined between every pair of nodes in disconnected
graphs (a graph where not every node can be reached from another node) we cannot
compute closeness for disconnected graphs. A node with a higher closeness indicates
that the node is in the middle of a hub of other nodes. It also means that a node with
big closeness values is "closer", on average, to the other nodes, hence closeness. It
represents the nodes level of communication independence Freeman [1978], Cardente
[2012].

2.4.5 PageRank Centrailty

Pagerank is a global centrality measure that needs the overall network to measure
the importance of one node. It measures the importance of one node based on the
importance of its neighbors. Saxena and Iyengar [2020]. It was developed by Brin
and Page when they created Google, and it is the underlying method behind their
search engine. To understand Pagerank, we need to understand that its main idea is
to understand how important a web page is in the middle of all the other millions of
pages on the World Wide Web. The main idea behind it is that we are considering
a web page important if other important web pages link to it.

Think about it as if we had a web crawler randomly exploring the web and
increasing a counter every time we enter into a specific page. Then, when you are
on a page you either have the option to click on one of the links on the page or go
to a random page on the web with probability 0 <= q <= 1 – this is useful both
to model real-life where we simply go to random websites and also to mimic pages
without any out link. The usual value for q, also called teleportation or damping
factor, is 0.15, as defined in the original paper. Therefore, with this in mind, we can
define Pagerank as

CP R(u) = q

n
+ (1− q)

∑

v

CP R(v)
kout

v

∃eu,v ∈ E (6)

The equation above illustrates how this process is iterative because we depend
on the Pagerank of every neighbor to be able to compute our own Pagerank. The
process usually converges or can be stopped after a certain number of iterations.
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2.4.6 Other centralities

There are other useful centralities present in the literature. They were not used in
our work, but they would ideally be used in future work using the dataset created.
Recent work has focused not only on the application of machine learning in learning
centrality measures of complex graphs Grando et al. [2019], but also on analyzing the
own application of Graph Neural Networks capable of multitask learning trained on
the relational problem of estimating network centrality measures Avelar et al. [2019].
In summary, the reader interested on centrality measures can refer to Grando et al.
[2019], Saxena and Iyengar [2020].

• Semi-Local centrality Chen et al. [2012] defines a metric similar to the
degree centrality where we expand it to 2 levels of neighbours.

CSL(u) =
∑

v∈N(u)

∑

w∈N(v)
d2(w), (7)

where d2(w) is the number of neighbors plus the number of neighbors for every
neighbor of w – basically how many nodes you can reach in two steps.

• Volume Centrality Wehmuth and Ziviani [2013] is a kind of generalization
from the above centrality parameterizing how far a node influence can reach
and is defined by

CV (u) =
∑

v∈Ñh(u)
kv, (8)

where Nh(u) is the set of neighbors within a distance h of u, and Ñh(u) =
Nh(u)∪ {u}. Wehmuth and Ziviani [2013] demonstrated that h = 2 results in
a good trade-off of identifying nodes with important relations and the cost of
computing this relationship.

• H-index Hirsch [2005] is a well-known statistic in the research world, being
exhibited as a statistic in most research-aggregator portals such as Google
Scholar and DBLP. Hirsch [2005] defined that h is the highest integer value
for which the author has h papers with at least h citations.
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• Coreness Centrality Kitsak et al. [2010] represents the idea that the impor-
tant nodes are at the core of a graph. It can be determined by the process of
assigning each node an index (or a positive integer) value derived from the k-
shell decomposition. The decomposition and assignment are as follows: Nodes
with degree k= 1 are successively removed from the network until all remain-
ing nodes have a degree strictly greater than 1. All the removed nodes at this
stage are assigned to be part of the kshell of the network with index kS= 1
or the 1-shell. This is repeated with the increment of kto assign each node
to distinct k-shellsWan et al. [2021]. See Figure 2 to see an example of the
definition of k-shells. Then, we can mathematically define this centrality as

Ck(u) = max{k|u ∈ Hk ⊂ G}, (9)

where Hk is the maximal subgraph of G with all nodes having a degree of at
least k in HWan et al. [2021].

Source: Tanase et al. [2015]

Figure 2: Example of k-shell assignment

Some more complex centralities mostly use the fact that we can define a graph
by its adjacency matrix A and its corresponding eigenvalues and eigenvectors. Since
we are not carrying out a comprehensive review or using them, we will not describe
them.

2.5 Related Work
One of the main reasons motivating this work is the fact that the history of Artificial
Intelligence and its dynamic evolution has not been researched in depth, at least with
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respect to our methodology: Xu et al. [2019] focused specifically on “explainable
AI” evolution (or de-evolution, in this case); Oke [2008] does deepen their work in
several different AI areas, with a review of each area, but does not go back in history
further than the mid-1990s. There are also similar approaches to investigating author
citation/collaboration networks such as Ding et al. [2010], Guns et al. [2011], Abbasi
et al. [2012], and Wu et al. [2019], mostly focusing on the betweenness centrality.
von Wartburg et al. [2005] uses closeness to analyse patent networks. Also, Krebs
[2002] shows how centrality measures can be used to identify prominent actors from
the 2001 Twin Tower terrorist attackers network.

Regarding the authors’ country affiliation in papers, Grubbs et al. [2019] inves-
tigated coauthor country affiliation in Health research funded by the US National
Institute of Health; Michalska-Smith et al. [2014] goes further by trying to correlate
country of affiliation with the acceptance rate in journals and conferences; Yu et al.
[2021] studied how one can infer the country of affiliation of a paper from its data
in WoS32; Hottenrott et al. [2019] investigates the rise on multi-country affiliations
in articles as well.

3 Methodology
3.1 Underlying Dataset
The most extensive public bibliography of computer science publications is proba-
bly the DBLP Database DBLP [2019], available at https://dblp.uni-trier.de/.
Recently (in February 2022), it surpassed the 6 million publications mark (See Fig-
ure 3), containing works from almost 3 million different authors. Figure 4 shows
how large is the increase in publications in the recent years, per DBLP’s statistics
page33. They provide a downloadable 664MB GZipped version of their dataset
in XML format34. Recently (after this work had already been started and was
past the dataset-choosing process), DBLP has also released its dataset in RDF for-
mat35. However, because their dataset contains duplicated authors and/or incor-
rectly merged authors, we opted to not use their dataset directly. Instead, in our
work, we used Arnet’s Tang et al. [2008] V1136 paper citation network, which dates
from May 2019. It contains 4,107,340 papers from DBLP, ACM, MAG (Microsoft
Academic Graph), and other sources, including 36,624,464 citation relationships.

32https://www.webofknowledge.com/
33https://dblp.org/statistics/index.html
34https://dblp.org/xml/release/
35https://blog.dblp.org/2022/03/02/dblp-in-rdf/
36https://lfs.aminer.cn/misc/dblp.v11.zip
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Source: https://blog.dblp.org/2022/02/22/6-million-publications/

Figure 3: Excerpt of a DBLP poster acknowledging their 6 million papers mark

This dataset contains more information than DBLP’s, as they better worked on
author disambiguation (merging authors DBLP considered to be different ones, or
separating authors DBLP considered to be the same person), providing us the ability
to generate truther collaboration/citation networks.

It is important to clarify why we are using Arnet’s v11 dataset instead of one
of their newer datasets, namely v12 and v13 – the latter, from May 2021, contains
5,354,309 papers and 48,227,950 citation relationships, an increase of 30.3% com-
pared to v11. First, and foremost, this work started in 2019, when versions v12 and
v13 were not available yet. Also, when these newer datasets were made available,
we did try to use both of them, but we faced some problems that prompted us back
to the v11 dataset:

1. v12’s and v13’s data format is different from v11’s. The format of v12 and v13
is a fully-fledged 11GB XML file, which required us to write a new Python
library to convert from XML to JSON (our storage method) without loading
the whole file into memory by streaming-converting it (see Section H.1). Be-
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Source: https://dblp.org/statistics/publicationsperyear.html

Figure 4: DBLP papers per year, with a detailed view of 2021.

sides the file being harder to read and handle, the new format also changed the
IDs from an integer to a UUID-based value, causing us to rewrite the whole
logic that was able to detect papers from the main AI conferences based on
their past integer values.

2. There are fewer papers from the AI conferences of interest for this work. Even
though we have 30% more papers in the most recent version, after carefully
finding out which are the new IDs for the conferences, we could only find 58490
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papers out of the 89102 ( 65%) present on version v11. As a smoke test, we did
reduce our test only for the main AI conferences (AAAI, NeurIPS, and IJCAI):
we could manually count 42082 papers in these 3 conferences – and this is a
lower bound because we could not find the count of papers in some years for
AAAI and IJCAI; v11 and v13 have 41414 and 20371 of them, respectively.
We also tried finding the AI Conferences by name instead of IDs (at cost of
some false positives) but it did not work, also finding only 20929 papers. This
shows how we have twice the data in v11 compared to v13 instead of 30% more
in v13 as expected.

3. Missing data in the most recent years. Even though v13 should have data
until 2021, there are only a few hundred papers for the main AI conferences
in 2019, 2020, and 2021, while in reality there should be 12559 of them.

All of the data compiled to build the points above can be seen in Table 1, and
Figure 8. Table 8 has the raw data used to build Figure 8, where “?” data points were
considered to be 0 for the sake of simplicity. An interesting statistical information
one might get from Figure 5 is the fact that even though IJCAI used to happen only
in odd-numbered years, even-numbered years do not have any noticeable NeurIPS
and AAAI paper acceptance rates increase.

Section 4.6.1 shows some charts where it can be seen how degraded our data
looks if we had used v13 instead of v11.

AI Conferences Total
Manual Count 42082
v11 41414
v13 detecting conferences by ID 20371
v13 detecting conferences by name 20929

Table 1: Comparison of paper counts with different methods

Arnet’s v11 format is a variation of a JSON file with some improvements to make
it easier to load the data in memory without having to load the whole file. Every
line is a valid JSON object, requiring us to simply stream the file, iterating over
every line, parsing the JSON file, keeping only the required information in memory,
and immediately send the JSON file to be garbage collected, using no more than
8kb of memory to read the entire file.

Every JSON object in this file follows the structure defined in Table 2. We,
then, for most of the work, keep only the fields tagged with an asterisk (∗). Also,
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Figure 5: Manual paper count per year in AAAI, NeurIPS and IJCAI

a question mark symbol (?) indicates the field is optional and is, sometimes, not
present in the data provided by Arnet. Figure 43 shows an example of such JSON
entry, depicting Glorot and Bengio [2010]’s representation in the dataset.

“*” indicates the field was used in this work
“?” indicates the field is optional

Field Name Type Description
id* string Unique identifier for the paper
title* string Paper title
authors* Author[] (See Table 5) List of every single author
venue* Venue (See Table 6) Object with data about the venue
year* integer Year of publication
n_citation integer Citation number
page_start? string Paper start page in the Proceedings/Book/Journal
page_end? string Paper end page in the Proceedings/Book/Journal
doc_type string Place of publication
publisher? string Book/Journal publisher
volume? string Book volume
issue? string Journal issue
references* string[] List of ids this paper references
indexed_abstract* IndexedAbstract (See Table 7) Inverted index holding data about the paper abstract

Table 2: Data structure for a single entry in the Arnet JSON dataset

Figure 6 shows some raw insights about this dataset, using the conferences de-
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fined in Section 2.3. It shows that all conferences have seen an increasing trend in
the number of papers in the last few years, especially CVPR and AAAI.
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Figure 6: Number of papers per conference per year.

3.2 Artifacts
The code used to download the data, parse the dataset, and generate the graphs,
analyses, and charts present in this work is available at https://github.com/
rafaeelaudibert/TCC/tree/v11 in Github. The code for this work is in branch v11.
The master branch contains the code used when we were trying to parse Arnet’s v13
dataset, which did not work out as explained in the previous section. Everything
data analysis was built using Python, with the help of some open-source third-party
libraries (See Table 9) available in PyPi. For the most complex plots, Python was
not the right tool for the job, so they were built using R and its built-in counterparts
for matplotlib, numpy and seaborn. Unfortunately, the code for these graphs is not
available anymore because it was lost during a disk formatting procedure.

3.2.1 Graph Datasets

Throughout this work, we assembled 5 new datasets, modeled in a graph structure,
which are briefly described below. A thorough explanation can be found in each
respective section below.

Author Citation Graph (ACi) Directed multigraph, where every author is a
node, with edges representing citations.
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Author Collaboration Graph (ACo) Undirected graph, where every author is
a node, with edges representing co-authorship

Paper Citation Graph (PC) Directed graph, where every paper is a node, with
edges presenting citations.

Author-Paper Citation Graph (APC) Directed labeled graph, where nodes
can be an author or a paper, and we can have edges between papers (cita-
tion) or between authors and papers (authorship).

Countries Citation Graph (CC) Directed multigraph, where each node repre-
sents a country of origin, and edges represent citations.

As our work is focused on the flagship AI and adjacent fields conferences, we
filtered their dataset to contain only the papers published in these conferences to
build ours. The chosen conferences were based on CSRankings CSRankings [2019]
top-ranked AI conferences, which include the following fields: Artificial Intelligence,
Computer Vision, Machine Learning & Data Mining, Natural Language Processing,
and The Web & Information Retrieval. For each of the graphs explained above,
we calculated the following exact centralities: degree (in and out) (Section 2.4.2),
betweenness (Section 2.4.3), closeness (Section 2.4.4), and PageRank (Section 2.4.5).

For our work, we created the cumulative graph for each year from 1969 (the
first IJCAI conference) until 2019, i.e. the cumulative graph for the year 2000
contains all the papers before and including 2000. A graph for each individual
year from 1969 to 2019 was also created, to help with the analysis presented in
the sections below. The cumulative graphs containing all the data, including ex-
act centralities, were made available at https://github.com/rafaeelaudibert/
conferences_insights_database. The cumulative graphs for the entire Authors
Citation dataset, not restricting it by conference, were also made available in the
same repository, without computing the centralities. We can find the statistics for
the size of each graph dataset in Table 3.

3.3 Types of Graphs

The graphs were built in Python using networkx Hagberg et al. [2008] which pro-
vides an easy interface to build various types of graphs, including multigraphs with
directed edges, which we routinely use.

All graphs below are based on the data shown in Figure 7.
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Graph Nodes Edges

CS Conferences

ACi 104179 5654596
ACo 104179 621644
PC 89102 486373
APC 193281 759386
CC 93 4776703

Full DBLP ACi 3655049 210362459

Table 3: Graph Statistics for the cumulative data

3.3.1 Author Citation Graph

This is a directed multi-graph, where every author is a node. An edge eu,v represents
a paper from author u having a citing to a paper by author v. As author u can
have more than one paper citing a paper by author v there might be more than one
edge between the nodes, therefore we have a multi-graph. Also, authors might cite
another paper from themselves, therefore we might have self-loops.37

Because of the way our data is organized, when we are iterating over the papers
we have only the id of the papers that were referenced, but not the ID of the authors
in the other papers. So, we first create a hash table with keys as the paper IDs and
the value as the authors of that paper. We use this as a lookup table to identify
which authors should be connected when we are iterating over the papers. See
Algorithm 2 to see how this works when building the graph.

The above means that we first need to iterate over all papers and create this
huge lookup table. In practice, because you cannot cite papers that have not yet
been published, we split the papers into buckets by the year they were published and
iterate in ascending years, which will make us keep only the “past” papers in this
hash table. Algorithm 1 shows the year bucket-splitting algorithm and Algorithm 2
shows how we build this graph, with this more efficient hash table where at any year
y we only have papers from years i <= y in the hash table. Although at the end of
the process, the table has the same size as it would have if we had built it from the
beginning, this method increases local consistency improving cache results when we
are iterating over the first years making this process more efficient.

Note that we might not have data for the cited paper because we are filtering
the data out for only a few conferences. In this case, we simply do not include this
paper.

37The most recent version of the code for this graph generation process can be found
in https://github.com/rafaeelaudibert/conferences_insights/blob/v11/graph_generation/
generate_authors_citation_graph.py.
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Figure 7: Sample data for graphs

Figure 8 shows an example of such a graph, given the input data from Figure 7.

3.3.2 Author Collaboration Graph

This is an undirected graph, where every author is a node. In this graph, an edge
eu,v represents that u and v worked together in at least one paper.38

38The most recent version of the code for this graph generation can be found
in https://github.com/rafaeelaudibert/conferences_insights/blob/v11/graph_generation/
generate_collaboration_graph.py.
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Algorithm 1 Bucket-splitting paper per year
Require: L ▷ List of papers such as the example in Figure 7

papers_per_year ← empty hashtable

for year = 1969...2018 do
papers_per_year[year] ← empty list

end for

for paper ∈ L do
papers_per_year[paper.year] ≪ paper ▷ ≪ means append

end for

return papers_per_year

Graph generated given the input data from Figure 7

Figure 8: Example of author citation graph

This graph is easier to generate compared to the Author Citation Graph (Sec-
tion 3.3.1) because data is local and we do not need to iterate twice over the data
to generate a lookup table: we can simply iterate over all papers and then connect
all co-authors in a clique.

Figure 9 shows an example of such a graph, given the input data from Figure 7.
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Algorithm 2 Author Citation Graph
Require: papers_per_year ▷ Hash table as returned by Algorithm 1

G ← new graph with empty V and E
old_papers ← {}

for year = 1969...2018 do
papers ← papers_per_year[year]
for paper ∈ papers do

old_papers[paper.id] ← id of every author in paper.authors
end for

for paper ∈ papers do
for author ∈ paper.authors do

G.V ← G.V ∪ {author.id}
end for

for citation_id ∈ paper.references do
if citation_id ∈ old_papers.keys then

for cited_author ∈ old_papers[citation_id] do
for author ∈ paper.authors do

G.E ← G.E ∪ { (author.id, cited_author.id) }
end for

end for
end if

end for
end for

end for

return G

3.3.3 Papers Citation Graph

This is a directed graph, where every paper is a node. A directed edge eu,v means
that paper u cited paper v. Similar to the Authors Citation Graph we need to create
a lookup table, using the same incremental procedure of loading in the lookup table
data only for years i <= y when iterating over year y. 39

39The most recent version of the code for this graph generation can be found
in https://github.com/rafaeelaudibert/conferences_insights/blob/v11/graph_generation/
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Graph generated given the input data from Figure 7

Figure 9: Author collaboration example graph

Graph generated given the input data from Figure 7

Figure 10: Paper citation example graph

Figure 10 shows an example of such a graph, given the input data from Figure 7.

3.3.4 Author-Paper Citation Graph

This is a directed labeled graph, where nodes can be either an author or a paper,
and we can have edges between papers or between authors and papers, therefore
this graph is more complex than the previous ones because it can represent both a
paper citation network and an author citation network (through intermediate paper

generate_citation_graph.py.
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nodes).40

This graph is built based on the Papers Citation Graph, with the already existent
nodes being from the type paper VP , and the already existent edges being from the
type citation EC . After, we add a node with type author VA for each author, with
a directed edge with type authorship EA for each paper they authored.

This graph is ideal for a full picture of the data, with the possibility of inferring
every possible interaction in it. Therefore, it is an ideal representation for knowledge
representation tasks or even recommender systems. This is discussed in more detail
in Section 5.2.

Figure 11 shows an example of such a graph, given the input data from Figure 7.

3.3.5 Country Citation Graph

This is a directed multigraph, where each node represents a country, and an edge
eu,v represents that an author from country u cited an author from country v in a
paper. Because of this two nodes might have many edges between them.41

After we have figured out which country an author is from (Details in Section 3.4)
we can create this graph by doing the same procedure for the citation graph. Save
the papers already existing by that time in a lookup table; iterate over every paper;
iterate over the citations; iterate over the current paper authors and the cited paper
authors; connect the country they belong to with an edge. It is possible (and quite
common) to create self-loops.

Figure 12 shows an example of such graph, given the input data from Figure 7, in
addition to the following mapping from organizations to countries: MIT42 → USA;
UFRGS43 → Brazil; TU KL44 → Germany.

3.4 Affiliation x Country mapping
It is important to note that the Arnet v11 data we collected does not always provide
the country of an author in its “org” field, containing only the organization they
belong to – it sometimes does not even provide the organization – which poses a
problem.

40The most recent version of the code for this graph generation can be found
in https://github.com/rafaeelaudibert/conferences_insights/blob/v11/graph_generation/
generate_authors_and_papers_graph.py.

41The most recent version of the code for this graph generation can be found
in https://github.com/rafaeelaudibert/conferences_insights/blob/v11/graph_generation/
generate_country_citation_graph.py.

42https://www.mit.edu/
43https://www.ufrgs.br
44https://www.uni-kl.de/
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Graph generated given the input data from Figure 7
Red nodes indicate they have type VP ;
Red edges indicate they have type EC ;
Blue nodes indicate they have type VA;
Blue edges indicate they have type EA;

Figure 11: Author Paper Citation example graph

The “organization” field present in the data is in free-form format, which means
that it does not have a clear structure from which we can extract the country of
an author. Even worse, it might not even be a university name, as both companies
and non-affiliated individuals can have papers in flagship venues. There is some
structure in it for most of the data, though, so we have developed a pipeline where
we iteratively try to detect an organization’s country of origin.

In our pipeline, we first preprocess the organization by following Algorithm 4
removing cluttering and using only the text after the last comma – ideally where
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Graph generated given the input data from Figure 7

Figure 12: Countries citation example graph

the country of affiliation should be. After, Algorithm 3 is followed. We try matching
the text against a lookup table that maps organizations to countries. If there’s a
miss, we split the text into spaces and try matching only the first word to the table,
and after only the last word. If that still does not work we try matching the text
without the preprocessing step.

In the end, if everything fails, we check if we matched that author previously.
That is our last resort because remember that the author might change organization
(and even country) throughout their academic career, so we cannot trust an author
will still be in the same organization as they were the last time they published
something.

The above process can be seen in the infer_country_from function45.
We do have another important step not fully explained in the steps above: how

we created the “lookup table” to map from organizations to countries. We manually
created it over the span of 2 months, through a manual iterative labor-intensive
process: manually looking at the organizations not matched using Algorithm 3 and
mapping them to the countries they belong to using both our own knowledge and
web searches to filter the options down.46. The mapping for every organization that
has ever been published in AAAI, IJCAI, and NeurIPS is complete, and the process

45https://github.com/rafaeelaudibert/conferences_insights/blob/v11/graph_
generation/generate_country_citation_graph.py

46This mapping is available at https://github.com/rafaeelaudibert/TCC/blob/v11/graph_
generation/country_replacement.json
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Algorithm 3 Organization to Country Mapping
Require: raw_org ▷ Organization name
Require: org ▷ Organization name preprocessed by Algorithm 4
Require: author_id
Require: T ▷ Lookup table matching organization to country
Require: PT ▷ Past author to organization matchings

if org ∈ T.keys then ▷ Check if preprocessed org is in the table
return T[org]

end if

split_org← split("org", " ") ▷ Split the text into every space, turning it into a list
if split_org[0] ∈ T.keys then ▷ Check if first name in org is in the table

return T[split_org[0]]
end if
if split_org[-1] ∈ T.keys then ▷ Check if last name in org is in the table

return T[split_org[-1]]
end if

if raw_org ∈ T.keys then ▷ Check if org without preprocessing is in the table
return T[raw_org]

end if

if author_id ∈ PT.keys then ▷ Check if we have already matched this author
before

return PT[author_id]
end if

return ∅

to map this for the other conferences is still ongoing. We hope this mapping can be
used in the future by other works to facilitate the inference of a country from an
organization. Figure 13 shows how many organizations we mapped per country –
the USA does not fit in the figure for scale purposes and has a value of 2163.

Additionally, there are a few authors whose “org” field is empty. For the first
years of the area (1969-1979), we did not have many papers being published, so we
manually looked at every single paper with an empty organization field and gen-
erated another lookup table available at https://github.com/rafaeelaudibert/
TCC/blob/v11/graph_generation/author_country_replacement.yml. We then
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The USA does not fit in the figure; and has a value of 2163.
This does not reflect the true count of different organizations per country, because

some of them could be easily identified by their country, and did not need any

special treatment.
Figure 13: Quantity of mapped different organizations per country that appeared
in our data.
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check this table first before attempting the above pipeline, since it is more reliable.
This table was specially built in YML instead of JSON for better readability and
allows us to add comments in between the entries.

It is noticeable, though, that this problem is worse in more recent years. Arnet’s
data does not have organizations for most papers published from 2018 onward, so
the problem is bigger in recent years. For example, in Figure 36 the "None" stacked
part is bigger in recent years.

4 Data Analyses
This section presents the main analyses and insights performed on our datasets
described in Section 3. We present initial statistics in Section 4.1, then analyse
each graph (Sections 4.2 to 4.6). We then investigate the research impact of Turing
Award winners in Section 4.7.

As already stated before, the full code for both the data generation and data
analysis was made publicly available at https://github.com/rafaeelaudibert/
TCC/tree/v11. The main code is in the branch v11 because of the aforementioned
problems with Arnet’s V13.

4.1 Raw Data
Although the bulk of this work is intended to revolve around the graph datasets
and their centralities built to support our claims, the raw data itself is also able to
provide us with great introductory information to the following sections.

Figure 14 shows a boxplot with a rising trend in the number of authors per paper
over the years. In this boxplot graph, the red dot represents the average number of
authors per paper, the black line represents the median, the box per se represents
the 95% percentile, while the black lines represent the 99% percentile – even showing
a failure in the dataset with some papers with 0 authors in the late 1960s. The figure
shows how the trend of several authors in a single paper, like Brown et al. [2020],
Jumper et al. [2021], and Silver et al. [2016], is recent and rare with not more than
1% of the papers having 7 or more authors since 2004. It is noticeable how the
average value jumps to almost 4 in the years past 2014.

We also intersected the authors who published in the same year in different
venues. Some interesting trends arose, such as AAAI and IJCAI have the biggest
overlap in authors than any combination of them with NIPS and ACL (Figure 15);
CVPR has congregated more authors than NIPS and IJCAI since the beginning of
the 2000s and its biggest authors overlap is always with NIPS (Figure 16); SIGIR
had almost no overlap with these three conferences during the 90s and still has very
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Figure 14: Boxplot of the number of different authors for each single paper per year

little overlap nowadays, despite an increase in its intersection with AAAI (Figure
17).

4.2 Author Citation Graph

4.2.1 Ranking over time

We have calculated an authors ranking regarding the aforementioned centralities
from 1969 until 2019 using the accumulated citation data AC graph.

Figures 18, 19, and 20 show the evolution of PageRank, Betweenness, and In-
Degree centralities, respectively, in our Author Citation Graph. In these figures, a
line represents a single author and its ranking evolution over time in some predefined
years (chosen to be 1969, 1977, 1985, 1993, 2001, 2009, and 2014). The only authors
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Figure 15: Percentage of overlapping authors in AAAI, NeurIPS (NIPS), ACL, and
IJCAI.

shown are those who, at any point in one of these years, reached the top 10 in
that specific rank. Authors who had not published yet in one of these years and,
therefore, did not have any rank yet, show as N/A.

Although they seem chaotic, these graphs do have some interesting insights.
Figure 18 is an interesting starting point because it is considerably stable, at least
at the top of it. Harry Pople was the top 1 author in this ranking at least from
1977 until 2001, the longest period one will hold this position in any of our analyses.
His main work is focused on Artificial Intelligence in Medicine therefore very central
in-between different areas Dhar and Pople [1987]. Also in the PageRank graph, one
might see that the rises tend to be meteoric with Andrew Ng going from position
974 in his debut year of 2001 to 16th 8 years later, and then 2nd after 5 more years.
The same can be said for most of the dynamics present in this graph.

The aforementioned insights also hold for Figure 19 where Betweenness is anal-
ysed. This graph is a lot less stable than PageRank’s, as betweenness is easier to
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Figure 16: Percentage of overlapping authors in AAAI, NeurIPS (NIPS), CVPR,
and IJCAI.

evolve when new areas in Machine Learning happen, therefore changing the flow of
information in the graph, while PageRank will be more stable because important
people at one time will continue to be as important as they were forever, only going
down in rank if someone even more influential appears. One can see this dynamic,
for example, by looking at the last position in both charts: Larry Tesler – the one
but last in the PageRank chart because the last position is an outlier – is 4267th in
the PageRank, while the last position in the Betweenness chart is 31159th, showing
how low one might drop in the Betweenness ranking even though they once were in
the top 10 most influential scientists, in the datasets analysed here.

The Indegree chart shows a basic and raw data point: which author is the most
cited, which should reward older authors with seminal papers. The first place in
this ranking belongs to Andrew Zisserman, author of papers such as Simonyan and
Zisserman [2014] and Hartley and Zisserman [2003], having close to 300,000 citations
over his whole life – more than 100,000 of those only for the 2 cited papers. The
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Figure 17: Percentage of overlapping authors in AAAI, NIPS, SIGIR, and IJCAI.

second position is Andrew Ng with just over a third of the number of citations that
Zisserman has.

Considering all these charts together, it is interesting to see how Andrew Ng
is the most influential overall author in AI when we analyse it from a citation
perspective, in the datasets analysed here. He is the author of papers such as Blei
et al. [2003], and Ng et al. [2001], having an h-index of 134, i.e. 134 papers with
at least 134 citations (See H-Index on Section 2.4.6 to understand how this metric
is computed), the 1403rd biggest h-index in Google Scholar47. He appears with the
biggest betweenness value, and second-biggest indegree and PageRank ranking.

Takeo Kanade, the first position in the page rank ranking, is only 14th and 16th
when looking at betweenness and indegree, respectively – although it is worthy of
note that in 2001 he was first in in-degree and betweenness while third in PageRank.
This is the best result, on average, that can be found in our results. Similarly,

47https://www.webometrics.info/en/hlargerthan100
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Andrew Zisserman, the first position in the in-degree ranking, is sixth when looking
at betweenness, and 8th on the PageRank ranking.

The ranking for the other computed centralities can be seen in Appendix C.

4.2.2 Self-citations

Authors might build up in their previous work, which would introduce self-edges in
our graph representing self-citations. Figure 21 shows a boxplot of the evolution of
self-citations count per year. Despite the average beginning stable at around two,
increasingly more authors have been increasing their number of self-citations over
the years.

This figure, however, does not represent the full truth because there are more
papers recently. Figure 22 shows a better view of the same data, clearly showing the
average number increasing. The data has its faults because if an author can publish
more than one paper per year then it will help to bring the average up by not being
divided twice, but this can be said for every single year, so the increasing rate of
self-citations would still exist.

4.3 Author Collaboration Graph
4.3.1 Ranking over time

We have calculated an authors’ ranking regarding the six aforementioned centralities
from 1969 until 2019 using the accumulated collaboration data – ACo graph.

Figures 23 and 24 demonstrate how the PageRank and Betweenness rankings,
respectively, evolved over time. In these figures, we chose to plot the top 10 authors
each year, in an 8-year interval. Considering this gap, it is interesting to observe
that only in 2009 it is possible to see all authors who appeared in the top 10 ranking
during all the selected years. Also, most of the authors entered the ranking during
the 80s and the 90s, regardless of the centrality. The remaining rankings (centralities)
can be seen in the Appendix D.

4.3.2 Entering the Realm of AI

Every year several researchers publish their first papers in AI-related venues such as
the ones we are analyzing throughout this work. Figure 25 shows the yearly share
of new authors per conference. The stacked area contains spikes due to the fact that
several conferences did not occur yearly. NIPS conference (currently NeurIPS) was
the conference that mostly attracted new authors until the mid-90s together with
IJCAI. Since then the share has become more and more split into conferences of
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Figure 20: Author citation ranking over time according to In-degree centrality
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Despite the average being stable around two, increasingly more authors have been
increasing their number of self-citations over the years
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Figure 21: Boxplot of self-citation count per year

different areas. CVPR and ICCV have shown some growth in this respect in recent
years, as did AAAI and WWW in the early 2000s.

Table 4 lists all authors who collaborated with more than 200 new authors since
1969. Several of them appeared in the authors’ collaboration ranking (especially
regarding Betweenness, Closeness, and PageRank centralities). The regular behavior,
however, is better described by the average and standard deviation statistics: the
average number of new authors that an author collaborated with is around 4 with
a standard deviation of 12. It seems clear that these numbers are highly affected
by the career age of a researcher. We estimated this age with the author’s first
year of publication inside our graph and we used this age to normalize the amount
of collaboration with new authors, achieving a normalized average number of new
authors per author of 0.3 (career time average: 11) with standard deviation of 0.94
(career time standard deviation: 9.2), which essentially means that a researcher
usually brings a new author to these AI venues after 3 years of his entry into the
field.
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4.4 Paper Citation Graph

4.4.1 Ranking over time

In every centrality measure done for this graph, whenever we plot it, we map the
name of the papers to those in Table 10. This format is not ideal for readability,
but it was the best method found to show this data in its full form. When it comes
to citation networks, the betweenness centrality can be seen as a measure of how
a node (paper) is able to connect different research areas, or how it acts to foster
interdisciplinarity Leydesdorff [2007].

In this sense, Figure 26 shows how the ranking of most important papers (accord-
ing to betweenness centrality) evolved. It is possible to see that the ranking itself
is very volatile as no paper can remain in the top 5 for more than 2 times (inside
our gap of 8 years), nevertheless the paper "Constrained K-means Clustering with
Background Knowledge" Wagstaff et al. [2001] (CKCWBK01 in the figure) has been
in the top 10 at least since 2009. Also, all papers in the top 5 of 2017 and 2019 were
published after the year 2000, which could indicate that, despite not being seminal
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Figure 23: Authors collaboration ranking over time according to PageRank centrality.
N/A stands for authors who had not published in the selected venues until that year.
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Figure 24: Authors collaboration ranking over time according to betweenness central-
ity.
N/A stands for authors who had not published in the selected venues until
that year.
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papers, these recent researches are more helpful in different areas.
Figure 27 shows the same graph data but ranked by their in-degree centrality,

which simply measures how many citations a paper has received until a given year
(inside our graph). The latest top 5 is composed of 3 papers related to computer vi-
sion and 2 to natural language processing. A similar pattern can be found until 1993,
but back in 1985 and before most of the ranking was composed of papers that tackled
reasoning, problem-solving, and symbolic learning, such as "Reasoning about knowl-
edge and action" Moore [1977] (RAKAA77 in the figure), "A multi-level organization
for problem-solving using many, diverse, cooperating sources of knowledge" Erman
and Lesser [1975] (AMOFPSUMDCSOK75 in the figure) and "The art of artificial
intelligence: themes and case studies of knowledge engineering" Feigenbaum [1977]
(TAOAITACSOKE77 in the figure).

A very stable behavior can be seen in the PageRank ranking (Figure 28): most
papers remained in the top 5 for 2 gaps (usually 8 years) and many of them for 3
gaps (16 years in the middle, 10 in the end). The paper "Towards automatic visual
obstacle avoidance" Moravec [1977] (TAVOA77 in the figure) has been in the top
5 at least since 1993 and it has been leading the ranking since 2001. The second
one, "Feature extraction from faces using deformable templates" Yuille et al. [1989]
(FEFFUDT89 in the figure), is also a somewhat old paper related to computer vision.

Similarly, one can see the stableness and invariability to change that PageRank
offers by noticing that we only had 20 different papers in the top 10 in the selected
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Author Count
Lei Zhang 488
Luc Van Gool 352
Ming-Hsuan Yang 350
Thomas S. Huang 322
Andrew Y. Ng 298
Jiawei Han 294
Dacheng Tao 282
Yang Liu 280
Philip H. S. Torr 280
Yoshua Bengio 248
Wei Wang 238
Milind Tambe 236
Yang Li 232
Ale Leonardis 224
Liang Lin 222
Qingming Huang 222
Shuicheng Yan 222
Christos Faloutsos 222
Jiri Matas 214
Michael Felsberg 212
Horst Bischof 212
Philip S. Yu 208
Richard Bowden 206

Table 4: The 23 authors who collaborated with more than 200 new authors since
the year 1969

years, while we have 28 for Betweenness and Indegree, a more befitting number when
compared to the figures shown in the previous sections.

The remaining rankings (Closeness, Degree, and Out-degree) can be seen in
Appendix E.
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Figure 26: Papers citation ranking over time according to Betweenness centrality.
N/A stands for papers that had not been pub-
lished in the selected venues until that year.
Please refer Table 10 in the Appendix E to see the details of each ranked pa-
per.
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Figure 27: Papers citation ranking over time according to In-degree centrality.
N/A stands for papers that had not been pub-
lished in the selected venues until that year.
Please refer Table 10 in the Appendix E to see the details of each ranked pa-
per.
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Figure 28: Papers citation ranking over time according to PageRank centrality.
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Please refer Table 10 in the Appendix E to see the details of each ranked pa-
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4.4.2 Share of Top 100 Ranking per Venue

Figures 29 to 31 reinforce the trend seen in the top 5 ranking in the last section:
despite the centrality, computer vision-related venues are progressively gaining im-
portance regarding their published papers, especially the CVPR. However, there
has been a distinguished contribution by the ACL conference to the most important
papers (according to PageRank) since 1984. These three heatmaps also show that
the AAAI papers had their peak of importance during the late 1980s and the 1990s,
but now they are losing their share of the ranking in the same fashion that IJCAI.

4.4.3 Share of Citations per Venue

We were also interested in how the citations of each venue have been evolving in the
last few years. In this analysis, we were also able to distinguish citations to papers
from arXiv, Journals, and the International Conference on Learning Representations
(ICLR). For instance, back in the 1980s and early 1990s, around 50% of citations
coming from NIPS papers were directed to papers from journals (see Figure 32),
however, this share nowadays has been reduced to less than 25%. More than that,
citations to ICLR papers and especially to arXiv papers have been increasing since
the early 2010s.

A similar pattern occurs when we consider papers from AAAI and IJCAI, Fig-
ures 33 and 34 respectively. However, in their case, there is a much more divided
share between all the conferences: it is possible to distinguish some influence from
KDD, WWW, ACL, and EMNLP together with the increasing, yet unobtrusive,
influence of arXiv and ICLR.
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Figure 29: Venue contribution per year (accumulated) in the top 100 most important
papers, according to Betweenness.
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Figure 31: Venue contribution per year (accumulated) in the top 100 most important
papers, according to PageRank.
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4.5 Author-Paper Citation Graph
This graph was built to foster the research on recommender systems for papers –
“given an author and his publication history, which are the most relevant papers he
has not yet cited?"". In this sense, we have not developed any analysis on this graph
and we expect to use it as a benchmark for future research on recommender systems:
see Section 5.2.

4.6 Countries Citation Graph
This graph, computed for every country, is interesting because it has a different
cardinality compared to the other graphs: while the others have tens of thousands
of nodes, this graph only has 93 nodes with 4776703 edges.

Figure 35 shows the increase in the number of papers published at these confer-
ences per year. The best-fitting line interpolates the data every 5 years. While the
mid-1970s saw just a few countries participating in conferences (1974 and 1976 only
had 2 countries: USA and United Kingdom, and USA and Canada, respectively) we
have seen a large increase in countries participating in conferences in the last years,
with 66 different countries having published in the conferences of interest in 2017.
As mentioned above, in total authors from 93 different countries already published
at these conferences.

Figure 36 shows a stacked percentage chart of the 15 countries with the most
published papers. This data clearly shows the dominance of the United States
in Artificial Intelligence research, with a slow increase in the number of papers
published by authors in China.

Similarly, Figure 37 shows the same data but the pink bar at the bottom repre-
sents papers that we could not detect their country of affiliation.

Through this data representation, one can clearly see the years when IJCAI hap-
pened. Given the fact that IJCAI is commonly held outside the United States, and
only in odd-numbered years, we can see a jagged-line pattern in the United States’
share of papers, with a higher percentage in even-numbered years, and a lower per-
centage in odd-numbered years (when people from different countries have a higher
chance of attending the conference, usually because of less strict visa requirements).
For the same reason, after IJCAI started to be held annually (2013) the pattern
disappeared. Figure 51 tries fixing this problem by creating a 2-year-wide sliding
window and averaging the data before plotting it, creating a clearer view of the data.

An interesting outlier can be seen in 1979 when Japan had the highest share of
published papers except for the USA. That happened exactly because IJCAI was
held in Tokyo that year.
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Figure 35: Number of Countries that published papers per year. The interpolating
line is the best-fitting linear interpolation with 5 points
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Figure 36: Stacked percentage of papers published
per country per year including non-mapped ones.
The pink bar at the bottom indicates papers we could not identify which coun-
try they are from.
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Figure 37: Stacked percentage of papers published per country per year, but not
considering the ones we cannot identify.

Figure 38 shows the same data but with numbers in absolute terms instead of
showing it with a stacked percentual. With it, we can see how the rate of acceptance
for countries that are not the USA has grown faster than it has for the USA (the
curve is steeper at the top). With it, we can also see the striking increase in papers
accepted to these conferences in the last years, as already shown in numbers before.
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Figure 38: Quantity of papers per country per year
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4.6.1 Analysis of More Recent Years

If we try using Arnet’s v13 dataset to generate the above graphs, we can see in
Figure 39 how much the data deteriorates. For 2019, we can only identify close to
5% of the paper country of affiliation, because for most of them, the “organization”
field is empty. Note as well that even for the previous year the data is not as clear
as it is in Figure 37, for instance.

We did not try applying any mapping similar to the one explained in Section 3.4
to this data because most of the non-identifiable organization fields are empty, as
stated above.

4.7 Data Analysis of Turing Laureates

As previously stated, the Turing Award recognized seven researchers for their con-
tributions to AI: Marvin Minsky (1969), John McCarthy (1971), Allen Newell and
Herbert Simon (1975), Edward Feigenbaum and Raj Reddy (1994), Leslie Valiant
(2010), Judea Pearl (2011) and Yoshua Bengio, Geoffrey Hinton and Yann LeCun
(2018).

The Turing Award winners timeline (see Figure 40) depicts a change of focus
of these highly prolific researchers over time: most recent awardees have their work
divided into several venues (especially machine learning and computer vision-related
ones, such as NIPS/NeurIPS and ICML and CVPR), while the older ones concen-
trated their efforts in AAAI or IJCAI. We also need to take into account that we
are only considering conferences in this work, while most of the works published in
the early days of Artificial Intelligence were published in other venues.

We also verified the Spearman correlation between the titles of papers published
by Turing Award winners and the titles of papers published in the selected AI con-
ferences (AAAI, IJCAI, and NIPS/NeurIPS) over time. To do so we compare the
ranking of the TF-IDFs for the words in the Turing Award winner’s paper titles in
that year, related to the ranking of the TF-IDFs conference’s (or group of confer-
ences) papers titles in the same year. As the AI community, in general, has leaned
towards the connectionist approach over the last years, we expected to see a decreas-
ing trend regarding previous Turing Award winners who focused on symbolic AI and
expert systems – or at least a very little correlation.

Nevertheless, the work of Marvin Minsky (1969 Turing Award laureate) is still
quite in line with what is published in NIPS/NeurIPS, for instance, despite being
poorly correlated with the three conferences when they are considered altogether
(see Figure 41). These correlations may be however not very realistic since there
are only two papers by Marvin Minsky in the entire dataset. The most positive
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Figure 39: Deteriorated countries stacked chart with Arnet’s V13
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Turing Awardees Timeline

Figure 40: AI-related Turing Awardees timeline.
Each year is divided proportionally according to the
number of papers published in each group of venues.
Yellow ellipses are placed on the year each award was granted.

and significant slope, however, comes from the work of the latest AI Turing Award
laureates (Bengio, Hinton, and LeCun, 2018): their papers’ titles have a positive
and moderate correlation with all three conferences (and naturally with the average)
and also show an increasing trend along the years, as depicted on Figure 42. The
remaining plots can be found in Appendix G

Figure 42 clearly shows how the most recent AI Turing Awardees (Yoshua Bengio,
Geoffrey Hinton, and Yann LeCun) influenced the area, with increasing rates of
correlation over the years in all three main conferences from the Artificial Intelligence
field. We predict that, in the next few years, if we were to plot the same data again,
their correlation would likely have increased even further showing that they were
able to influence AI research in general. We base our hypothesis on the fact that the
1969 Turing Award laureate Marvin Minsky, still has a positive correlation rate in
some conferences such as NeurIPS, even though the same cannot be said for the AI
field in general. Also, as noted in Section 2, Minsky possibly influenced the future
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Figure 41: 1969 Turing Award Correlation with AI conferences and NIPS specifically
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Figure 42: Correlation between titles of papers published by 2018 Turing Award
winners and titles of papers published in the three AI flagship conferences.

of AI after publishing Minsky and Papert [1969].
Similarly, this data can also be seen from the opposite side, if we consider the

2018 laureates: they were closely following the trend of papers published in these
conferences, therefore winning the Turing Award by researching the areas of interest.
Even if possible, it is clear that their works are relevant and influenced the area in
ways not influenced by others.

Also, it is worth noting that the Turing Award laureates do not appear in the
ranking of authors according to the centrality measures in Section 3.3.1 and 4.3.
This is probably because the Turing Awardees have not published a large number
of papers in the venues analysed to be able to reach the top of the rankings, and
also because their contributions are mostly based on some seminal, highly influential
works.
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5 Conclusions and Further Work

Artificial Intelligence research has accomplished much since Turing [1936], McCul-
loch and Pitts [1943], Turing [1950]. AI is now amply used in industry to power large
high-tech corporations. Some of the processes behind this evolution are still not well
understood this work aimed to make AI development, history, and evolution clear.
We presented a short survey on AI history, describing the periods or seasons AI has
already gone through. We have also included a quick survey on graph centrality
measures, the Turing Award winners, and the flagship AI-related conferences, which
is necessary to understand the overall picture of the area better.

By analyzing Arnet’s v11 dataset, a dataset based on DBLP’s corpus, and en-
hancing it to a graph-based format, we intended to ease paper/author citation/col-
laboration network research. This dataset generated insightful graphs and could
generate even more in future works. Also, the code presented in this work makes it
such that it is relatively easy to extend it to any other underlying dataset, making
it possible to generate and compute the same statistics presented in this work for
any other area than AI. These graphs show insights on self-citations, new authors,
and author and paper importance throughout the years. We also proposed a new
type of dataset intended to be used as a knowledge graph source for recommender
systems, where authors, papers, citations, and collaborations are all defined in the
same graph. With the Country Citation Graph, we also introduced an important
dataset and pipeline capable of inferring the country of affiliation of an author based
on its organization.

By investigating the Turing Award winners and comparing them against the
published data, we find out that there is evidence that they actually “pull” their
most published venues to their topic of research, at least for the most recent AI
researchers winners. Finally, the study on countries’ affiliation is, to the best of our
knowledge, the first of its type, creating a new algorithm able to infer the country
of affiliation of an author from their organization, as available at DBLP or Arnet.

5.1 Contributions

This work has the following specific contributions:

• Five new graph-based datasets, with fully computed centralities to ease pa-
per/author, citation/collaboration network research.

• Analyses for these graphs, focusing both on their raw structure and the cen-
trality rankings.
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• Algorithms description, allowing anyone to replicate the graph building process
in any programming language for any dataset.

• Spearman Correlation computation between Turing Award laureate papers
and conference papers, showing they have a positive correlation.

Besides the theoretical contributions we also present a few important software con-
tributions. They can be found in more detail in Appendix H, but we outline them
as follows:

• Python library to convert an XML to JSON in a stream fashion, i.e. without
loading the whole XML and JSON files in memory

• Parallel Python implementation for the Betweenness and Closeness Centrali-
ties

• Novel Python implementation for a Graph Parsing pipeline, avoiding duplicate
work through data caching

• Python implementation of the proposed algorithm to infer a paper country of
affiliation

5.2 Future Work

The dataset created in this work provides several possibilities for future work, espe-
cially when we think about the computed centralities. Our work presented several
analyses of the dataset, and one might think of even more possible ways to visualize
it. Additionally, it would be ideal if Coreness centrality (Section 2.4.6) was also
computed for this dataset, as it displays the interesting feature of being a discrete
value instead of a continuous one, thus allowing you to more easily identify the most
important authors/papers according to it.

The Country Citation Graph has a lot of potential in understanding “brain-
draining” by investigating the flow of authors from one country of affiliation to
others – easily done with our dataset, without any extra work besides counting the
number of “transitions” between countries. Similarly, we believe that comparing
more advanced usages of this dataset with the Turing Awardees might bring even
more interesting results. With a better dataset, one where there are abstract data
available for every paper, one might be able to achieve better results when running
a Spearman Correlation (Section 4.7) between the text in Turing Award winners’
abstracts and the ones from the remaining venues papers.
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A Arnet Dataset
This section presents some extra data in the Arnet Dataset, which did not fit in the
main work.

Tables 5 , 6, and 7 display the inner objects we referenced in Table 2.
Table 8 shows a manual count of papers published at AAAI, NeurIPS and IJCAI.

This was built to support Figure 5 and bring the point that the v13 dataset did not
have even half the data present at these conferences. In this table, a question mark
(“?”) indicates that we could not infer the number of papers for that conference in
that year.

To aggregate the data present in this table, we used AAAI’s website statistics,
the NeurIPS API, and the IJCAI Proceedings page. The harder to get this data
was IJCAI as they do not provide a paper account, only containing links to every
paper published every year. Therefore we built a Javascript snippet that counted
the number of links in those pages. Ultimately, we could not use this script in the
years 1979 and 2001 because the available data format does not allow one to do such
an analysis.

Figure 43 shows an example of data present in the Arnet dataset, and used
throughout our work when we needed an example.

“*” indicates the field was used in this work
“?” indicates the field is optional

Field Name Type Description
id* string Unique ID for the author - unique across papers
name* string Full author name
org?* string Organization this author was in when of this paper

Table 5: Data structure for an Author entry in the Arnet JSON dataset

“*” indicates the field was used in this work
“?” indicates the field is optional

Field Name Type Description
id* string Unique ID for the venue - unique across papers
raw* string The raw name of the venue
name? string Humand readable name of the venue

Table 6: Data structure for a Venue entry in the Arnet JSON dataset
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“*” indicates the field was used in this work
Field Name Type Description
IndexLength integer How many words in the abstract
InvertedIndex* hash<string, integer[]> Inverted index with the position

of every word in the paper abstract

Table 7: Data structure for a IndexedAbstract entry in the Arnet JSON dataset

In Table 8, data for AAAI was extracted from their API; for NeurIPS it was
extracted from their official statistics website; and for IJCAI it was manually (using
JavaScript) counted on their website. Cells with a “?” text indicate the years we
were not able to find an accurate count of papers for that conference, reinforcing the
fact that this is a lower-bound estimate.

Table 8: Manual count of papers per main AI conference per year

AAAI NeurIPS IJCAI
1969 0 0 63
1970 0 0 0
1971 0 0 58
1972 0 0 0
1973 0 0 77
1974 0 0 0
1975 0 0 141
1976 0 0 0
1977 0 0 200
1978 0 0 0
1979 0 0 ?
1980 ? 0 0
1981 0 0 106
1982 ? 0 0
1983 ? 0 233
1984 ? 0 0
1985 0 0 257
1986 ? 0 0
1987 ? 90 301
1988 ? 94 0
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Table 8 continued from previous page
AAAI NeurIPS IJCAI

1989 0 101 270
1990 0 143 0
1991 ? 144 190
1992 ? 127 0
1993 ? 158 137
1994 341 140 0
1995 0 152 275
1996 336 152 0
1997 268 150 183
1998 269 151 0
1999 235 150 203
2000 265 152 0
2001 0 197 ?
2002 256 207 0
2003 0 198 297
2004 250 207 0
2005 530 207 340
2006 718 204 0
2007 702 207 480
2008 648 250 0
2009 0 262 331
2010 780 292 0
2011 743 306 494
2012 707 370 0
2013 720 360 484
2014 912 411 0
2015 1101 403 656
2016 1163 569 658
2017 1049 679 782
2018 1201 1009 871
2019 1150 1428 965
2020 1591 1898 779
2021 1692 2334 722

Total 17627 13902 10553

788



On the Evolution of A.I. and Machine Learning

Figure 43: Example of a JSON entry for Glo-
rot and Bengio [2010] in the Arnet dataset
[...] indicates some items in the array were abbreviated for sake of brevity.
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B Codebase

In this section, we present Algorithm 4 used in Section 3.4 along Algorithm 3 to be
able to infer a country of origin from an organization. This basically removes the
clutter present in Arnet’s data.

Table 9 shows every open-source library used to develop this work. We are very
thankful for every library contributor’s work to the open-source community.

Library Name Usage
click Create CLI to run experiments with different parameters
fire Create CLI to run experiments with different parameters
matplotlib Plot the charts
networkx Build the graph datasets
nltk Tokenize words and detect stop words
numpy Manipulate data arrays in a vector-fashion
scipy Compute Spearman Correlations
seaborn Improve matplotlib’s plots look
sklearn Generate linear models and compute TF-IDF
tqdm Generate progress bars for long data processing pipelines

Table 9: Python libraries used in this work

Algorithm 4 Organization Name Cleaning Preprocessing
Require: org ▷ Organization name

org ← split(org, ",") ▷ Split the text in every comma, turning it into a list
org ← org[-1] ▷ Last item in the array
org ← replace(org, "#TAB#", "") ▷ Remove unknown tag
org ← replace(org, "#tab#", "") ▷ Remove unknown tag
org ← replace(org, /[\(\)\[\]\-_]/, "") ▷ Regex-based replacement

return org

C Author Citation

The charts presented in this section are related to centralities from Section 3.3.1.
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Figure 45: Authors citation ranking over time according to Out-degree centrality.
Figure refers to Appendix C

D Author Collaboration
The charts presented in this section are related to centralities from Section 4.3.
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Figure refers to Appendix D
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Figure 47: Authors collaboration ranking over time according to In-Degree centrality.
Figure refers to Appendix D

E Paper Citation
The charts presented in this section are related to centralities from Section 4.4.
Similarly, Table 10 is used to map every paper entry in these charts to a paper title
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and year.

Table 10: Dictionary for the papers which appeared in the Top 5 rankings

Initials Title Year Venue
AAAOSL92 An asymptotic analysis of

speedup learning
1992 ICML

AALR85 AI and legal reasoning 1985 IJCAI
AAOLTPAASP92 An analysis of learning to plan

as a search problem
1992 ICML

AASTNAP69 An augmented state transition
network analysis procedure

1969 IJCAI

ACDAAS90 Accurate corner detection: an
analytical study

1990 ICCV

ACPFNL69 A conceptual parser for natu-
ral language

1969 IJCAI

ACRSFFL69 A contextual recognition sys-
tem for formal languages

1969 IJCAI

ACSOICI86 A case study of incremental
concept induction

1986 AAAI

AEARCFLG90 AUTOMATICALLY EX-
TRACTING AND REPRE-
SENTING COLLOCATIONS
FOR LANGUAGE GENER-
ATION

1990 ACL

AIIFIR83 Artificial intelligence implica-
tions for information retrieval

1983 SIGIR

AIIRTWAATSV81 An iterative image registra-
tion technique with an appli-
cation to stereo vision

1981 IJCAI

ALOIAEB84 A logic of implicit and explicit
belief

1984 AAAI

AMAAAOAIT69 A mobius automation: an ap-
plication of artificial intelli-
gence techniques

1969 IJCAI

AMEMFPT96 A Maximum Entropy Model
for Part-Of-Speech Tagging

1996 EMNLP

Continued on next page
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Table 10 – Continued from previous page
Initials Title Year Venue
AMOFPSUMDCSOK75 A multi-level organization for

problem solving using many,
diverse, cooperating sources of
knowledge

1975 IJCAI

ANSFSISDAR71 A net structure for semantic
information storage, deduca-
tion and retrieval

1971 IJCAI

AOMOAHC75 Acquisition of moving objects
and hand-eye coordination

1975 IJCAI

AOTPTPS69 Application of theorem prov-
ing to problem solving

1969 IJCAI

APFFSC01 A probabilistic framework for
space carving

2001 ICCV

APFQCTSCOEG91 A Procedure for Quantita-
tively Comparing the Syntac-
tic Coverage of English Gram-
mars

1991 NAACL

ARVOTHA77 A retrospective view of the
Hearsay-II architecture

1977 IJCAI

ASNAAMOHM73 Active semantic networks as a
model of human memory

1973 IJCAI

AUMAFFAI73 A universal modular ACTOR
formalism for artificial intelli-
gence

1973 IJCAI

BAMFAEOMT02 Bleu: a Method for Automatic
Evaluation of Machine Trans-
lation

2002 ACL

BBOWEMDAFIIR08 Beyond bags of words: ef-
fectively modeling dependence
and features in information re-
trieval

2008 SIGIR

BTMANEFTEOVM97 Boosting the margin: A new
explanation for the effective-
ness of voting methods

1997 ICML

Continued on next page
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Table 10 – Continued from previous page
Initials Title Year Venue
CCALMFIA11 Combining concepts and lan-

guage models for information
access

2011 SIGIR

CKCWBK01 Constrained K-means Cluster-
ing with Background Knowl-
edge

2001 ICML

CLMFTC96 Context-sensitive learning
methods for text categoriza-
tion

1996 SIGIR

CPS84 Classification problem solving 1984 AAAI
CRFPMFSALSD01 Conditional Random Fields:

Probabilistic Models for Seg-
menting and Labeling Se-
quence Data

2001 ICML

CSS73 Case structure systems 1973 IJCAI
CSTAE92 Camera Self-Calibration: The-

ory and Experiments
1992 ECCV

DCOEW93 DISTRIBUTIONAL CLUS-
TERING OF ENGLISH
WORDS

1993 ACL

DRLFIR16 Deep Residual Learning for
Image Recognition

2016 CVPR

DROWAPATC13 Distributed Representations
of Words and Phrases and
their Compositionality

2013 NIPS

EAAC89 Execution architectures and
compilation

1989 IJCAI

EAFMCVE94 Efficient algorithms for mini-
mizing cross validation error

1994 ICML

ETUOSNTP75 Expanding the utility of se-
mantic networks through par-
titioning

1975 IJCAI

EWANBA96 Experiments with a new
boosting algorithm

1996 ICML

Continued on next page
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Table 10 – Continued from previous page
Initials Title Year Venue
EWASAFTDBOAHBS69 Experiments with a search al-

gorithm for the data base of a
human belief structure

1969 IJCAI

EWSRD13 Explicit web search result di-
versification

2013 SIGIR

FAATIOAIOS73 Forecasting and assessing the
impact of artificial intelligence
on society

1973 IJCAI

FCNFSS15 Fully convolutional networks
for semantic segmentation

2015 CVPR

FEFFUDT89 Feature extraction from faces
using deformable templates

1989 CVPR

FOAITHSUS77 Focus of attention in the
Hearsay-II speech understand-
ing system

1977 IJCAI

FRUE91 Face recognition using eigen-
faces

1991 CVPR

GPN77 Generating project networks 1977 IJCAI
HEFANLP77 Human Engineering for Ap-

plied Natural Language Pro-
cessing.

1977 IJCAI

HMME92 Hierarchical Model-Based Mo-
tion Estimation

1992 ECCV

HOOGFHD05 Histograms of oriented gradi-
ents for human detection

2005 CVPR

HTUWYK75 How to use what you know 1975 IJCAI
IAA88 Interpretation as Abduction 1988 ACL
IAFLPARBOADP90 Integrated architecture for

learning, planning, and react-
ing based on approximating
dynamic programming

1990 ICML

ICWDCNN12 ImageNet Classification with
Deep Convolutional Neural
Networks

2012 NIPS

Continued on next page
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Table 10 – Continued from previous page
Initials Title Year Venue
IEAUWA08 Intelligent email: aiding users

with AI
2008 AAAI

IFATSSP94 Irrelevant features and the
subset selection problem

1994 ICML

IMAMFEMFIS69 Implicational molecules: a
method for extracting mean-
ing from input sentences

1969 IJCAI

INLG01 Instance-based natural lan-
guage generation

2001 NAACL

ISARASAFD77 Information storage and re-
trieval: a survey and func-
tional description

1977 SIGIR

LAAATFTOLA85 Lexical ambiguity as a touch-
stone for theories of language
analysis

1985 IJCAI

LELASTTITP89 Lazy explanation-based learn-
ing: a solution to the in-
tractable theory problem

1989 IJCAI

LPPKICE96 Learning procedural planning
knowledge in complex environ-
ments

1996 AAAI

LRCNFVRAD15 Long-term recurrent convo-
lutional networks for visual
recognition and description

2015 CVPR

LTGCWCNN15 Learning to generate chairs
with convolutional neural net-
works

2015 CVPR

LTRFIR10 Learning to rank for informa-
tion retrieval

2010 SIGIR

LTRNLAAUA98 Learning to resolve natural
language ambiguities: a uni-
fied approach

1998 AAAI

LTRWPD08 Learning to rank with
partially-labeled data

2008 SIGIR

Continued on next page
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Table 10 – Continued from previous page
Initials Title Year Venue
MIFRVS91 Multidimensional indexing for

recognizing visual shapes
1991 CVPR

MRLUAV98 Mobile Robot Localisation Us-
ing Active Vision

1998 ECCV

MSCBSSFVSTN3MSAR01 Multi-view scene capture by
surfel sampling: from video
streams to non-rigid 3D mo-
tion, shape and reflectance

2001 ICCV

MSDIAAN71 Managing semantic data in an
associative net

1971 SIGIR

NATCA18 Neural Approaches to Conver-
sational AI

2018 SIGIR

NCFPS90 NOUN CLASSIFICATION
FROM PREDICATE-
ARGUMENT STRUC-
TURES

1990 ACL

PASTAPW69 PROW: a step toward auto-
matic program writing

1969 IJCAI

PAUAODNPID83 PROVIDING A UNIFIED
ACCOUNT OF DEFINITE
NOUN PHRASES IN DIS-
COURSE

1983 ACL

PEOKIP71 Procedural embedding of
knowledge in planner

1971 IJCAI

POACBC75 Progress on a computer based
consultant

1975 IJCAI

POOFT92 Performance of optical flow
techniques

1992 CVPR

PSGANL83 Phrase structure grammars
and natural languages

1983 IJCAI

RAKAA77 Reasoning about knowledge
and action

1977 IJCAI

RODUABCOSF01 Rapid object detection using a
boosted cascade of simple fea-
tures

2001 CVPR

Continued on next page
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Table 10 – Continued from previous page
Initials Title Year Venue
SAATNICGWVA15 Show, Attend and Tell: Neu-

ral Image Caption Generation
with Visual Attention

2015 ICML

SCASFPM08 Server characterisation
and selection for personal
metasearch

2008 SIGIR

SF83 Scale-space filtering 1983 IJCAI
SMIS14 Semantic Matching in Search 2014 SIGIR
STFSWA06 Semi-Supervised Training for

Statistical Word Alignment
2006 ACL

TAOAITACSOKE77 The art of artificial intelli-
gence: themes and case stud-
ies of knowledge engineering

1977 IJCAI

TAOALHWSE98 The anatomy of a large-scale
hypertextual Web search en-
gine

1998 WWW

TAVOA77 Towards automatic visual ob-
stacle avoidance

1977 IJCAI

TCDAHOITP87 The classification, detection
and handling of imperfect the-
ory problems

1987 IJCAI

TCOSP89 Term clustering of syntactic
phrases

1989 SIGIR

THSUSAEOTRP73 The hearsay speech under-
standing system: an example
of the recognition process

1973 IJCAI

TMOSAAIPIASMS69 The modeling of simple ana-
logic and inductive processes
in a semantic memory system

1969 IJCAI

TSHP69 The Stanford hand-eye project 1969 IJCAI
TUGIAIE83 Tracking user goals in an

information-seeking environ-
ment

1983 AAAI

TWARIE69 Talking with a robot in En-
glish

1969 IJCAI

Continued on next page
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Table 10 – Continued from previous page
Initials Title Year Venue
UDTTICL93 Using decision trees to im-

prove case-based learning
1993 ICML

VMBARR79 Visual mapping by a robot
rover

1979 IJCAI

WCBSITDWAUSR92 What can be seen in three di-
mensions with an uncalibrated
stereo rig

1992 ECCV

WSNGVG88 What Size Net Gives Valid
Generalization

1988 NIPS

WYCRNTKYLIK92 What your computer really
needs to know, you learned in
kindergarten

1992 AAAI
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Figure 48: Papers citation ranking over time according to Closeness centrality.
N/A stands for papers that had not been pub-
lished in the selected venues until that year.
Please refer to Table 10 in Appendix E to see the details of each ranked pa-
per.
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Figure 49: Papers citation ranking over time according to In-Degree centrality.
N/A stands for papers that had not been pub-
lished in the selected venues until that year.
Please refer to Table 10 in Appendix E to see the details of each ranked pa-
per.
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Figure 50: Papers citation ranking over time according to Out-degree centrality.
N/A stands for papers that had not been pub-
lished in the selected venues until that year.
Please refer to Table 10 in Appendix E to see the details of each ranked pa-
per.
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F Country Citation Graph
Figure 51 presents a different view than the one available at Section 4.6 by generating
the stacked version of the countries but with a 2-year-wide sliding average window,
i.e. every datapoint is actually the average between the year and its prior window,
trying to avoid the variation seen in Figure 37 because of IJCAI being held only in
odd-numbered years. The steady decline of the USA share in the graph is clearly
seen.

Figure 51: Stacked percentage of papers viewed with a 2-years-wide sliding average
window
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G Turing Award Charts
This section presents some charts related to the correlation between Turing Awardees
papers abstracts and the other authors’ abstracts words. We used a Spearman
Correlation to compute these.

Table 11 contains every single Turnig Award winner, with the year they won the
prize and also their nationality.

Table 11: Turing Award Winners per year
* indicates the winner is deceased

Year Winner Nationality
1966 Perlis, Alan J. * United States
1967 Wilkes, Maurice V. * United Kingdom
1968 Hamming, Richard W. * United States
1969 Minsky, Marvin * United States
1970 Wilkinson, James Hardy ("Jim") * United Kingdom
1971 McMarthy, John * United States
1972 Dijkstra, Edsger Wybe * Netherlands
1973 Bachman, Charles William * United States
1974 Knuth, Donald ("Don") Ervin United States

1975 Newel, Allen * United States
Simon, Herbert ("Herb") Alexander * United States

1976 Rabin, Michael Oser Israel
Scott, Dana Stewart United States

1977 Backus, John * United States
1978 Floyd, Robert (Bob) W. * United States
1979 Iverson, Kenneth E. ("Ken") * Canada
1980 Hoare, C. Antony ("Tony") R. United Kingdom
1981 Codd, Edgar F. ("Ted") * United Kingdom
1982 Cook, Stephen Arthur United States

807



Audibert et al.

Table 11 – Continued from previous page
Year Winner Nationality

1983 Ritchie, Dennis M. * United States
Thompson, Kenneth Lane United States

1984 Wirth, Niklaus E. Switzerland
1985 Karp, Richard ("Dick") Manning United States

1986 Hopcroft, John E United States
Tarjan, Robert (Bob) Endre United States

1987 Cocke, John * United States
1988 Sutherland, Ivan United States
1989 Kahan, William ("Velvel") Morton Canada
1990 Corbato, Fernando J. ("Corby") * United States
1991 Milner, Arthur John Robin Gorell ("Robin") * United Kingdom
1992 Lampson, Butler W. United States

1993 Hartmanis, Juris United States
Stearns, Richard ("Dick") Edwin United States

1994 Feigenbaum, Edward A. ("Ed") United States
Reddy, Dabbala Rajagopal ("Raj") India

1995 Blum, Manuel United States
1996 Pnueli, Amir * Israel
1997 Engelbart, Douglas * United States
1998 Gray, James ("Jim") Nicholas * United States
1999 Brooks, Frederick ("Fred") United States
2000 Yao, Andrew Chi-Chih China

2001 Dahl, Ole-Johan * Norway
Nygaard, Kristen Norway

2002
Adleman, Leonard (Len) Max United States
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Table 11 – Continued from previous page
Year Winner Nationality

Rivest, Ronald (Ron) Linn United States
Shamir, Adi Israel

2003 Kay, Alan United States

2004 Cerf, Vinton ("Vint") Gray United States
Kahn, Robert ("Bob") Elliot United States

2005 Naur, Peter * Denmark
2006 Allen, Frances ("Fran") Elizabeth * United States

2007
Clarke, Edmund Melson * United States
Emerson, E. Allen United States
Sifakis, Joseph France

2008 Liskov, Barbara United States
2009 Thacker, Charles P. (Chuck) * United States
2010 Valiant, Leslie Gabriel United Kingdom
2011 Pearl, Judea Israel

2012 Goldwasser, Shafi United States
Micali, Silvio Italy

2013 Lamport, Leslie United States
2014 Stonebraker, Michael United States

2015 Diffie, Whitfield United States
Hellman, Martin United States

2016 Bernes-Lee, Tim United Kingdom

2017 Hennesy, John L. United States
Patterson, David United States

2018
Bengio, Yoshua Canada
Hinton, Geoffrey E. United Kingdom
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Table 11 – Continued from previous page
Year Winner Nationality

LeCun, Yann France

2019 Catmull, Edwin E. United States
Hanrahan, Patrick M. United States

2020 Aho, Alfred Vaino Canada
Ullman, Jeffrey David United States

2021 Dongarra, Jack United States
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Figure 52: Correlation between 1969 Turing Award Winner papers and AAAI and
IJCAI-published ones.

Figure 53: Correlation between titles of papers published by the 1971 Turing Award winner
and titles of papers published in the three AI flagship conferences.
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Figure 54: Correlation between titles of papers published by the 1975 Turing Award
winners and titles of papers published in the three AI flagship conferences.
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Figure 55: Correlation between titles of papers published by the 1994 Turing Award winners
and titles of papers published in the three AI flagship conferences.

Figure 56: Correlation between titles of papers published by the 2010 Turing Award
winners and titles of papers published in AAAI and IJCAI.
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Figure 57: Correlation between titles of papers published by the 2011 Turing Award winner
and titles of papers published in the three AI flagship conferences.
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H Software Contributions
To carry out this work, we have built some pieces of software that might be used by
others in similarly sized tasks. They are briefly described and discussed below.

H.1 streamxml2json Library
When we were trying to use the original DBLP dataset (See Section 3.1 for more
context) we had some trouble when trying to convert the downloaded XML file to
a JSON file we could more easily manipulate. The benefits of a JSON file over the
XML file go from being more human-readable to the fact of it being a bit smaller (in
our case, a 3.3GB XML yields a 3GB JSON file, a 10% size reduction) – therefore,
easier to load in memory. It is a fact, however, that because we had the intention to
parse this file in a CI environment, to be able to generate new charts (See Section 5.2)
weekly we would need to be able to do this conversion from XML to JSON without
loading the whole file into memory. After searching on Github and PyPi we realized
that a tool to convert from XML to JSON without loading the whole file in memory
did not exist.

That clarified, we decided we could build such a tool by using a few already
existent libraries as building blocks: simplejson48, jsonstreams49 and xmltodict50.
Streaming over any XML file and parsing only the necessary data, we can then
output it to a JSON file, also through a file stream, without any substantial memory
usage. Because our data was gzipped, the library supports reading directly from a
.xml.gz file, not requiring the user to unzip it.

The library streamxml2json Audibert [2022a] Audibert [2022b] is available at
Github in https://github.com/rafaeelaudibert/streamxml2json and publicly
downloadable from PyPi on https://pypi.org/project/streamxml2json/. For
the sake of completeness, the library can be downloaded if you have pip Developers
[2008] installed in your machine by running “pip install streamxml2json"".

In the end, because we did not use this dataset, we do not use this library in
our work, but the contribution was deemed important enough to the whole Python
ecosystem in general so we are adding it to this section. We did keep in our main
repository the file used to convert from XML to JSON, as a library usage exam-
ple: https://github.com/rafaeelaudibert/conferences_insights/blob/v11/
scripts/xml2json.py.

48https://github.com/simplejson/simplejson
49https://github.com/dcbaker/jsonstreams
50https://github.com/martinblech/xmltodict
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H.2 Python Parallel Centralities Implementation
Throughout our work, we used UFRGS HPC Group’s (PCAD51 supercomputers
to be able to properly generate the graph we were building. We had to use their
supercomputers because when we are computing graph centralities we need a lot
of memory - for betweenness, we need to store the shortest path between every
single node of our graph that contains more than 100,000 nodes. Computing these
centralities, however, was still pretty slow because we have to do it for every single
node in every single year. An easy way to increase speed in computation, especially
when you are using supercomputers, is to parallelize your job across the available
physical processors. In our case, we had access to a machine with 16 cores (32
threads) allowing us to compute our results a lot faster.

Therefore, using Networkx’s implementations as a base, we developed a parallel
Betweenness and a parallel Closeness algorithm capable of running close to 5x faster
in a machine with 16 cores. The results are not 16x faster than expected because of
Python’s GIL which severely degrades Python’s parallel performance.

The codes for these implementations can be found in Github. 52 53.

H.3 Graph Parsing pipeline
In our work, we had to generate several different types of graphs, with several
different parameters in each of them. We also wanted to be able to easily cache data
we had already computed, avoiding unnecessary computation.

To solve these problems, we devised a simple structure where we could extend
a base GenerateGraph class (available in https://github.com/rafaeelaudibert/
conferences_insights/blob/v11/graph_generation/generate_graph.py) that ex-
posed several methods that made our job easier. Some of the exposed methods help
us in the process of caching our data. Whenever we want to build a new graph, if
we have no caching, we need to do these steps:

1. Filter papers from the required venues from DBLP’s JSON file

2. Generate the full graph for every year

3. After the full graph is complete, compute the centralities

51http://gppd-hpc.inf.ufrgs.br/
52https://github.com/rafaeelaudibert/conferences_insights/blob/v11/graph_

generation/parallel_betweenness.py
53https://github.com/rafaeelaudibert/conferences_insights/blob/v11/graph_

generation/parallel_closeness.py
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If we always followed these steps, whenever we made a code change to the central-
ities computation, we would need to run everything before. We can easily solve this
by calling some of the base class helper methods that know how to save a pre-parsed
list of papers from selected venues, or even an already partial graph if we had only
built it until a given year (imagine you noticed something wrong or an exception
was raised after you had parsed half the dataset).

Also, to be able to control which type of graph we wanted to run from the
command line, we built a CLI on top of this class using Google’s fire54 library. It is
used to automatically generate a CLI from the parameters of a function, effectively
allowing us to simply add a new parameter to a function and then pass the parameter
value from the command line to properly pass the parameters to our code.

When we want a new type of graph, therefore, we simply extend this Generate-
Graph class and add a new parameter to the main function, allowing us to easily
call this new type of graph generation.

It is worth noting, however, that, ideally, fire should be replaced by click. Click55

is a more maintained library, with better features: automatically generated fully-
customizable help command; subcommands to avoid the extra work of manually
creating flags when creating new types of graphs; proper filename handling; and etc.

54https://github.com/google/python-fire
55https://click.palletsprojects.com/en/8.1.x/
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Abstract
In this paper, we introduce and study the annihilating-ideal graph of an

MV-algebra (A, ⊕, ∗, 0). The algebraic structure of MV-algebras (especially
Boolean algebras) are described by using the annihilating-ideal graph. The con-
nections between the ideal theory of MV-algebras and graph theory are estab-
lished, which promote the studying of the coloring of graphs. The annihilating-
ideal graph AG(A) is a simple graph with the vertex set V (AG(A)) = {I ∈
I(A)\{〈0〉, A} | ∃J ∈ I∗(A) such that IJ = 〈0〉} and the edge set E(AG(A)) =
{I − J | IJ = 〈0〉, where I, J ∈ V (AG(A)) and I 6= J}, where I(A) is the
set of all ideals of A and I∗(A) = I(A)\{〈0〉}. We verify that AG(A) is con-
nected with dmax(AG(A)) ≤ 3. And we characterize some MV-algebras with
dmax(AG(A)) = 0 or 1, where dmax(AG(A)) is the diameter of AG(A). If
| A |≤ 7, we show that AG(A) is either a null graph, or dmax(AG(A)) = 1. We
restrict MV-algebras to Boolean algebras. The connections between AG(A) and
Γ(A) are studied, where Γ(A) is the zero-divisor graph of A. We characterize
the complete graph AG(A) and the star graph AG(A) by using ann(A\{1}) =
{a ∈ A | a ⊙ b = 0 for all b ∈ A\{1}}, where ann(A\{1}) is the annihilator of
A\{1}. Finally, we study the vertex coloring and girth of AG(A). We give two
lower bounds and an upper bound for χ(AG(A)).
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1 Introduction
The correspondences between the given objects and graph theory have been studied
by introducing many different graphs on semigroups, rings, posets or MV-algebras.
For a commutative ring R, the notion of the zero-divisor graph Γ(R) was given in
[7]. Γ(R) is a simple graph whose vertices are nonzero zero-divisors of R and there
is an edge m − n if and only if mn = 0 for any m, n ∈ V (Γ(R)) with m 6= n. For
more about it, we recommend [4]. The r-noncommuting graph Γr

R (r ∈ R) of the
finite ring R is also studied in [19], and V (Γr

R) = R. Then, the same definition
is applied in a commutative semigroup S by DeMeyer et al. [8] which denoted
by Γ(S). For more about the zero-divisor graphs of semigroups, we recommend
another paper [9]. Further, in 2020, Gan and Yang [1] introduced the zero-divisor
graph Γ(A) of an MV-algebra (A, ⊕, ∗, 0). Γ(A) is a simple graph with the vertex
set V (Γ(A)) = A\{0, 1} by [1, Proposition 2] and m, n ∈ V (Γ(A)) are adjacent if
and only if m ⊙ n = 0, where m 6= n. In [1], the authors deeply characterized an
MV-algebra A with the diameter of Γ(A) equal to 0, 1, 2 and 3. They studied all
MV-algebras of cardinality up to 7 by using the zero-divisor graphs. In addition, they
also introduced the annihilator graph AG(A) for an MV-algebra A on [2]. By [2],
AG(A) is a simple graph with vertex set V (AG(A)) = A\{0, 1}, and any two distinct
vertices m, n are called adjacent if and only if annA(m ⊙ n) 6= annA(m) ∪ annA(n),
where annA(x) = {a ∈ A | a ⊙ x = 0} for any element x of A. Moreover, the graph
ΓE(P ) of equivalence classes of zero-divisors of a poset P is introduced by Liu [11].
The vertices of ΓE(P ) are elements in P\{[0], [1]}, where P = {[a] | a ∈ P}, rather
than elements of P .

Further, let R be a commutative ring. In [15] and [16], the annihilating-ideal
graph AG(R) is given whose vertices are ideals of R instead of elements. The vertex
set of AG(R) is A∗(R) = A(R)\{〈0〉} and there exists an edge between I and J
if and only if IJ = 〈0〉, where A∗(R) is denoted to the set of all nonzero ideals
with nonzero annihilators. Similarly, let S be a commutative semigroup. The the
annihilating-ideal graph AG(S) is introduced by DeMeyer and Schneider in [14],
whose vertex set consists of all nonzero annihilating-ideals of S and in which the
vertex I is adjacent to the vertex J if and only if IJ = 〈0〉 and I 6= J .

In this paper, since an MV-algebra can be regarded as a semigroup under the
operations ⊕ or ⊙, on the basis of [8, 9, 1, 14], we will study another type of
graph of MV-algebras whose vertices are ideals rather than elements, which is called
the annihilating-ideal graph. We define the vertex set V (AG(A)) and the edge set
E(AG(A)) of AG(A) as follows:

V (AG(A)) = {I ∈ I(A)\{〈0〉, A} | ∃J ∈ I∗(A) such that IJ = 〈0〉},
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E(AG(A)) ={the edge I − J | I, J ∈ V (AG(A)) such that I 6= J and IJ = 〈0〉},

where we use I(A) to denote the set of all ideals of A and I∗(A) = I(A)\{〈0〉}. For
the MV-algebra A, we find that it can not guarantee that IJ ∈ I(A) for I, J ∈ I(A).
However, this statement holds on Boolean algebras. The operations between ideals
are more complex than those between elements. So we study the set ann(I) and the
principal ideals in this paper to overcome those difficulties.

The paper is structured as follows. In Section 2, we give some basic definitions
and theorems about MV-algebras, semigroups and graph theory which will be used in
the rest of this paper. In Section 3, for an MV-algebra A, we define the annihilating-
ideal graph AG(A). The fact that AG(A) is a connected graph and dmax(AG(A)) ≤ 3
is verified. If AG(A) contains a cycle, we prove that g(AG(A)) ≤ 4. If A is an MV-
algebra such that | A |≤ 7, then we show that AG(A) is either a null graph, or
dmax(AG(A)) = 1. In Section 4, we mainly study the annihilating-ideal graphs
of MV-algebras which are star graphs. We show that AG(A) is a null graph if
ann(A\{1}) = A\{1}. If there are two ideals I, J of A that satisfy A = I ⊕ J and
I ∩ J = {0}, where I is a 0-minimal ideal and there are no nonzero zero-divisors in
J when (J, ⊙) is a semigroup, we prove that AG(A) is a star graph. In Section 5, we
restrict MV-algebras to the Boolean algebras. We verify that 〈x〉 ∈ V (AG(A)) for
all x ∈ A\{0, 1}. The correspondences between Γ(A) and AG(A) are studied, where
Γ(A) is the zero-divisor graph of A. We prove that dmax(AG(A)) = 3 iff | B |≥ 3 or
| C |≥ 3, where B, C are two MV-algebras satisfying B × C is isomorphic to A and
| B |, | C |≥ 2. In addition, for any ideal I of A, we denote IA = A\{I ∪{1}}∪{0}. If
AG(A) is a star graph with I as its center and IA is not an ideal of A, we verify that
A has the unique 0-minimal ideal I. In Section 6, we study the vertex coloring and
girth of AG(A) for an MV-algebra A. We get two lower bounds | Iann |, | M0(A) |
and an upper bound 2χ(Γ(A)) − 1 for χ(AG(A)), where ann(A\{1}) ⊆ A\{1}, Iann is
the set of all nonzero ideals of A which are contained in ann(A\{1}), M0(A) is the
set of all 0-minimal ideals of A. Finally, we find that g(AG(A)) ∈ {3, 4, ∞}. And
we show that g(AG(A)) = 3 if | M0(A) |≥ 3.

2 Preliminaries
In this section, for the convenience of readers, we give some basic definitions and
theorems on MV-algebras, semigroups and graph theory which will be used in the
following sections.
Definition 2.1. ([20, Definition 1.1.1]) An MV-algebra (A, ⊕, ∗, 0) is an algebra
such that (A, ⊕, 0) is a commutative monoid, and for all x, y ∈ A satisfying the
followings:
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(MV1) x∗∗ = x;
(MV2) x ⊕ 0∗ = 0∗;
(MV3) (x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x.

By Definition 2.1, let A be a set such that 0 ∈ A. If (A, ⊕, ∗) satisfies (MV1)-
(MV3) for any x, y ∈ A, and the operation ⊕ satisfies associative-commutative, then
A is an MV-algebra. Therefore, for any MV-algebra A, (A, ⊕) can be regarded as
a semigroup. The algebra (A, ⊕, ∗, 0) is nontrivial if its inverse has more than one
element. That is to say, an MV-algebra is nontrivial if and only if 0 6= 1. On each
MV-algebra A, the constant 1 and the operation ⊙ are defined as: 1 =def 0∗ and
x ⊙ y =def (x∗ ⊕ y∗)∗, which implies that x ⊕ y = (x∗ ⊙ y∗)∗. From [20], for each
MV-algebra A and any x ∈ A, we have the following well-known properties:

• (A, ⊙, ∗, 1) is an MV-algebra. It follows that (A, ⊙, 1) is a commutative monoid.
In addition, it is obvious that (A, ⊙) is also a semigroup.

• 1∗ = 0.
• x ⊕ 1 = 1 and x ⊕ x∗ = 1. Thus, x ⊙ x∗ = 0.
Let A and B be two MV-algebras. A function H : A −→ B satisfying the

conditions: (1) H(0) = 0; (2) H(x ⊕ y) = H(x) ⊕ H(y) and (3) H(x∗) = H∗(x) is
called a homomorphism, where x, y ∈ A. A homomorphism H is an isomorphism
if it is a surjective one-one homomorphism. We use A ∼= B to denote there is an
isomorphism between two MV-algebras A and B by [20].

Let SA be a subset of A with 0 ∈ SA. SA is said a subalgebra of A if it is closed
under the operations of A, and also equipped with the restriction to SA of these
operations. For all x, y ∈ A, if x∗ ⊕ y = 1, we denote x ≤ y. It implies that “ ≤ ”
is a partial order of A, which called the natural order of A. An MV-chain is an
MV-algebra whose natural order is total.

For any x, y ∈ A, denote x ⊖ y = x ⊙ y∗. And denote the lattice by L(A) =
(A, ∨, ∧, 0, 1), where the operations ∨ and ∧ for any x, y ∈ A are given as follows:
x ∨ y = (x ⊙ y∗) ⊕ y = (x ⊖ y) ⊕ y, x ∧ y = (x∗ ∨ y∗)∗ = x ⊙ (x∗ ⊕ y). Let A be
an MV-algebra. An element x of L(A) is complemented if there is y ∈ L(A) such
that x ∨ y = 1 and x ∧ y = 0. We use B(A) to denote the set of all complemented
elements of L(A). Boolean elements of A are elements of B(A). In fact, Boolean
algebras are precisely the MV-algebras satisfying the property: x ⊕ x = x by [20,
Corollary 1.5.5]. We always use Bn to denote the n-element Boolean algebras.

Example 2.2. Consider the real unit interval [0, 1]. For any m, n ∈ [0, 1], let
⊕ : m ⊕ n = min{1, m + n} and ∗ : m∗ = 1 − m. It is obvious that ([0, 1], ⊕, ∗, 0) is
an MV-algebra and m ⊙ n = max{0, m + n − 1}.

Obviously, for any n ≥ 2, where n is an integer number, the subset Ln =
{0, 1

n−1 , 2
n−1 , · · ·, n−2

n−1 , 1} is a subalgebra of [0, 1]. It is easy to get that L2 is a
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2-element MV-chain. In addition, from [1], we have that L2 × L2 is isomorphic to
the 4-element Boolean algebra B4.

Definition 2.3. ([20]) Let A be an MV-algebra. A subset I of A is called an ideal
if it satisfies the following:

(i) 0 ∈ I;
(ii) if x ∈ I, y ∈ A and y ≤ x, then y ∈ I;
(iii) I is closed under the operation ⊕.

The set of all ideals of an MV-algebra A is denoted by I(A) and I∗(A) =
I(A)\{〈0〉}, where 〈0〉 = {0} is the zero ideal of A. And we denote IJ = {a ⊙ b |
a ∈ I, b ∈ J} for any ideals I, J of A. For any subset W of A, we denote
〈W 〉 = {⋂

I | W ⊆ I and I ∈ I(A)}, and we call that 〈W 〉 is the ideal gener-
ated by W . Particularly, for any element w ∈ A, the principal ideal generated by
w is denoted by 〈w〉 = 〈{w}〉 = {x ∈ A | x ≤ nw for some integer number n ≥ 0},
where nw = w⊕w⊕···⊕w (n times). We denote 〈I ∪{w}〉 = {x ∈ A | x ≤ nw⊕a for
some n ∈ N and a ∈ I}, where I is an ideal of A. For an ideal I of the MV-algebra
A, if I 6= A, then I is said proper. An MV-algebra A is called simple if and only if
it has exactly two ideals. That is to say, I(A) = {〈0〉, A}. Minimal ideals are ideals
that have zero intersection with all ideals that do not contain them ([18]). An ideal
I of A is called a maximal ideal if I is proper and I ⊆ J if only if J = A. The set
Rad(A) is called the radical of A, which is the intersection of all maximal ideals of
A.

Lemma 2.4. ([20, Lemma 1.2.1]) Let A be an MV-algebra and W ⊆ A. If W = ∅,
we denote 〈W 〉 = {0}. If W 6= ∅, then

〈W 〉 = {w ∈ A | w ≤ w1 ⊕ w2 ⊕ · · · ⊕ wn for some w1, ..., wn ∈ W }.

We also have the following conclusions for MV-algebras.

Lemma 2.5. ([20, Lemma 1.1.4] and [1, Lemma 1]) Let A be an MV-algebra. Then
the following conditions are equivalent for all elements x, y of A:

(1) x ≤ y;
(2) x∗ ⊕ y = 1;
(3) x ⊙ y∗ = 0;
(4) x ∨ y = y;
(5) y∗ ≤ x∗;
(6) for any z ∈ A, x ⊕ z ≤ y ⊕ z and x ⊙ z ≤ y ⊙ z.

Theorem 2.6. ([20, Theorem 1.5.3]) Let A be an MV-algebra. For any x ∈ A the
following are equivalent:
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(1) x ∈ B(A);
(2) x ∨ x∗ = 1;
(3) x ∧ x∗ = 0;
(4) x ⊕ x = x;
(5) x ⊙ x = x;
(6) x ⊕ y = x ∨ y for any element y ∈ A;
(7) x ⊙ y = x ∧ y for any element y ∈ A.

By Theorem 2.6, it is easy to get that x ∈ B(A) if and only if x∗ ∈ B(A), which
follows that x∗ ⊙ x∗ = x∗ and x∗ ⊕ x∗ = x∗.

Lemma 2.7. ([20] and [5]) Let A be an MV-algebra. Then for any x, y, z ∈ A, the
following conditions hold in A:

(1) x ⊙ y ≤ x ∧ y ≤ x;
(2) y ≤ x ∨ y ≤ x ⊕ y;
(3) distributivity : x ⊕ (y ∧ z) = (x ⊕ y) ∧ (x ⊕ z), x ⊙ (y ∨ z) = (x ⊙ y) ∨ (x ⊙ z);
(4) x ⊕ y = y iff x ∧ y∗ = 0;
(5) if x ⊙ y = x ⊙ z and x ⊕ y = x ⊕ z, then y = z.

Lemma 2.8. ([20, Corollary 3.5.4]) Let A be an MV-algebra. Then A is the simple
MV-algebra and | A | is finite if and only if there is an isomorphism between A and
Ln for some integer number n ≥ 2.

Let S be a semigroup. An ideal T of S is a nonempty subset such that ST ⊆ T
and T S ⊆ T . Any nonzero ideal of S can be equal to a union of principal ideals
of S by [14]. Let I be a proper ideal. I is called an annihilating-ideal of S if
there is an ideal J 6= 〈0〉 of S such that IJ = 〈0〉. A subset T of a semigroup
S is called subsemigroup if it is closed with respect to multiplication and T 6= ∅.
For an element s of S, if there exists an element t ∈ S such that st = 0 and
t 6= 0, then s is called a zero-divisor by [10, Definition 1.3.9]. In [17], a partially
ordered set X is called to satisfy the ascending chain condition (ACC) if for every
ascending sequence a1 ≤ a2 ≤ a3 ≤ · · ·, there exists a positive integer number
n satisfying an = an+1 = an+2 = · · ·, where ai ∈ X for any i ∈ {1, 2, 3, ....}.
Similarly, if for any descending sequence a1 ≥ a2 ≥ a3 ≥ ·· ·, there exists n such that
an = an+1 = an+2 = · · ·, then X is said to satisfy the descending chain condition
(DCC).

For any subset T ⊆ S, the annihilator of T is ann(T ) = {s ∈ S | st = 0 for
all t ∈ T }, where S is a semigroup. If an ideal I of S is minimal within the set
I∗(S) = {I | I is an nonzero ideal of S}, we call that the 0-minimal ideal. In
addition, recall that a family F = {Ti : i ∈ Λ} of subsets of a set X is called a
partition of X if it satisfies the following conditions:
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(1) Ti 6= ∅ for all i ∈ Λ;
(2) either Ti = Tj or Ti ∩ Tj = ∅ for all i, j ∈ Λ;
(3)

⋃{Ti : i ∈ Λ} = X. ([12])
Call that sets S and T have the same cardinality (or cardinal number) and write

| S |=| T | if there is a bijection from S to T.
Next, we give some notions about graphs.
By [21], a graph G consists of V (G) and E(G), where V (G) is the vertex set of G

and E(G) is a finite family of unordered pairs of vertices of G which are called edges.
An edge {v1, v2} is called to join the vertices v1 and v2. The two vertices v1, v2 are
called the ends of this edge. Two vertices v1, v2 ∈ V (G) are adjacent if they are
joined by an edge, and the vertices v1 and v2 are incident with such an edge. Two
vertices may have several edges joining them, such edges are called multiple edges.
A loop is an edge with identical ends. Each loop is regarded as two edges. A walk is
a way of getting from one vertex to another and consists of a sequence of edges, one
following after another. If except for the beginning and end vertices which coincide,
other vertices appear once, then the walk is called a path. A cycle is a walk in which
no vertex appears more than once. More associated definitions are as follows:

• A graph G is connected if any two vertices of G are connected by a path.
• A simple graph is a graph with no loops and multiple edges.
• If any two distinct vertices are joined by an edge in the graph G, then G is

called a complete graph. We use Kn to denote the complete graph with n-vertex.
• Let G be a graph. If E(G) is empty, then G is said an empty graph.
• The graph with no vertices is called a null graph.
• We use deg(x) to denote the number of edges incident with a vertex x in the

graph G, which is called the degree of x.
• The distance between any two vertices v1, v2 in a graph is the length of the

shortest path from v1 to v2 and denoted by d(v1, v2). The diameter of a graph G is
the maximum of the distance between any two vertices. We denote the diameter of
a graph G by dmax(G) = maxv1,v2∈V (G) d(v1, v2).

• If there is one vertex in a graph G which is adjacent to every other vertex and
no other edges. Then G is a star graph, and this vertex is said the center of the
graph G.

• The length of the shortest cycle in a graph G is called the girth of G, and
denoted by g(G). A cycle graph is a graph in which deg(x) = 2 for each vertex x.
Particularly, the cycle graph on 1-vertex is a loop. If a graph G contains no cycles,
we denote g(G) = ∞. For more details about applications of girth, we recommend
[6].

If V (H) ⊆ V (G) and E(H) ⊆ E(G), then the graph H is said a subgraph of the
graph G. The two graphs G1 and G2 are isomorphic if there is a bijection h from G1
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to G2 of vertices satisfies that v1 is adjacent to v2 in G1 if and only if h(v1), h(v2)
are adjacent in G2 for all v1, v2 ∈ V (G1), and write it by G1 ∼= G2. By [13], a clique
of a graph G is a complete subgraph of G . That is, an n-vertex clique of a graph
G is a subgraph of G which is isomorphic to Kn. A maximum clique of a graph G
is a clique such that there is no clique with more vertices. We use ω(G) to denote
the clique number of a graph G which is the size of the maximum clique in G.

Let G be a graph which contains no loops. If every vertex in G can be assigned
one of k colors and any two adjacent vertices have different colors, then we call that
G is k-colorable. The chromatic number χ(G) of a graph G is the smallest integer
number k such that G is k-colorable, and write χ(G) = k. In general, we say a vertex
coloring is proper if there is no same color between any two adjacent vertices. For
any graph G, it must be that ω(G) ≤ χ(G). For more details about graph theory,
we recommend [21, 13, 3].

Gan and Yang [1] studied the zero-divisor graph Γ(A) for an MV-algebra
(A, ⊕, ∗, 0). Γ(A) is a simple graph whose vertex set is V (Γ(A)) = {m ∈ A |
there is n ∈ A\{0} satisfying m ⊙ n = 0} and the edge set E(Γ(A)) = {the edge
m − n | m ⊙ n = 0, where m, n ∈ V (Γ(A)) such that m 6= n}. Further, they
verified that Γ(A) is a connected graph and dmax(Γ(A)) ≤ 3 by [1, Theorem 1]
and V (Γ(A)) = A\{0, 1} by [1, Proposition 2]. For more details about Γ(A), we
recommend [1].

Proposition 2.9. ([1, Lemma 4]) Let A be an MV-algebra and C∗(A) = {a ∈ A |
a = a∗}. Then | C∗(A) |≤ 1.

Lemma 2.10. ([1, Theorem 3]) Let A be an MV-algebra and | A |= 4. Then A ∼= L4
or A ∼= B4.

DeMeyer and Schneider [14] introduced the annihilating-ideal graph AG(S) for
the commutative semigroup S. AG(S) is a simple graph whose vertices are nonzero
annihilating-ideals of S and in which any two distinct vertices I, J are adjacent if
and only if IJ = 〈0〉, where 〈0〉 is the zero ideal of S. We have that AG(S) is
also a connected graph with dmax(AG(S)) ≤ 3 by [14, Theorem 8]. The structure
of annihilating-ideal graphs of commutative semigroups and the vertex coloring of
them are deeply studied by [14]. On the basis of [14], the connectivity, diameter,
girth and so on of AG(A) for the MV-algebra A are described in this paper.

3 The Annihilating-ideal Graphs of MV-algebras
In this section, we study another type of graph of MV-algebras which is called the
annihilating-ideal graph AG(A) of an MV-algebra (A, ⊕, ∗, 0). We characterize the
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algebra (A, ⊕, ∗, 0) which dmax(AG(A)) equal to 0 and 1. We also study the structure
of AG(A), where the cardinality of A up to 7.

In [1], the zero-divisor graph of MV-algebras whose vertices are elements is in-
troduced. By [9], the vertices of the zero-divisor graph of commutative semigroups
are also elements. Further, the annihilating-ideal graph of commutative semigroups
is given by [14], whose vertices are ideals. Note that an MV-algebra can be regarded
as a semigroup under the operations ⊕ or ⊙. We shall study the new type of graph
of MV-algebras whose vertices are ideals.

Definition 3.1. Let A be an MV-algebra. The annihilating-ideal graph AG(A) of
A is a simple graph with the vertex set V (AG(A)) = {I ∈ I∗(A) \ {A} | ∃J ∈ I∗(A)
such that IJ = 〈0〉} and the edge set E(AG(A)) ={the edge I −J | I, J ∈ V (AG(A))
satisfying I 6= J and IJ = 〈0〉}.

Let (A, ⊕, ∗, 0) be an MV-algebra and I, J be two ideals of A. Obviously, I ∩ J
is also an ideal of A. And if one of I and J is proper, we have that I ∩ J is also a
proper ideal of A. In addition, we claim that IJ ⊆ I ∩ J ⊆ I, J for ideals I, J of A.
In fact, for any x ∈ IJ , there are a ∈ I, b ∈ J such that x = a ⊙ b ≤ a, b by Lemma
2.7. Thus, x ∈ I and x ∈ J .

By [15, Theorem 2.1], for a commutative ring R, AG(R) is a connected graph
and dmax(AG(R)) ≤ 3. Moreover, if there is a cycle in AG(R), then g(AG(R)) ≤ 4.
Similarly, we have the following for the annihilating-ideal graph of an MV-algebra.

Theorem 3.2. Let A be an MV-algebra. Then the annihilating-ideal graph AG(A)
of A is a connected graph and dmax(AG(A)) ≤ 3. And if there exists a cycle in
AG(A), then g(AG(A)) ≤ 4.

Proof. (1) Let I, J be any two distinct vertices of AG(A). If IJ = 〈0〉, there is
nothing to prove. Assume that IJ 6= 〈0〉. Consider the following conditions:

• Suppose that both I2 and J2 are zero ideals.
Firstly, we claim that I ∩ J ∈ V (AG(A)). In fact, if I ∩ J = 〈0〉, it follows from

IJ ⊆ I ∩ J = 〈0〉 that IJ = 〈0〉, which is a contradiction. So I ∩ J 6= 〈0〉. We have
that I ∩ J 6= I. Otherwise, IJ ⊆ J2 = 〈0〉, which is also a contradiction. Similarly,
it must be I ∩ J 6= J . Thus, I ∩ J 6= 〈0〉, I, J . Since I(I ∩ J) ⊆ I2 = 〈0〉 and
J(I ∩ J) ⊆ J2 = 〈0〉, then there exists a path I − I ∩ J − J between I and J .

• Suppose that one of I2, J2 is not equal to 〈0〉.
Without loss of generality, suppose that I2 6= 〈0〉 and J2 = 〈0〉. Since I ∈

V (AG(A)), there must be a vertex L of AG(A) that satisfies IL = 〈0〉. It must be
J 6= L from IJ 6= 〈0〉. Next, we consider the proper ideal J ∩ L.

(i) If J ∩ L = 〈0〉, we have that JL = 〈0〉 from JL ⊆ J ∩ L = 〈0〉. So there is a
path I − L − J between I and J .
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Then, assume that J ∩ L 6= 〈0〉.
(ii) If J ∩ L = J , it follows that IJ ⊆ IL = 〈0〉, which contradicts IJ 6= 〈0〉.
(iii) If J ∩ L = L, we have JL ⊆ J2 = 〈0〉, which implies that J is adjacent to L

in AG(A). Hence, there is a path I − L − J between I and J .
(iv) If J ∩ L = I, we get that I2 = I(J ∩ L) ⊆ IL = 〈0〉, a contradiction to

I2 6= 〈0〉.
(v) Assume that J ∩ L 6= L. We have that I(J ∩ L) ⊆ IL = 〈0〉 and J(J ∩ L) ⊆

J2 = 〈0〉. So there is a path I − J ∩ L − J between I and J .
• Suppose that I2, J2 6= 〈0〉.
There are ideals L, P ∈ V (AG(A)) such that IL = JP = 〈0〉 by I, J ∈

V (AG(A)). Then we consider the proper ideal L ∩ P .
(i) If L ∩ P = 〈0〉, then there is a path I − L − P − J between I and J from

LP ⊆ L ∩ P = 〈0〉.
(ii) If L ∩ P = I, it follows that IJ = J(L ∩ P ) ⊆ JP = 〈0〉, a contradiction.

Similarly, we have that L ∩ P 6= J .
(iii) If L ∩ P = L, then JL ⊆ IP = 〈0〉. So there is a path I − L − J between I

and J . Similarly, if L ∩ P = P , there exists a path I − P − J between I and J .
(iv) Assume that L ∩ P 6= 〈0〉. Since I(L ∩ P ) ⊆ IL = 〈0〉, we get that L ∩ P ∈

V (AG(A)) . In addition, it must be that J(L ∩ P ) ⊆ JP = 〈0〉, which implies that
there exists a path I − L ∩ P − J between I and J .

Therefore, above cases imply that AG(A) is connected and dmax(AG(A)) ≤ 3.
(2) Suppose that AG(A) contains cycles and g(AG(A)) = n. Let I1−I2−···−In−

I1 be a cycle of AG(A), where Ii ∈ V (AG(A)) and Ii 6= Ij for any i, j ∈ {1, 2, ..., n},
i 6= j. If n ≤ 4, there is nothing to prove. Assume that n ≥ 5. It is enough to show
that I1 ∩ I4 6= 〈0〉. In fact, if I1 ∩ I4 = 〈0〉, we have that I1I4 ⊆ I1 ∩ I4 = 〈0〉. Thus,
there is a cycle I1 −I2 −I3 −I4 −I1 with length 4 in AG(A), which is a contradiction
by n ≥ 5. Then we consider the following cases:

• I1 ∩ I4 6= I1, I4. If I1 ∩ I4 = I1, we have that I1I3 ⊆ I4I3 = 〈0〉. It follows that
there is a cycle I1 − I2 − I3 − I1, which is a contradiction. So I1 ∩ I4 6= I1. Similarly,
we can obtain that I1 ∩ I4 6= I4. Otherwise, there will be a cycle I2 − I3 − I4 − I2, a
contradiction.

• I1 ∩ I4 6= I2, I3. If I1 ∩ I4 = I2, then we have I2In ⊆ I1In = 〈0〉. It implies
that there is a cycle I2 − I3 − · · · − In−1 − In − I2 which with length n − 1, which
is a contradiction. Similarly, it must be I1 ∩ I4 6= I3, for otherwise, it follows from
I3 ⊆ I1 that there exists a cycle I3 − I4 − · · · − In−1 − In − I3 with length n − 2, a
contradiction as well.

Hence, I1 ∩ I4 6= I1, I2, I3, I4. We have that I2(I1 ∩ I4) ⊆ I2I1 = 〈0〉 and
I3(I1 ∩ I4) ⊆ I3I4 = 〈0〉. Then, there is a cycle I2 − I1 ∩ I4 − I3 − I2, again a
contradiction.
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By summarizing the above, g(AG(A)) ≤ 4.

For each Artinian ring R, by [15, Proposition 1.3], we have that any nonzero
proper ideal corresponds to a vertex in AG(R). That is to say, | V (AG(R)) |=|
I(R)\{〈0〉, R} |. Moreover, for any MV-algebra A, from [1, Proposition 2] we see
that | V (Γ(A)) |=| A\{0, 1} |.

Example 3.3. Let Ln be the subalgebra in Example 2.2. From [20] we see that Ln

is a simple MV-chain of rank n, where n ≥ 2. It is easy to get that | V (Γ(Ln)) |=|
Ln\{0, 1} |= n−2. However, since Ln is simple, Ln has only one proper ideal I = 〈0〉
for any n ≥ 2. So we have that | V (AG(Ln)) |= 0 and then | E(AG(Ln)) |= 0. That
is to say, AG(Ln) is a null graph for all integer number n ≥ 2.

Let A be an MV-algebra such that A ∼= Ln, where n ≥ 2 and | A | is finite. Then
it follows from Lemma 2.8 that the annihilating-ideal graph of A is a null graph.

By [1], if A is an MV-algebra satisfying | A |≤ 7, then A is isomorphic to the MV-
algebra Ln, the direct product Ln × Lm or the 4-element Boolean algebra B4. And
the structure of MV-algebras with cardinality greater than 7 is difficult to describe.
So let A be an MV-algebra such that 3 ≤| A |≤ 7. Next, we will study the structure
of the annihilating-ideal graph of A.

Remark 3.4. Let A be an MV-algebra with | A |= 3, 5 or 7. Then, we have that
V (AG(A)) = ∅. Suppose that | A |= 3, 5 or 7. From [1, Theorem 2, Theorem 6,
Theorem 8] we get that A ∼= L3, A ∼= L5 or A ∼= L7. It follows that AG(A) is a null
graph by Example 3.3.

Remark 3.5. For any MV-algebra A, from [1, Theorem 2] we know that | A |= 3 if
and only if Γ(A) is an empty graph. However, we claim that the converse of Remark
3.4 does not necessarily hold.

Consider the MV-algebra M1 = {0, m, n, 1} and the operations ∗, ⊕ and ⊙ are:

∗ 0 m n 1
1 n m 0

⊕ 0 m n 1
0 0 m n 1
m m n 1 1
n n 1 1 1
1 1 1 1 1

⊙ 0 m n 1
0 0 0 0 0
m 0 0 0 m
n 0 0 m n
1 0 m n 1
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Thus, by Lemma 2.7 we will obtain that m ≤ n from m ≤ m ⊕ m = n, which
implies that M1 is an MV-chain and M1 ∼= L4. It is easy to get that AG(M1) is a
null graph by Example 3.3. However, | M1 |= 4 6= 3, 5 or 7.

In the following, we will characterize AG(A) which with | A |= 4 or 6.
By Lemma 2.10, we see that A ∼= L4 or A ∼= B4 for any 4-element MV-algebra

A. Particularly, let A = {0, a, b, 1} be an MV-algebra such that A ∼= B4. From
simple operations we have that V (AG(A)) = {{0, a}, {0, b}} and {0, a} ·{0, b} = 〈0〉.
It follows that AG(A) ∼= K2. Thus, we have the following.

Theorem 3.6. Let A be an MV-algebra and | A |= 4. Then either AG(A) is a null
graph, or AG(A) ∼= K2 with dmax(AG(A)) = 1.

Proof. Let A be an MV-algebra with | A |= 4. By Lemma 2.10, we have A ∼= L4
or A ∼= B4. If A ∼= L4, then AG(A) is a null graph by Example 3.3. If A ∼= B4, it
implies from the above discussion that AG(A) ∼= K2 and then dmax(AG(A)) = 1.

Proposition 3.7. Let A be an MV-algebra such that A ∼= Ln ×Lm, where n, m ≥ 2.
Then AG(A) ∼= K2 with dmax(AG(A)) = 1.

Proof. Since A ∼= Ln × Lm, it must be that AG(A) ∼= AG(Ln × Lm). Without loss
of generality, suppose that n ≤ m. It is obvious that Ln × Lm has only two nonzero
proper ideals I1 = {0} × Lm, I2 = Ln × {0} and I1I2 = 〈0〉. Thus, we have that
V (AG(Ln × Lm)) = {I1, I2}. It follows that K2 ∼= AG(Ln × Lm) ∼= AG(A). So we
have dmax(AG(A)) = 1.

Example 3.8. Let M2 = {0, x, y, z, w, 1} be the 6-element MV-algebra in [1, Ex-
ample 3] which is defined as follows:

∗ 0 x y z w 1
1 w z y x 0

⊕ 0 x y z w 1
0 0 x y z w 1
x x z w z 1 1
y y w y 1 w 1
z z z 1 z 1 1
w w 1 w 1 1 1
1 1 1 1 1 1 1

⊙ 0 x y z w 1
0 0 0 0 0 0 0
x 0 0 0 x 0 x
y 0 0 y 0 y y
z 0 x 0 z x z
w 0 0 y x y w
1 0 x y z w 1
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On the one hand, it is obvious that y ≤ w, x ≤ z and x ≤ w from z ⊕ w = 1 and
w ⊕ w = 1. Then it is easy to get that V (AG(M2)) = {{0, y}, {0, x, z}} and {0, y} ·
{0, x, z} = 〈0〉. For convenience, we denote I1 = {0, y} and I2 = {0, x, z}. Thus, by
the simple operation, the graphs AG(M2) and Γ(M2) of M2 are respectively:

I1 I2

Figure 1. AG(M2)

wx

y z

Figure 2. Γ(M2)

We directly obtain that dmax(AG(M2)) = 1.
On the other hand, from [1, Example 3] we get that M2 ∼= L2 × L3. Hence, from

Proposition 3.7 we have that AG(M2) ∼= K2 and dmax(AG(M2)) = 1.

Theorem 3.9. Let A be an MV-algebra such that | A |= 6.
Then either V (AG(A)) = ∅, or dmax(AG(A)) = 1.

Proof. Let A be an MV-algebra such that | A |= 6. By [1, Theorem 7], we see that
A ∼= L6 or A ∼= L2 × L3. If A ∼= L6, then AG(A) is a null graph by Example 3.3. If
A ∼= L2 × L3. It follows from Proposition 3.7 that dmax(AG(A)) = 1.

4 Star Graphs
In this section, for the MV-algebra (A, ⊕, ∗, 0), we mainly use the annihilator of
A\{1} to investigate the annihilating-ideal graph AG(A). If there is a 0-minimal
ideal I of A and an ideal J such that A = I ⊕ J and I ∩ J = {0}, then AG(A) is a
star graph, where J contains no nonzero zero-divisors when (J, ⊙) is a semigroup.

Remark 4.1. We denote ann(A\{1}) = {a ∈ A | a⊙b = 0 for all b ∈ A\{1}}, where
ann(A\{1}) is called the annihilator of A\{1}. It is easy to get that ann(A\{1}) ⊆
A. Then we consider the following conditions:

(1) It is possible that ann(A\{1}) = 〈0〉. Let consider the MV-algebra M2 in
Example 3.8. It is obvious that ann(M2\{1}) = 〈0〉 from Example 3.8. In particular,
suppose that ann(A\{1}) = A. That is, 1 ∈ ann(A\{1}) = {a ∈ A | a ⊙ b = 0 for
all b ∈ A\{1}}, which implies that A = {0, 1} by 1 ⊙ x = x for all x ∈ A.

(2) We claim that ann(A\{1}) = A\{1} is possible. Consider the 3-element MV-
algebra M3 = {0, a, 1} in which a = a∗ and a ⊕ a = 1, which implies that a ⊙ a = 0.
Then, I(M3) = {〈0〉, M3} and ann(M3\{1}) = {x ∈ M3 | x ⊙ y = 0 (∀y ∈ {0, a})} =
{0, a} = M3\{1}.
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(3) For any commutative zero-divisor semigroup S, it must be that ann(S) is an
ideal of S, either ann(S) = S, ann(S) = 〈0〉 or ann(S) ∈ A∗(S) from [14]. However,
for an MV-algebra A, ann(A\{1}) is not necessarily an ideal of A. In fact, although
it can guarantee that y ∈ ann(A\{1}) for any y ≤ x and x ∈ ann(A\{1}), a ⊕ b
does not necessarily belong to ann(A\{1}) for a, b ∈ ann(A\{1}). For example, we
consider the MV-algebra M3 in Remark 4.1 (2). Since a ⊕ a = 1 /∈ ann(M3\{1}),
then ann(M3\{1}) = {0, a} is not an ideal of M3 .

Next, we will use ann(A\{1}) to further characterize the structure of the annihil-
ating-ideal graph of an MV-algebra A.

Theorem 4.2. Let A be an MV-algebra such that ann(A\{1}) = A\{1}. Then,
A ∼= L3 and AG(A) is a null graph.

Proof. Suppose that ann(A\{1}) = A\{1}. For any two nonzero elements a, b ∈
A\{1}, we have that a ⊙ a = a∗ ⊙ a∗ = b ⊙ b = b∗ ⊙ b∗ = a ⊙ b = a∗ ⊙ b∗ = 0. It
implies that a ⊕ a = a ⊕ b = 1 and a ⊙ a = a ⊙ b = 0, so a = b. Thus, | A |= 3. By
Remark 3.4, we have that V (AG(A)) = ∅.

Remark 4.3. Consider the 4-element Boolean algebra B4 = {0, a, b, 1} or the alge-
bra M2 in Example 3.8. From Theorem 3.6 and Figure 1 we see that AG(B4) ∼= K2 ∼=
AG(M2) and dmax(AG(B4)) = dmax(AG(M2)) = 1 ≤ 2. However, ann(B4\{1}) =
ann(M2\{1}) = 〈0〉 /∈ V (AG(A)).

Proposition 4.4. Let A be an MV-algebra. If there are a 0-minimal ideal I and an
ideal J such that I ∩ J = {0} and K ⊆ J for any I 6= K ∈ V (AG(A)), then AG(A)
has a vertex which is adjacent to other vertices.

Proof. Obviously, J is proper. Otherwise, we have that I ∩ J = I, contradicting the
0-minimality of I. Since IJ ⊆ I ∩ J = 〈0〉, I is adjacent to J in AG(A). For any
K ∈ V (AG(A)) with K 6= I, since K ⊆ J , we get that IK ⊆ IJ = 〈0〉. Then, I is
adjacent to K in AG(A) from IK = 〈0〉. Thus, there is a vertex I of AG(A) such
that IJ = 〈0〉 for all J ∈ V (AG(A)) and I 6= J .

From Proposition 4.4, the vertex which is adjacent to any other vertex is exactly
a 0-minimal ideal of A. Now, we will further characterize those MV-algebras whose
annihilating-ideal graphs are the star graphs.

Theorem 4.5. Let A be an MV-algebra. If there are two ideals I, J such that
A = I ⊕ J and I ∩ J = {0}, then AG(A) is a star graph, where I is a 0-minimal
ideal of A and J contains no nonzero zero-divisors when (J, ⊙) is considered as a
semigroup.
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Proof. Suppose that A = I ⊕J and I ∩J = {0}. It is obvious that I, J ∈ I∗(A)\{A}
and IJ ⊆ I ∩ J = {0}. So we have that I is adjacent to J in AG(A). Let P ∈
V (AG(A)) such that P 6= I. Then, P $ A = I ⊕ J = {a ⊕ b | a ∈ I, b ∈ J}. That
is, for any element p ∈ P , there are p1 ∈ I, p2 ∈ J such that p = p1 ⊕ p2. So let
P = K ⊕ H, where K is a subset of I and H ⊆ J . Next, consider the following
cases:

• If P = K ⊕ 〈0〉 for some 〈0〉 6= K ⊆ I, which is a contradiction by the
0-minimality of I.

• Suppose that P = 〈0〉 ⊕ H for some 〈0〉 6= H ⊆ J . Then, it follows from
IP ⊆ IJ = 〈0〉 that I is adjacent to P in AG(A). Let Q ∈ V (AG(A)) such that
Q 6= P, I. It must be that Q contains some nonzero elements of I ⊕ J . Thus, we
can claim that QP 6= 〈0〉. In fact, if QP = 〈0〉. Then, there is a nonzero element
a ⊕ b ∈ (I ⊕ J) ∩ Q (a ∈ I, 0 6= b ∈ J) such that b ⊙ p ≤ (a ⊕ b) ⊙ p = 0 for all p ∈ P
from Lemma 2.5 and Lemma 2.7. Since P ⊆ J , it must be that J has a nonzero
zero-divisor b, which is a contradiction. Thus, we conclude that P is only adjacent
to I in AG(A).

• If P = K ⊕ H, where K is a nonzero subset of I and 〈0〉 6= H ⊆ J . Since
AG(A) is connected by Theorem 3.2, there must be a vertex L ∈ V (AG(A)) such
that PL = 〈0〉. That is equivalent to (K⊕H)L = 〈0〉. We have that KL = HL = 〈0〉
from KL, HL ⊆ (K ⊕ H)L. It is enough to prove that L ∩ J = {0}. In fact, suppose
that L∩J 6= {0}. Then, there exists an element x ∈ L∩J and x 6= 0. It follows that
x is a nonzero zero-divisor of J from HL = 〈0〉 and 〈0〉 6= H ⊆ J , a contradiction.
Thus, since I ∩ J = {0}, I ⊕ J = A and I is a 0-minimal ideal of A, it must be
L = I. That is to say, any vertex that adjacent to P is equal to I.

Therefore, AG(A) is a star graph, and its center is the 0-minimal ideal I.

5 The Annihilating-ideal Graphs of Boolean Algebras
In this section, we restrict MV-algebras to Boolean algebras to study the graph
AG(A). Let A be a Boolean algebra. Connections between AG(A) and Γ(A) are
studied. We also verify that AG(A) is a star graph if and only if there is a vertex
of AG(A) which is adjacent to every other vertex. In addition, for any ideal I of A,
we denote IA = A\{I ∪ {1}} ∪ {0} which is not necessarily an ideal of A. For the
star graph AG(A) whose center is I, if IA is not an ideal of A, we find that A has
the unique 0-minimal ideal I.

Remark 5.1.
(1) By Remark 4.1 (3), ann(A\{1}) is not necessarily an ideal of an MV-algebra

A. However, for a Boolean algebra A, we will obtain that ann(A\{1}) = 〈0〉 is an
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ideal of A from x ⊙ x = x for all x ∈ A. Else, for any x ∈ A, the principal ideal
generated by x is 〈x〉 = {y | y ≤ nx for some integer n ≥ 0} = {y | y ≤ x} by
x ⊕ x = x.

(2) Let A be an MV-algebra. For any two elements m, n ∈ A\{0, 1} and m 6= n,
it is possible that 〈m〉 = 〈n〉. And the principal ideal generated by z ∈ A\{0, 1} may
be equal to A. For example, consider the algebra M2 = {0, x, y, z, w, 1} in Example
3.8. It is easy to get that 〈x〉 = 〈z〉 = {0, x, z} and 〈w〉 = M2. However, for Boolean
algebras, we have the following.

Proposition 5.2. Let A be a Boolean algebra. Then 〈x〉 ∈ V (AG(A)) for any
element x ∈ A\{0, 1}.

Proof. Let A be a Boolean algebra and x ∈ A, x 6= 0, 1. It follows from 0 6= x ∈ 〈x〉 =
{y | y ≤ x} that 〈x〉 6= 〈0〉. Suppose that 〈x〉 = A. Then, we have that 1 ∈ A = 〈x〉.
It must be that x = 1, which is a contradiction. That is to say, 〈x〉 ∈ I∗(A)\{A}
for any nonzero element x ∈ A\{1}. Since x 6= 0, 1, we have 〈x∗〉 ∈ I∗(A)\{A}
and 〈x〉 · 〈x∗〉 = 〈0〉. In addition, note that 〈x〉 6= 〈x∗〉. Otherwise, it must be that
x = x ⊕ x = 1, a contradiction. Thus, 〈x〉 must be a vertex of AG(A).

For x, y ∈ A, we always say a principal ideal 〈x〉 is unique if 〈x〉 = 〈y〉 if and only
if x = y. In order to investigate the correspondences between Γ(A) and AG(A), the
following lemma is needed.

Lemma 5.3. Let A be a Boolean algebra. Then any principal ideal 〈x〉 generated
by x ∈ A\{0, 1} is unique and proper.

Proof. From Proposition 5.2 we see that any principal ideal generated by x ∈
A\{0, 1} is proper. Suppose that 〈a〉 = 〈b〉 for two elements a, b ∈ A\{0, 1} with
a 6= b. Since 〈a〉 · 〈a∗〉 = 〈0〉 and 〈b〉 · 〈b∗〉 = 〈0〉, we have that a∗ ⊙ b = a∗ ⊙a = 0 and
a∗ ⊕b = a∗ ⊕a = 1, which implies that a = b by Lemma 2.7. We get a contradiction.
Thus, 〈x〉 is unique and proper for any x ∈ A\{0, 1}.

Let A be a Boolean algebra. Since V (Γ(A)) = A\{0, 1}, then we have that
| V (AG(A)) |≥| V (Γ(A)) | by Proposition 5.2 and Lemma 5.3. Therefore, we have
the following.

Theorem 5.4. Let A be a Boolean algebra. Then there exists a subgraph of AG(A)
which is isomorphic to Γ(A).

Proof. Let a ∈ A\{0, 1}. Since Γ(A) is a connected graph, there exists b ∈ A\{0, 1}
such that b 6= a and a ⊙ b = 0. Since A is a Boolean algebra, we have that
〈a〉 6= 〈b〉 and 〈a〉, 〈b〉 ∈ V (AG(A)) by Proposition 5.2 and Lemma 5.3. We claim
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that 〈a〉·〈b〉 = 〈0〉. In fact, for any w1 ∈ 〈a〉 and any w2 ∈ 〈b〉, it must be w1 ≤ a and
w2 ≤ b. So we have that b∗ ≤ w∗

2 from Lemma 2.5 (5). By a ⊙ b = (a∗ ⊕ b∗)∗ = 0,
we get that a ≤ b∗. Thus, w1 ≤ a ≤ b∗ ≤ w∗

2. It implies w1 ⊙ w2 = 0. Therefore,
there exists an edge 〈a〉 − 〈b〉 in AG(A) by 〈a〉 · 〈b〉 = 〈0〉.

Conversely, suppose that 〈a〉 is adjacent to 〈b〉 in AG(A) for 〈a〉, 〈b〉 ∈ V (AG(A)).
It must be that a ⊙ b = 0, where a 6= b and a, b ∈ A\{0, 1} = V (Γ(A)). That is
to say, the two distinct vertices a, b are adjacent in Γ(A). Hence, the two vertices
〈a〉, 〈b〉 are adjacent in AG(A) iff a is adjacent to b in Γ(A) for any a, b ∈ A\{0, 1}.

Consider the subgraph ÂG(A) of AG(A) which with the vertex set {〈x〉 | x ∈
A\{0, 1}} and any two distinct vertices 〈x〉, 〈y〉 are adjacent iff 〈x〉 · 〈y〉 = 〈0〉 if and
only if x ⊙ y = 0. Since vertices x, y are adjacent in Γ(A) if and only if x ⊙ y = 0,
the map g : ÂG(A) −→ Γ(A) given by g(〈x〉) = x is a structure-preserving bijection.

Hence, we get Γ(A) ∼= ÂG(A).

We give an example to show that Theorem 5.4 does not necessarily hold on
MV-algebras.

Example 5.5. Let M4 = {0, p, q, s, t, u, v, w, x, y, z, 1} be the 12-element MV-
algebra in [2, Example 2.10] and the operations ∗, ⊕ be defined as follows:

∗ 0 p q s t u v w x y z 1
1 z y x w v u t s q p 0

⊕ 0 p q s t u v w x y z 1
0 0 p q s t u v w x y z 1
p p q q t u u w x x z 1 1
q q q q u u u x x x 1 1 1
s s t u s t u y z 1 y z 1
t t u u t u u z 1 1 z 1 1
u u u u u u u 1 1 1 1 1 1
v v w x y z 1 v w x y z 1
w w x x z 1 1 w x x z 1 1
x x x x 1 1 1 x x x 1 1 1
y y z 1 y z 1 y z 1 y z 1
z z 1 1 z 1 1 z 1 1 z 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1

So the operation ⊙ is:
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⊙ 0 p q s t u v w x y z 1
0 0 0 0 0 0 0 0 0 0 0 0 0
p 0 0 p 0 0 p 0 0 p 0 0 p
q 0 p q 0 p q 0 p q 0 p q
s 0 0 0 s s s 0 0 0 s s s
t 0 0 p s s t 0 0 p s s t
u 0 p q s t u 0 p q s t u
v 0 0 0 0 0 0 v v v v v v
w 0 0 p 0 0 p v v w v v w
x 0 p q 0 p q v w x v w x
y 0 0 0 s s s v v v y y y
z 0 0 p s s t v v w y y z
1 0 p q s t u v w x y z 1

We get that p ≤ q; p, s ≤ t; p, q, s, t ≤ u; p, v ≤ w; p, q, v, w ≤ x; s, v ≤ y and
p, s, t, v, w, y ≤ z from q ⊕ z = t ⊕ x = t ⊕ z = u ⊕ w = u ⊕ x = u ⊕ y =
u ⊕ z = w ⊕ z = x ⊕ y = x ⊕ z = z ⊕ z = 1. From the simple operation we have
that V (AG(M4)) = {P1, P2, P3, P4, P5, P6}, where P1 = {0, p, q}, P2 = {0, s}, P3 =
{0, p, q, s, t, u}, P4 = {0, v}, P5 = {0, p, q, v, w, x} and P6 = {0, s, v, y}. The graphs
Γ(M4),AG(M4) of M4 are as follows:

p

s

u
w

y

z

x

vt

q

Figure 3. Γ(M4)

P6 P1

P2
P5

P4
P3

Figure 4. AG(M4)

The graph Figure 4 implies that dmax(AG(M4)) = 3. Obviously, from Figure 3
and Figure 4, there is no subgraph of AG(M4) which is isomorphic to Γ(M4). In
fact, it is easy to get that 〈p〉 = 〈q〉 = P1, 〈t〉 = 〈u〉 = P3, 〈w〉 = 〈x〉 = P5 and
〈z〉 = 〈1〉.

In addition, by Figure 4, there exists a 3-vertex subgraph AG(M4) of AG(M4)
which forms a clique of AG(M4). The vertex set {P1, P2, P4} of AG(M4) exactly
consists of all 0-minimal ideals of M4.
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P1

P2

P4

Figure 5. AG(M4)

Proposition 5.6. Let A be a Boolean algebra. If there are two MV-algebras A1, A2
satisfying | A1 |≥ 2, | A2 |≥ 2 and A is isomorphic to A1×A2, then dmax(AG(A)) = 3
if and only if | A1 |≥ 3 or | A2 |≥ 3.

Proof. ⇐=) Suppose that | A1 |≥ 3 or | A2 |≥ 3. By [1, Proposition 4] we see that
dmax(Γ(A)) = 3. By Theorem 5.4, there is a subgraph of AG(A) which is isomorphic
to Γ(A). It implies that dmax(AG(A)) ≥ dmax(Γ(A)) = 3. By Theorem 3.2, we get
dmax(AG(A)) = 3.

=⇒) Suppose that dmax(AG(A)) = 3. Assume that | A1 |= 2 and | A2 |= 2.
It must be A1 = A2 = L2, then A1 × A2 = L2 × L2 ∼= B4 by Example 2.2. From
Remark 4.3 and A ∼= A1 × A2, we have that dmax(AG(A)) = dmax(AG(B4)) = 1,
which is a contradiction. Thus, | A1 |≥ 3 or | A2 |≥ 3.

Then we give an example to show that there do exist a Boolean algebra A such
that dmax(AG(A)) = 3.

Example 5.7.
(1) Let B8 = {0, u, v, w, x, y, z, 1} be the 8-element Boolean algebra and the

operations ∗, ⊕ be given as follows:

∗ 0 u v w x y z 1
1 z y x w v u 0

⊕ 0 u v w x y z 1
0 0 u v w x y z 1
u u u u u 1 1 1 1
v v u v u x 1 x 1
w w u u w 1 y y 1
x x 1 x 1 x 1 x 1
y y 1 1 y 1 y y 1
z z 1 x y x y z 1
1 1 1 1 1 1 1 1 1

Then, the operation ⊙ is:
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⊙ 0 u v w x y z 1
0 0 0 0 0 0 0 0 0
u 0 u v w v w 0 u
v 0 v v 0 v 0 0 v
w 0 w 0 w 0 w 0 w
x 0 v v 0 x z z x
y 0 w 0 w z y z y
z 0 0 0 0 z z z z
1 0 u v w x y z 1

By Lemma 2.5, it follows from u ⊕ x = 1, u ⊕ y = 1 and x ⊕ y = 1 that
v, w ≤ u; v, z ≤ x and w, z ≤ y. Therefore, all the principal ideals of B8 are: 〈0〉 =
{0}, 〈1〉 = B8, 〈u〉 = {0, u, v, w}, 〈v〉 = {0, v}, 〈w〉 = {0, w}, 〈x〉 = {0, v, x, z}, 〈y〉 =
{0, w, y, z} and 〈z〉 = {0, z}.
Also, note that V (AG(B8)) = {〈u〉, 〈v〉, 〈w〉, 〈x〉, 〈y〉, 〈z〉} and 〈y〉 · 〈v〉 = 〈w〉 · 〈v〉 =
〈w〉 · 〈z〉 = 〈z〉 · 〈v〉 = 〈w〉 · 〈x〉 = 〈z〉 · 〈u〉 = 〈0〉.

Therefore, from the simple operation, the graphs AG(B8) and Γ(B8) of B8 are
respectively:

〈y〉 〈v〉

〈w〉
〈x〉

〈z〉
〈u〉

Figure 6. AG(B8)

y v

w
x

z
u

Figure 7. Γ(B8)

Obviously, Figure 6 and Figure 7 imply that Γ(B8) ∼= AG(B8) and
dmax(AG(B8)) = 3. Moreover, there also exists a complete subgraph of AG(B8)
which the vertex set {〈v〉, 〈w〉, 〈z〉} composed of all 0-minimal ideals of B8.

(2) Consider the MV-algebra L2 × B4. L2 × B4 is a Boolean algebra with
| L2 |= 2 and | B4 |= 4 ≥ 3. We can directly get that dmax(AG(L2 × B4)) = 3 from
Proposition 5.6. In fact, since B8 ∼= L2 × B4, it must be that dmax(AG(L2 × B4)) =
dmax(AG(B8)) = 3 by (1).

Remark 5.8.
(1) We claim that Proposition 5.6 is not necessarily true for some MV-algebras.

Let M2 be the MV-algebra in Example 3.8. From Example 3.8, M2 ∼= L2 × L3 and
| L2 |= 2, | L3 |= 3. But, from Figure 1, dmax(AG(M2)) = 1.

(2) By [1, Corollary 1], if | A |= n 6= 4 for some integer number n, then Γ(A) ∼=
Γ(Ln) if and only if A ∼= Ln. Obviously, it must be AG(A) ∼= AG(B) if A ∼= B for
two MV-algebras A, B. But, the converse is not necessarily true.
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Consider the two MV-algebras L2 ×L6 and L3 ×L4. Then, | L2 ×L6 |=| L3 ×L4 |
and AG(L2 × L6) ∼= K2 ∼= AG(L3 × L4) by Proposition 3.7. But, it is enough to
show that L2 × L6 ≇ L3 × L4. In fact, in L3 × L4, there exist four elements such
that (1

2 , 2
3) ⊕ (1

2 , 2
3) = (1

2 , 1) ⊕ (1
2 , 1) = (1, 2

3 ) ⊕ (1, 2
3) = (1, 1) ⊕ (1, 1) = (1, 1)

by Example 2.2. However, there are only three elements of L2 × L6 that satisfy
(1, 3

5) ⊕ (1, 3
5) = (1, 4

5) ⊕ (1, 4
5 ) = (1, 1) ⊕ (1, 1) = (1, 1).

Remark 5.9.
(1) Let A be a Boolean algebra and I, J be two ideals of A. We conclude that

IJ is an ideal of A. In fact, for all x ∈ IJ and y ∈ A with y ≤ x, there exist m ∈ I
and n ∈ J such that y ≤ x = m ⊙ n ≤ m, n by Lemma 2.7. It implies that y ∈ I ∩ J .
Thus, we have y = y⊙y ∈ IJ . In addition, let x, y ∈ IJ . By Lemma 2.5 and Lemma
2.7, it must be that x⊕y = (m1 ⊙n1)⊕(m2 ⊙n2) ≤ m1 ⊕m2, n1 ⊕n2 for x = m1 ⊙n1
and y = m2 ⊙ n2. It follows that x ⊕ y ∈ I ∩ J . Thus, x ⊕ y = (x ⊕ y)⊙ (x ⊕ y) ∈ IJ .
Therefore, IJ is also an ideal of A. Particularly, Ik is also an ideal of A for any ideal
I, where k is a positive integer number.

(2) Let A be a Boolean algebra and I be an ideal of A. It is easy to get that
Ik+1 ⊆ Ik from Lemma 2.7 (1) and (2). Further, we will claim that Ik ⊆ Ik+1.
That is to say, Ik+1 = Ik. In fact, for any x ∈ Ik, there are ai ∈ I such that
x = a1 ⊙ a2 ⊙ · · · ⊙ an ≤ ai for any i ∈ {1, 2, ..., n} by Lemma 2.7, which implies that
x ∈ I. So we have that x = x ⊙ x = a1 ⊙ a2 ⊙ · · · ⊙ an ⊙ x ∈ Ik+1. Hence, Ik = Ik+1.

Next, we will characterize Boolean algebras whose annihilating-ideal graphs are
star graphs.

Lemma 5.10. Let A be a Boolean algebra and I be an ideal of A with I 6= 〈0〉.
Then ann(I) is a proper ideal of A.

Proof. (1) ann(I) is an ideal of A.
If I = A. Then, since x ⊙ 1 = 0 if and only if x = 0 for all x ∈ A, it must be

that ann(I) = ann(A) = 〈0〉.
Suppose that I is a nonzero ideal and I 6= A. Obviously, 0 ∈ ann(I). Let

a ∈ ann(I) = {z ∈ A | z ⊙ y = 0 for all y ∈ I} and b ∈ A with b ≤ a. Then, a ≤ c∗

for any c ∈ I. So it must be b ≤ a ≤ c∗, giving that b ⊙ c = 0 and so b ∈ ann(I).
In addition, let a, b ∈ ann(I). Then a ≤ c∗ and b ≤ c∗ for any c ∈ I, which implies
that a ⊕ b ≤ a ⊕ c∗ ≤ c∗ ⊕ c∗ = c∗. That is, a ⊕ b ∈ ann(I). Therefore, ann(I) is an
ideal of A.

(2) ann(I) is proper.
Suppose that 1 ∈ ann(I). For all y ∈ I, we have that y = y ⊙ 1 = 0, a

contradiction.
Hence, ann(I) ∈ I(A)\{A} for any nonzero ideal I.
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Proposition 5.11. Let A be a Boolean algebra such that ann(I)∩ ann(J) 6= 〈0〉 for
any I, J ∈ V (AG(A)). Then dmax(AG(A)) ≤ 2.

Proof. Let I, J ∈ V (AG(A)). If IJ = 〈0〉, there is nothing to prove. Suppose that
IJ 6= 〈0〉. Then consider the two ideals I2 and J2.

It is easy to get that I2, J2 6= 〈0〉. Obviously, 1 /∈ ann(I) ∩ ann(J) by Lemma
5.10. Since ann(I) ∩ ann(J) 6= 〈0〉, there exists an element x satisfying x 6= 0 and
x ∈ ann(I) ∩ ann(J). It follows that 〈x〉 · I = 〈x〉 · J = 〈0〉 and 〈x〉 ∈ V (AG(A))
from Proposition 5.2. Note that I2, J2 6= 〈0〉, then 〈x〉 6= I, J . Hence, there is an
edge I − 〈x〉 − J between I and J . Thus, we have that d(I, J) = 2 in this case.

Therefore, it must be that dmax(AG(A)) ≤ 2.

Remark 5.12.
(1) The converse of Proposition 5.11 is not necessarily true. Consider the 4-

element Boolean algebra B4 = {0, a, b, 1}.
From Remark 4.3 we have that dmax(AG(B4)) = 1 ≤ 2. However, ann({0, a}) ∩
ann({0, b}) = {0, b} ∩ {0, a} = {0}.

(2) Any nonzero ideal of the semigroup S can be regarded as a union of principal
ideals of S by [14]. Now, we will show that the similar statement also holds on any
MV-algebra. Let A be an MV-algebra and I ∈ I(A). We denote W = ⋃

x∈I
〈x〉 which

is a subset of A. We will obtain that I is an ideal generated by W . That is, I = 〈W 〉.
Indeed, I = W .

In fact, if I = 〈0〉 or 〈1〉, we are done. Suppose that I is a nonzero proper ideal
of A. On the one hand, for any a ∈ I, it must be a ∈ 〈a〉 ⊆ 〈W 〉. Thus, I ⊆ 〈 W 〉.
On the other hand, for any a ∈ 〈W 〉, we have that a ≤ w1 ⊕ w2 ⊕ · · · ⊕ wk for
some wi ∈ W = ⋃

x∈I
〈x〉 by Lemma 2.4, where i = 1, 2, ..., k. There is xj ∈ I such

that wi belongs to 〈xj〉 for each i ∈ {1, 2, ..., k}, where j ∈ {1, 2, ..., l} and l ≤ k. It
follows that a ≤ w1 ⊕ w2 ⊕ · · · ⊕ wk ≤ n1x1 ⊕ n2x2 ⊕ · · · ⊕ nlxl for some nj ∈ N
and j ∈ {1, 2, ..., l}. Then a ∈ I, and so 〈W 〉 ⊆ I. Therefore, I = 〈W 〉 for any
I ∈ I(A). In particular, by Lemma 2.4, it is obvious that 〈x〉 ⊆ 〈W 〉 for any x ∈ I.
Hence, for each 0-minimal ideal I of an MV-algebra A, there exists a nonzero element
x ∈ A\{1} such that I = 〈x〉 by the 0-minimality of I. For example, let M4 be the
algebra in Example 5.5. The 0-minimal ideals P1, P2, P4 of M4 are principal ideals
respectively generated by p (or q), s, v.

Theorem 5.13. Let A be a Boolean algebra. AG(A) is a star graph iff there exists
a vertex I of AG(A) satisfying IJ = 〈0〉 for all J ∈ V (AG(A)) with I 6= J .

Proof. =⇒) This follows directly from the definition of the star graph.
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⇐=) Assume that there is I ∈ V (AG(A)) such that IJ = 〈0〉 for any J ∈
V (AG(A)), where J 6= I. It is obvious that ann(A\{1}) = 〈0〉 by Remark 5.1 (1).
Then, we will use Theorem 4.5 to prove that AG(A) is a star graph.

• I is a 0-minimal ideal of A.
Let a ∈ I and a 6= 0. We have that 〈a〉 ∈ V (AG(A)) by Proposition 5.2. Since

I is an ideal of A, we get 〈a〉 ⊆ I. If 〈a〉 $ I, since IJ = 〈0〉 for all vertices J of
AG(A) with I 6= J , we obtain that 〈a〉 ·I = 〈0〉. It follows from a ∈ I that a⊙a = 0.
Hence, a = a ⊙ a = 0, which is a contradiction. Thus, I = 〈a〉 is a principal ideal
generated by a.

Next, we will verify that I = 〈a〉 is a 0-minimal ideal of A. Otherwise, from
Remark 5.12 (2), there must be a principal ideal 〈b〉 such that 〈b〉 ⊆ 〈a〉 for some
b ∈ A and b 6= a, 0, 1. Then, by Proposition 5.2, we have that 〈b〉 ∈ V (AG(A)).
Since 〈a〉 is adjacent to every other vertex of AG(A), we get that 〈a〉 · 〈b〉 = 〈0〉.
Again since 〈b〉 ⊆ 〈a〉, it must be that b = b ⊙ b = 0, which is a contradiction. Thus,
〈a〉 is a 0-minimal ideal of A. Further, we will claim that | I |= 2. First, it must be
0, a ∈ I. Suppose that | I |≥ 3. Let z ∈ I = 〈a〉 = {w | w ≤ a}, where z 6= 0, a. We
have that z ≤ a, and 〈0〉 6= 〈z〉 ⊆ 〈a〉. It follows that 〈z〉 $ 〈a〉 by Lemma 5.3, which
is contradict to the fact that 〈a〉 is a 0-minimal ideal. Thus, we get that I = {0, a}.

• 〈a〉 ∩ ann(〈a〉) = {0}.
Consider the set 〈a〉 ∩ ann(〈a〉). Assume that there is a nonzero element x ∈

〈a〉 ∩ ann(〈a〉). Since 〈a〉 = {0, a}, it must be that a = x ∈ ann(〈a〉). It implies that
a = a ⊙ a = 0, a contradiction to a 6= 0. Thus, we obtain that 〈a〉 ∩ ann(〈a〉) = {0}.

• 〈a〉 ⊕ ann(〈a〉) = A.
Let x ∈ A. If x = 0, it is obvious that x = 0 = 0 ⊕ 0 ∈ 〈a〉 ⊕ ann(〈a〉). If x∗ = 0,

we have that x = 1 = a ⊕ a∗ ∈ 〈a〉 ⊕ ann(〈a〉). If x = a, there is nothing to prove.
So suppose that x 6= 0, 1, a. By Proposition 5.2 and Lemma 5.3, it must be that
〈x〉 is a vertex of AG(A) and different from 〈a〉. Since 〈a〉 is adjacent to every other
vertex of AG(A), we have that 〈x〉 · 〈a〉 = 〈0〉, which implies that x ∈ ann(〈a〉).
Thus, x = 0 ⊕ x ∈ 〈a〉 ⊕ ann(〈a〉). We obtain that A ⊆ 〈a〉 ⊕ ann(〈a〉). Obviously,
〈a〉 ⊕ ann(〈a〉) ⊆ A. Therefore, 〈a〉 ⊕ ann(〈a〉) = A.

Summarizing the above, we conclude that A = I ⊕ann(I) and I ∩ann(I) = {0}.
• ann(〈a〉) contains no nonzero zero-divisors.
Otherwise, there are two elements x, y of ann(〈a〉) such that x⊙y = 0 and x, y 6=

0. We denote W = 〈x〉 ∪ 〈a〉. It is easy to show that 〈W 〉 = {w ∈ A | w ≤ x, w ≤ a
or w ≤ x⊕a} is a nonzero ideal of A by a, x ∈ 〈W 〉. Since a⊙x = a⊙y = x⊙y = 0,
we have that 〈y〉 · 〈W 〉 = 〈0〉. Thus, it follows that 〈W 〉 = A or 〈W 〉 ∈ V (AG(A)). If
〈W 〉 ∈ V (AG(A)), we have 〈W 〉·〈a〉 = 〈0〉. It must be a = a⊙a = 0, a contradiction.
Then, 〈W 〉 = A. Since 〈y〉 · 〈W 〉 = 〈0〉, we obtain that y = y ⊙ 1 = 0 by 1 ∈ 〈W 〉, a
contradiction. Therefore, ann(〈a〉) contains no nonzero zero-divisors.
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• By Lemma 5.10, ann(〈a〉) is a proper ideal of A.
Hence, we get that AG(A) is a star graph by Theorem 4.5.

Let A be a Boolean algebra and I be a 0-minimal ideal. From the proof of
Theorem 5.13, we have that | I |= 2 by the uniqueness of principal ideals. However,
let M4 be the MV-algebra in Example 5.5. It is obvious that P1 is a 0-minimal ideal
of M4, but | P1 |= 3.

Let A be an MV-algebra and I ∈ I(A). I contains no zero-divisor pairs means
that there are no elements x, y ∈ I satisfying x ⊙ y = 0 and x, y 6= 0. Then we have
the following.

Corollary 5.14. Let A be a Boolean algebra. Then, AG(A) is a star graph iff
A = I ⊕ ann(I), where ann(I) contains no zero-divisor pairs and I is a 0-minimal
ideal of A.

Proof. =⇒) Suppose that AG(A) is a star graph and I is the center of AG(A). This
follows directly from the proof of Theorem 5.13.

⇐=) We have that I∩ann(I) = {0}. Otherwise, there exists an element satisfying
x ∈ I ∩ ann(I) and x 6= 0, which implies that x = x ⊙ x = 0, a contradiction. Then,
it follows from Theorem 4.5.

Let A be a Boolean algebra such that AG(A) be a star graph. By the proof of
Theorem 5.13 we see that the center of AG(A) is exactly a 0-minimal ideal of A.
Similarly, for an MV-algebra A, we have the following.

Proposition 5.15. Let A be an MV-algebra. If AG(A) is a star graph with the
center I, then I is a 0-minimal ideal of A.

Proof. Let I be the center of AG(A). Assume that J ∈ I∗(A)\{A} such that J ⊆ I.
Since I is the center, we have that JK ⊆ IK = 〈0〉 for any I 6= K ∈ V (AG(A)),
which implies that J ∈ V (AG(A)) and J is adjacent to K in AG(A), contradicting
to the fact that AG(A) is a star graph. Thus, I is a 0-minimal ideal of A.

Let A be an MV-algebra. If x⊙y = 0 for some x, y ∈ A, there can not guarantee
that 〈x〉 · 〈y〉 = 〈0〉. For example, consider the MV-algebra M2 in Example 3.8. We
have that x ⊙ w = 0. But, 〈x〉 · 〈w〉 = {0, x, z} · M2 6= 〈0〉.

Let A be a Boolean algebra. By Theorem 5.4, we have that 〈x〉 · 〈y〉 = 〈0〉 ⇐⇒
x ⊙ y = 0 for all x, y ∈ A\{0, 1}. That is to say, there is an edge 〈x〉 − 〈y〉 in AG(A)
⇐⇒ the two distinct vertices x, y are adjacent in Γ(A). Thus, we can obtain the
following correspondences between AG(A) and Γ(A).
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Proposition 5.16. Let A be a Boolean algebra. If AG(A) is a star graph, then
Γ(A) is a star graph.

Proof. Suppose that AG(A) is a star graph with the center I. By the proof of
Theorem 5.13 we have that I is a 0-minimal ideal and I = 〈x〉 for some x ∈ A\{0, 1}.
Since 〈x〉 is the center of AG(A) and 〈y〉 ∈ V (AG(A)) by Proposition 5.2, it must
be that 〈x〉 · 〈y〉 = 〈0〉, where y ∈ A\{0, 1} such that y 6= x. It follows that x ⊙ y = 0
for all y ∈ V (Γ(A)). In addition, for any z ∈ V (Γ(A)) and z 6= x, y, since AG(A)
is a star graph, we obtain that 〈z〉 · 〈y〉 6= 〈0〉 by the uniqueness of principal ideals.
Again from the proof of Theorem 5.4, z ⊙ y 6= 0. Thus, Γ(A) is a star graph with
the center x.

Proposition 5.17. Let A be a Boolean algebra. If AG(A) is a complete graph, then
Γ(A) is a complete graph.

Proof. Suppose that AG(A) is complete. Then for any two distinct elements x, y
of A\{0, 1}, 〈x〉, 〈y〉 ∈ V (AG(A)) and 〈x〉 · 〈y〉 = 〈0〉 by the completelity of AG(A).
That is to say, x ⊙ y = 0 for any x, y ∈ A\{0, 1} = V (Γ(A)) (x 6= y). Thus, Γ(A) is
a complete graph.

Proposition 5.16 and Proposition 5.17 are not necessarily true for MV-algebras.
Consider the MV-algebra M2 in Example 3.8. AG(M2) is a star graph and a complete
graph. However, Γ(M2) is neither a star graph nor a complete graph.

Let A be an MV-algebra and I be an ideal of A. We denote IA = A\{I ∪ {1}} ∪
{0}. Obviously, the set IA may not belong to I(A). For example, we can consider
the ideal 〈v〉 of B8 in Example 5.7 (1). It is easy to get that 〈v〉B8 = B8\{〈v〉 ∪
{1}} ∪ {0} = {0, u, w, x, y, z}, which is not an ideal of B8 by u ⊕ x = 1 /∈ 〈v〉B8 . By
Theorem 5.13, the center I of AG(A) is a 0-minimal ideal of A. Next, we will study
the uniqueness of I by using IA.

Theorem 5.18. Let A be a Boolean algebra such that AG(A) be a star graph whose
center is I. If IA is not an ideal of A, then A has the unique 0-minimal ideal I.

Proof. Suppose that IA /∈ I(A) and I is the center of AG(A).
By the proof of Theorem 5.13, I is a 0-minimal ideal of A. There is an element

x ∈ A\{0, 1} such that I = 〈x〉 = {0, x}. Suppose that 〈y〉 is another 0-minimal
ideal of A for some element y ∈ A\{0, 1}. From Proposition 5.2, we obtain that
〈y〉 ∈ V (AG(A)). Obviously, 0 ∈ IA. Then, we consider the following conditions:

• Suppose that IA does not satisfy Definition 2.3 (ii) let IA be not an ideal of
A. There exist a ∈ IA and b ∈ A with b ≤ a such that b /∈ IA = A\{I ∪ {1}} ∪ {0},
where a 6= 0 and b 6= 0, 1. That is to say, b ∈ I = {0, x}, so it must be that b = x.
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Since 〈x〉 is the center of AG(A) and 〈a〉 ∈ V (AG(A)) by Proposition 5.2, we have
that 〈x〉 · 〈a〉 = 〈0〉. From x = b ≤ a, it must be that x ∈ 〈a〉. Thus, it follows
from 〈x〉 · 〈a〉 = 〈0〉 that x = x ⊙ x = 0, which is a contradiction. Therefore, this
assumption does not hold.

• Suppose that IA does not satisfy Definition 2.3 (iii). There are a, b ∈ IA such
that a ⊕ b /∈ IA, where a, b 6= 0, 1, x. Since A is a Boolean algebra which has the
unique and proper principal ideals, we have that 〈a〉, 〈b〉 are two vertices which are
different from 〈x〉 by Proposition 5.2. There must be x ∈ ann(〈a〉) and x ∈ ann(〈b〉)
by the fact that 〈x〉 is the center of AG(A). Then, both ann(〈a〉) and ann(〈b〉) are
nonzero proper ideals of A by Lemma 5.10. Since a, b 6= 0, then 〈a〉 6= ann(〈a〉) and
〈b〉 6= ann(〈b〉). By the star shape of AG(A) and 〈a〉 · ann(〈a〉) = 〈b〉 · ann(〈b〉) =
〈0〉, we have that ann(〈a〉) = ann(〈b〉) = 〈x〉. Since a∗ ∈ ann(〈a〉) = 〈x〉 and
b∗ ∈ ann(〈b〉) = 〈x〉, we have that a∗, b∗ ≤ x. It follows that

x ⊕ a = x ⊕ b = 1. (1)

Moreover, since 〈x〉 is the center, we get

x ⊙ a = x ⊙ b = 0. (2)

By Lemma 2.7 (5) and Equation 5.1, Equation 5.2, it must be that a = b, a contra-
diction. Hence, we conclude that 〈y〉 = 〈x〉.

Therefore, each 0-minimal ideal of A must be a principal ideal I = 〈x〉. That is
to say, the center of the star graph AG(A) is exactly the unique 0-minimal ideal of
A.

Remark 5.19.
(1) Let A be an MV-algebra that contains finitely many principal ideals. By

Remark 5.12 (2), A satisfies the the ascending chain condition and the descending
chain condition on its ideals. Suppose that AG(A) is a star graph such that I is the
center. If I is the unique 0-minimal ideal, we claim that IA is not an ideal of A. In
fact, by the uniqueness of I, it must be that I contains in every other nonzero ideal
of A. Thus, IA = A\{I ∪ {1}} ∪ {0} is not an ideal of A.

(2) Theorem 5.18 is not necessarily true for MV-algebras. Consider the 6-element
MV-algebra M2 = {0, x, y, z, w, 1} in Example 3.8. It is easy to get that I1A =
A\{I1 ∪ {1}} ∪ {0} = {0, x, z, w}, which is not an ideal of M2 by x ⊕ w = 1 /∈ I1A.
However, both I1 and I2 are 0-minimal ideals of M2.
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6 The Vertex Coloring and Girth of Annihilating-ideal
Graphs

In this section, we mainly investigate the coloring and girth of AG(A) for the MV-
algebra (A, ⊕, ∗, 0). We find that χ(AG(A)) = ω(AG(A)) = 0 if ann(A\{1}) =
A\{1}. We give two lower bounds and an upper bound for χ(AG(A)). If | M0(A) |≥
3, we prove that the girth of AG(A) is equal to 3, where M0(A) is the set of all
0-minimal ideals of A.

Proposition 6.1. Let A be an MV-algebra. If ann(A\{1}) = A\{1}. Then we have
that χ(AG(A)) = ω(AG(A)) = 0.

Proof. Suppose that ann(A\{1}) = A\{1}. By Theorem 4.2, AG(A) is a null graph.
It follows that 0 =| V (AG(A)) |= χ(AG(A)) = ω(AG(A)).

Next, we study the bound for χ(AG(A)) of A. We use Iann to denote the set of
all nonzero ideals of A which are contained in ann(A\{1}). That is to say, denote

Iann = {I is a nonzero ideal of A | I ⊆ ann(A\{1})},

where we always have that 1 /∈ ann(A\{1}). In fact, if 1 ∈ ann(A\{1}), it implies
that A = {0, 1} by Remark 4.1 (1). Particularly, if ann(A\{1}) = A\{1}, we can
directly get that χ(AG(A)) = 0 by Proposition 6.1.

To get a lower bound for χ(AG(A)), the following lemma is needed.

Lemma 6.2. Let A be an MV-algebra and ann(A\{1}) ⊆ A\{1}. Then Iann corre-
sponds to a clique of AG(A).

Proof. For any two distinct ideals I, J ∈ Iann, we have I, J ⊆ ann(A\{1}). Since
IJ ⊆ I · ann(A\{1}) ⊆ A\{1} · ann(A\{1}) = 〈0〉, we get that IJ = 〈0〉. It
implies that there is an edge I − J in AG(A). That is to say, each element in Iann

is adjacent to every other element. Thus, we conclude that Iann corresponds to a
clique of AG(A).

Theorem 6.3. Let A be an MV-algebra such that ann(A\{1}) ⊆ A\{1}. Then
| Iann |≤ χ(AG(A)).

Proof. By Lemma 6.2 we see that Iann corresponds to a clique of AG(A). It follows
that

| Iann |≤ ω(AG(A)) ≤ χ(AG(A)).
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By Theorem 6.3, we get a lower bound for χ(AG(A)). But, we claim that this
lower bound is not tight enough for all types of MV-algebras. For example, let A be
a Boolean algebra, it must be that ann(A\{1}) = 〈0〉 from Remark 5.1 (1), which
implies that Iann = ∅. So Theorem 6.3 gives 0 ≤ χ(AG(A)). Hence, we need to
continue to study the lower bound for χ(AG(A)).

We use M0(A) to denote the set of all 0-minimal ideals of an MV-algebra
(A, ⊕, ∗, 0). Note that I ∩ J = {0} for any two distinct elements I, J ∈ M0(A).
Otherwise, there is a nonzero element x ∈ I ∩ J . Since I ∩ J is an ideal, it must be
〈0〉 6= 〈x〉 ⊆ I ∩ J ⊆ I, J . We get a contradiction to the 0-minimality of I, J .

Theorem 6.4. Let A be an MV-algebra. Then | M0(A) | gives a lower bound to
χ(AG(A)).

Proof. Let I, J ∈ M0(A) and I 6= J . By the 0-minimality of I and J , we have that
IJ ⊆ I ∩ J = {0}. That is to say, any two 0-minimal ideals of A are adjacent. So
M0(A) forms a clique of AG(A). Therefore, it must be

| M0(A) |≤ ω(AG(A)) ≤ χ(AG(A)).

The following examples show that the bound in Theorem 6.4 is really tighter
than that given in Theorem 6.3.

Example 6.5.
• Consider the MV-algebra M2 in Example 3.8. It is easy to get that

ann(M2\{1}) = 〈0〉, and so | Iann(M2) |= 0. Theorem 6.3 gives 0 ≤ χ(AG(M2)).
Let consider M0(M2) = {{0, y}, {0, x, z}}. By Theorem 6.4, we get another lower
bound, | M0(M2) |= 2 ≤ χ(AG(M2)). Obviously, this bound is more tighter and
χ(AG(M2)) = 2 from Figure 1.

• Let M4 be the MV-algebra in Example 5.5. Then, ann(M4\{1}) = 〈0〉. Using
Theorem 6.3, we have that 0 ≤ χ(AG(M4)). Consider the set of all 0-minimal ideals
of M4. From Example 5.5 we have that M0(M4) = {P1, P2, P4} which corresponds
a clique AG(M4) of AG(M4). It follows from Theorem 6.4 that | M0(M4) |= 3 ≤
χ(AG(M4)). In fact, χ(AG(M4)) = 3 from Figure 4.

• Let B8 be the 8-element Boolean algebra in Example 5.7 such that
ann(B8\{1}) = 〈0〉. Similarly, 0 ≤ χ(AG(B8)). The set M0(B8) = {〈v〉, 〈w〉, 〈z〉} of
B8 forms a 3-vertex clique of AG(B8). By Theorem 6.4, we have | M0(B8) |= 3 ≤
χ(AG(B8)). Note that this bound is perfect as χ(AG(B8)) = 3 by Figure 6 in this
case.

Finally, we use Γ(A) to investigate the upper bound for χ(AG(A)).

846



The Annihilating-ideal Graphs of MV-algebras

Theorem 6.6. Let A be an MV-algebra and χ(Γ(A)) be finite. Then χ(AG(A)) ≤
2χ(Γ(A)) − 1.

Proof. Let χ(Γ(A)) = m. We define a mapping f : V (Γ(A)) −→ {1, 2, ..., m} which
is a proper vertex coloring of Γ(A). That is, we assign the f(x)th color to the vertex
x of Γ(A) and there are different colore between any two adjacent vertices. We use
Ai = f−1(i) to denote the set of all vertices of Γ(A) which are assigned the ith
color, where i ∈ {1, 2, ..., m}. Now, we define a new mapping g : V (AG(A)) −→
P∗({1, 2, ..., m}) by g(I) = {i ∈ {1, 2, ..., m} | I ∩ Ai 6= ∅}, where I ∈ V (AG(A)) and
P∗({1, 2, ..., m}) is the set of all nonempty subsets of {1, 2, ..., m}.

Next, let I, J ∈ V (AG(A)) such that I 6= J and IJ = 〈0〉. Assume that g(I) =
g(J). Then, {i ∈ {1, 2, ..., m} | I ∩ Ai 6= ∅} = {i ∈ {1, 2, ..., m} | J ∩ Ai 6= ∅}.
We claim that I ∩ Ai = J ∩ Ai for all i ∈ g(I) = g(J). In fact, let x ∈ I ∩ Ai,
and i ∈ g(I) = g(J). For i ∈ g(J) = {i ∈ {1, 2, ..., m} | J ∩ Ai 6= ∅}, there exists
y ∈ J ∩ Ai. So we have that x ⊙ y = 0 by IJ = 〈0〉. Since f(x) = f(y) = i and f is
proper, we have that x = y ∈ J ∩ Ai. Thus, I ∩ Ai ⊆ J ∩ Ai for any i ∈ g(I) = g(J).
Similarly, we also get that J ∩ Ai ⊆ I ∩ Ai. Therefore, I ∩ Ai = J ∩ Ai for any
i ∈ g(I) = g(J).

Let j ∈ {1, 2, ..., m}\g(I). It follows that I ∩ Aj = J ∩ Aj = ∅. That is, there
are no elements of I or J can be assigned by the jth color. In addition, since f is
a proper vertex coloring of Γ(A) and χ(Γ(A)) = m, we have that Ai ∩ Aj = ∅ (i 6=
j), Ai 6= ∅ and

⋃
Ai = A\{0, 1} for all i, j ∈ {1, 2, ..., m}. Thus, A1, A2, ..., Am are a

partition of A\{0, 1}. So I = J , which is a contradiction. Therefore, g(I) 6= g(J).
That is to say, g is a proper vertex coloring of AG(A). Thus, we conclude that
χ(AG(A)) ≤| P∗({1, 2, ..., m}) |= 2m − 1 = 2χ(Γ(A)) − 1.

Example 6.7.
• Let M4 be the MV-algebra in Example 5.5. From Figure 3, we get that

χ(Γ(M4)) = 3. Theorem 6.6 gives an upper bound for χ(AG(M4)), χ(AG(M4)) ≤
2χ(Γ(M4)) − 1 = 23 − 1 = 7. From Figure 4 we see that χ(AG(M4)) = 3.

• Consider the 8-element Boolean algebra B8 in Example 5.7. By Figure 7,
χ(Γ(B8)) = 3. Then, Theorem 6.6 gives χ(AG(B8)) ≤ 2χ(Γ(B8)) − 1 = 23 − 1 = 7.
From Figure 6, χ(AG(B8)) = 3.

• Let M2 = {0, x, y, z, w, 1} be the MV-algebra in Example 3.8. We have that
χ(Γ(M2)) = 2 by Figure 2. It must be that χ(AG(M2)) ≤ 2χ(Γ(M2)) −1 = 22 −1 = 3
by Theorem 6.6. This bound is still imperfect. Since AG(M2) is a 2-vertex complete
graph, we have χ(AG(M2)) = 2 < 3.

By Definition 3.1 we see that AG(A) is a simple graph. Thus, there is no loops
and multiple edges in AG(A). It follows that g(AG(A)) ∈ {3, 4, ∞} by Theorem 3.2.
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Theorem 6.8. Let A be an MV-algebra such that AG(A) contains cycles. If |
M0(A) |≥ 3, then g(AG(A)) = 3.

Proof. From the proof of Theorem 6.4, M0(A) corresponds to a clique of AG(A). For
any n-vertex complete graph Kn, we have that g(Kn) = 3, where n ≥ 3. Therefore,
we have that g(AG(A)) = 3 by Theorem 3.2.

Consider the MV-algebra M2 in Example 3.8. We have that | M0(M2) |= 2.
From Figure 1, it is easy to get that g(AG(M2)) = ∞. Moreover, consider the
MV-algebra M4 in Example 5.5 and the Boolean algebra B8 in Example 5.7 (1).
We obtain that M0(M4) = {P1, P2, P4} and M0(B8) = {〈v〉, 〈w〉, 〈z〉}. Theorem 6.8
gives that g(AG(M4)) = g(AG(B8)) = 3. In fact, it follows from Figure 4 that there
is only one cycle P1 − P2 − P4 − P1 in AG(M4). By Figure 6, there exists a unique
cycle 〈v〉 − 〈w〉 − 〈z〉 − 〈v〉 in AG(B8).

7 Conclusion
In this paper, for an MV-algebra (A, ⊕, ∗, 0), we introduce and study the annihil-
ating-ideal graph AG(A) by using the annihilator ann(A\{1}) = {a ∈ A | a ⊙ b = 0
for all b ∈ A\{1}} of A\{1}. We show that AG(A) is a connected graph and
dmax(AG(A)) ≤ 3. If there is a cycle in AG(A), then we show that g(AG(A)) ≤ 4.
We prove that AG(A) is null if ann(A\{1}) = A\{1}. If A = I ⊕ J and I ∩ J = {0},
we show that AG(A) is a star graph, where I is a 0-minimal ideal of A and J contains
no nonzero zero-divisors as an MV-algebra. In addition, we study the annihilating-
ideal graphs of Boolean algebras which are star graphs or complete graphs. We show
that 〈x〉 ∈ V (AG(A)) and 〈x〉 is unique and proper for any x ∈ A\{0, 1}. We prove
that there is a subgraph of AG(A) which is isomorphic to Γ(A). Also, we study the
vertex coloring and girth of AG(A). We get two lower bounds | Iann |, | M0(A) | and
an upper bound 2χ(Γ(A)) −1 for χ(AG(A)), where Iann is the set of all nonzero ideals
of A which contain in ann(A\{1}), and M0(A) is the set of all 0-minimal ideals of
A.
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Abstract

We analyse Yablo’s coding of the liar paradox by infinite acyclic graphs, [6],
and show that his construction is in a certain way minimal.

This leads to a very limited representation result.
We then argue that the “right” level of description of more complicated

constructions is probably the level of paths, and not of single arrows.
We also look at more complicated cells of basic contradiction ("diamonds"),

and show that, at least under certain conditions, they fail to achieve Yablo’s
result.

1 Introduction
1.1 Overview
Yablo’s idea (upon which all of the present material is based), appeared in [6].

The author’s interest was kindled by [2], commented in [3], and extended in [4].
(It was shown there that conjecture 15 in [2] is wrong.)

We liberally use material from [4], in particular in Section 1, Section 2 and
Section 3.

Our approach is “bottom-up”. We analyse Yablo’s construction, an intricate
composition of contradictions in “Yablo Cells”, of the graph form x ̸→ y, y ̸→ z,
x ̸→ z, meaning x = ¬y ∧ ¬z, y = ¬z. We distinguish y and z, calling y the knee of
the cell, z the foot (and x the head). In Yablo’s construction, y and z will be the
head of new cells (among other arrows and constructions), etc.

Thus, x is contradictory if true (as a formula), and if x is false, all arrows starting
at x will lead to new contradictions (as then y and z will be true). We take this
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as construction principle, and show that the property is recursively true, i.e., will
hold for y and z, etc., too. We can base Yablo’s and similar constructions on this
principle. In particular, Yablo’s construction is minimal to satisfy these principles.

It is natural to look now at alternative contradictory cells as building blocks.
We discuss several candidates, the only interesting one is the “diamond” of the form
x ̸→ y, y ̸→ z, x ̸→ y′, y′ → z, with the meaning x = ¬y ∧ ¬y′, y = ¬z, y′ = z. But
the recursive construction, appending new diamonds at y and y′ fails, at least under
the restriction of using only conjunctions for the logical form in the positive case (x
true).

We also

• argue that the right level of abstraction is to consider paths, not single arrows,

• give some examples of Yablo-like graphs with more general formulas, i.e. of
disjunctive normal forms, and different basic orders (i.e. not necessarily that
of the natural numbers),

• illustrate postponing contradictions.

1.1.1 Related Work

The ideas in [1] and [5] are more “top down”, whereas our ideas are more “naive”,
starting from an analysis of Yablo’s construction and the basic contradictions. Thus,
we needed an argument to consider paths, and not combinations of arrows as the
“right” level of abstraction, whereas paths are the basic level of investigation in
above articles.

The closest common points are perhaps in Section 4.5 of [1]. In addition, our
Section 6 can be seen as an allusion to a game theoretic interpretation.

1.2 More Detailed Overview
Some aspects of Yablo’s construction are hidden behind its elegance. Our perhaps
somewhat pedantic analysis leads to the concepts of “head”, “knee”, and “foot”, and
then to “saw blades” in Section 3.

Section 2 generalizes Yablo’s construction to arbitrary formulas of the type ∨ ∧

(disjunctive normal forms), and offers a number of easy variations of such structures
by modifying the order of the graph.

Section 3 uses our idea of finer analysis of contradictory cells to build somewhat
different structures - though the distinction is blurred by the necessarily recursive
and infinite construction of contradictions. This is used in our limited (semi) repre-
sentation results in Section 3.3 and Section 4.4.
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In Section 4, we show that we can make contradictions arbitrarily complicated
when seen on the level of arrows. This leads us to think that the level of arrows is
too detailed, it is not a useful level of abstraction. We therefore work with paths,
trivialising some intermediate nodes.

In Section 5 we look at various candidates for basic contradiction cells, one of
them (Diamond) seems much more complicated, and embedding it into a recursive
construction as in Yablo’s work leads to not so obvious problems, unsolvable at least
in the present framework.

In Section 6, we analyse the finite procrastination of contradictions using Yablo’s
form of contradictions.

The author of the present text did not study the literature systematically. So, if
some examples are already discussed elsewhere, the author would ask to be excused
for not quoting previous work.

1.2.1 General Strategy

Our general strategy (as in Yablo’s original paper) will be as follows:

(1) We want to show that x = TRUE is impossible, and x = FALSE is impossi-
ble, too.

(2) Say x is the root of a graph, so for every possibility in this graph, x = TRUE
is impossible, as every set of paths from x leads to a contradiction in case
x = TRUE.

(3) Conversely, if x = FALSE, then every path from x leads leads to some x′

such that x′ = TRUE and this is impossible for the same reasons as above for
x = TRUE.

(Thus, the construction is essentially recursive, see Section 3.3.)

(4) Moreover, we will not postpone contradictions, but e.g. in above case for
x = TRUE we will require the graph to branch at x (and not to be some
kind of preamble, where we first have to go to some x′′ where the branching
happens). - This is a minor point.
See Section 6 for some exceptions.

(5) Yablo uses conjunctions of negated propositional variables, x = ∧ ¬xi, this
takes care of above ideas, conjunctions provide the bases for contradictions,
and the negated x makes at least one xi positive, this takes care of making
x = FALSE impossible.
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(Graphically, Yablo has negative arrows from x to the xi, we sometimes consider
negative paths instead. In Section 2 we also consider mixed Or/And formulas, and
in Section 5 we consider more complicated contradictions.)

1.2.2 Main Ideas of the Paper

(1) Analysis of Yablo’s construction in Section 3.3, and the resulting partial rep-
resentation result in Condition 4.1.

(2) Discussion of the suitable level of abstraction for the description of more com-
plicated constructions, see Section 4.2.

(3) Discussion of more complicated basic contradiction units (“diamonds”) and the
result that they are unsuitable (at least under the present, limited, conditions),
see Section 5.4, and in particular Section 5.4.1.

1.3 Preliminaries
We consider the problem from the graph side and the logics side.

1.3.1 The Logical Side

On the logics side, we work with propositional formulas, which may, however, be
infinite.

We will see that we need infinite formulas (of infinite depth) to have nodes to
which we cannot attribute truth values. See Fact 1.4.

We will work here with disjunctive normal forms, i.e. with formulas of the type
x := ∨{∧

xi : i ∈ I}, where xi := {xi,j : j ∈ Ji}, and the xi,j are propositional
variables or negations thereof - most of the time pure conjunctions of negations of
propositional variables.

Fact 1.1.
Let x := ∨{∧{xi,j : j ∈ Ji} : i ∈ I}, where the xi,j are propositional variables or

negations thereof.

(1) Let F := Π{xi : i ∈ I} - the set of choice functions in the sets xi, where
xi := {xi,j : j ∈ Ji}.

Then ¬x = ∨{∧{¬xi,j : xi,j ∈ ran(f)} : f ∈ F}.

(Argue semantically with the sets of models and general distributivity and
complements of sets.)
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(2) Contradictions will be between two formulas only, one a propositional variable,
the other the negation of the former. 2

1.3.2 The Graph Side

We work with directed, acyclic graphs. They will usually have one root, often
called x0. In diagrams, the graphs may grow upward, downward, or sideways, we
will say what is meant.
Definition 1.1.

Nodes stand for propositional variables.
If a node x is not terminal, it has also a propositional formula ϕx attached to it,

sometimes written d(x) = ϕx, with the meaning x ↔ ϕx, abbreviated x = ϕx. The
successors of x are the propositional variables occurring in ϕx. Thus, if x → x′ and
x → x′′ are the only successors of x in γ, ϕx may be x′ ∨ x′′, x′ ∧ ¬x′′, but not x′ ∧ y.

Usually, the ϕx are (possibly infinite) conjunctions of propositional variables or
(in most cases) their negations, which we write ∧ ±xi etc. We often indicate the
negated variables in the graph with negated arrows, like x ̸→ y, etc. Thus, x ̸→ x′,
x → x′′ usually stands for ϕx = ¬x′ ∧ x′′.

Example 1.1.
Consider the basic construction of a contradiction (used by Yablo and here,

defined “officially” in Definition 1.4).
Γ := {x ̸→ y ̸→ z, x ̸→ z}. Γ stands for x = ¬y ∧ ¬z, y = ¬z, so x = z ∧ ¬z,

which is impossible.
If we negate x, then ¬x = y ∨ z = ¬z ∨ z, so ¬x is possible.
From the graph perspective, we have two paths in Γ from x to z, σ := x ̸→ y ̸→ z,

and σ′ := x ̸→ z.

We add now y ̸→ y′ to Γ, so Γ′ := {x ̸→ y ̸→ z, x ̸→ z, y ̸→ y′}, thus x = ¬y∧¬z,
y = ¬z ∧ ¬y′, so ¬y = z ∨ y′, and x = (z ∨ y′) ∧ ¬z = (z ∧ ¬z) ∨ (y′ ∧ ¬z), and x is
not contradictory any more.

Definition 1.2.
We can attribute a value to a path σ, val(σ), expressing whether it changes a

truth value from the beginning to the end. σ := x ̸→ y ̸→ z does not change the
value of z compared to that of x, σ′ := x ̸→ z does. We say val(σ) = +, val(σ′) = −,
or positive (negative) path.

Formally:
Let σ, σ′ be paths as usual.

(1) If σ := a → b, then val(σ) = +, if σ := a ̸→ b, then val(σ) = −.
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(2) Let σ ◦ σ′ be the concatenation of σ and σ′. Then val(σ ◦ σ′) = + iff val(σ) =
val(σ′), and - otherwise.

If all arrows are negative, then val(σ) = + iff the length of σ is even.

Definition 1.3.
We call two paths σ, σ′ with common start and end contradictory, and the pair

a contradictory cell iff val(σ) ̸= val(σ′). The structures considered here will be built
with contradictory cells.

Remark 1.2.

(1) Note that the fact that σ and σ′ are contradictory or not is independent of
how we start, whether x = TRUE or x = FALSE.

(2) We saw already in Example 1.1 that it is not sufficient for a “real” contradiction
to have two contradictory paths.
We need

(2.1) (somewhere) an “AND”, so both have to be valid together, an “OR” is
not sufficient,

(2.2) we must not have a branching with an “OR” on the way as in Γ′, an
“escape” path, unless this leads again to a contradiction.

See also Definition 3.1.

Notation 1.1.

(1) When we give nodes a truth value, we will use x+ (and x
∧

, x + ∧
, etc. if ϕx

has the form ∧ ±xi) to denote the case x = TRUE, and x−, x
∨

, x − ∨
, etc.

for the case x = FALSE.

(2) We sometimes use the notation x ⊕ for shorthand that x+ is contradictory,
and x ⊖ for shorthand that every path (mostly: every arrow) from x will lead
to some y such that y ⊕, and y+ if x − .

Fact 1.3.
(Simplified).
Consider three paths, ρ, σ, τ, for simplicity with same origin, i.e. ρ(0) = σ(0) =

τ(0).

(1) No contradiction loops of length 3.
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(1.1) Suppose they meet at a common point, i.e. ρ(mρ) = σ(mσ) = τ(mτ ).
Then it is impossible that ρ contradicts σ contradicts τ contradicts ρ (at
mρ). (“α contradicts β” means here that for some i, j α(i) = β(j), but
one has value +, the other value -.)
(Trivial, we have only 2 truth values).

(1.2) Suppose, first ρ and σ meet, then ρ (or σ) and τ meet, but once they
meet, they will continue the same way (e.g., if ρ(i) = σ(j), then for all
k > 0 ρ(i + k) = σ(j + k)). Then it is again impossible that ρ contradicts
σ contradicts τ contradicts ρ. (ρ and σ continue to be the same but with
different truth values until they meet τ, so it is the same situation as
above.)

(2) Above properties generalize to any loops of odd length (with more paths).

See [4] for more details.

This does not hold when the paths may branch again after meeting, as the next
Example shows.

Example 1.2.
(Example 7.4.2 in [4].)
Let σ0 : x0 ̸→ x1 → x2 ̸→ x3 → x4, σ1 : x0 ̸→ x1 → x2 → x4, σ2 : x0 → x2 ̸→

x3 → x4, σ3 : x0 → x2 → x4,

then σ0 contradicts σ1 in the lower part, σ2 and σ3 in the upper part, σ1 contra-
dicts σ2 and σ3 in the upper part, σ2 contradicts σ3 in the lower part.

Obviously, this may be generalized to 2ω paths.

Consider Yablo’s original construction:

Example 1.3.
Let the nodes be {xi : i < ω}, and the arrows for xi {xi ̸→ xj : i < j}, expressed

as a relation by {xi < xj : i < j}, and as a logical formula by xi = ∧{¬xj : i < j}.

Thus ¬xi = ∨{xj : i < j}. For any xi, we have a contradiction by xi = ∧{¬xj :
i < j} and ¬xi+1 = ∨{xj : i + 1 < j} for any xi+, and for any xk− for a suitable
k′ > k xk′ + .

It is important that, although we needed to show the property ⊖ for x0 only, it
holds for all xi, thus it is a recursive construction.
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1.3.3 Interplay of the Graph and the Logical Side

We can either think on the logical level with formulas, or graphically with con-
flicting paths, as in the following Fact.

We need infinite depth and width in our constructions:
Fact 1.4.

(1) The construction needs infinite depth,

(2) the logic as used in Yablo’s construction is not compact,

(3) the construction needs infinite width, i.e. the logic cannot be classical.

Proof

(1) Let xi be a minimal element, then we can chose an arbitrary truth value xi,
and propagate this value upwards. If there are no infinite descending chains,
we can do this for the whole construction.

(2) The logic as used in Yablo’s construction is not compact:
Trivial. (Take {∨{ϕi : i ∈ ω}} ∪ {¬ϕi : i ∈ ω}. This is obviously inconsistent,
but no finite subset is.).

(3) It is impossible to construct a Yablo-like structure with classical logic:
Take an acyclic graph, and interpret it as in Yablo’s construction. Wlog., we
may assume the graph is connected. Suppose it shows that x0 cannot be given
a truth value. Then the set of formulas showing this does not have a model,
so it is inconsistent. If the formulas were classical, it would have a finite,
inconsistent subset, Φ. Define the depth of a formula as the shortest path from
x0 to this formula. There is a (finite) n such that all formulas in Φ have depth
≤ n. Give all formulas of depth n (arbitrary) truth values, and work upwards
using truth functions. As the graph is acyclic, this is possible. Finally, x0 has
a truth value.
Thus, we need the infinite ∧

/
∨

. 2

1.3.4 Further Remarks on Contradictory Structures

See Section 7.3 in [4] for more material.
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Example 1.4.
We consider now some simple, contradictory cells. They should not only be

contradictory for the case x+, but also be a potential start for the case x−, without
using more complex cells. (Otherwise, we postpone the solution, and may forget the
overly simple start.)

We will consider in Section 5 a more complicated contradiction cell (“Diamond”),
and discuss here only simple cells.

For this, we order the complexity of the cases by (1) < (2.1) < (2.3) below, (2.2)
is not contradictory, so it is excluded.

See Diagram 1.1, center part.

(1) The cell with 2 arrows.
It corresponds to the formula x = y ∧ ¬y, graphically, it has a positive and a
negative arrow from x to y, so exactly one of α and β is negative.
If x is positive, we have a contradiction.
If x is negative, however, we have a problem. Then, we have x = y ∨¬y. Let α
be the originally positive path, β the originally negative path. Note that α is
now negative, and β is positive. The α presents no problem, as y is positive,
and we can append the same construction to y, and have a contradiction.
However, β has to lead to a contradiction, too, and, as we will not use more
complicated cells, we face the same problem again, y is negative. So we have
an “escape path”, assigning ⊥ to all elements in one branch.
(Consider x0 ⇒¬ x1 ⇒¬ x2 ⇒¬ x3 . . . , setting all xi := − is a consistent
valuation. So combining this cell with itself does not result in a contradictory
structure.)
Of course, appending at y a Yablo Cell (see below, case (2.3)) may be the
beginning of a contradictory structure, but this is “cheating”, we use a more
complex cell.

(2) Cells with 3 arrows.
Note that the following examples are not distinguished in the graph!
Again, we want a contradiction for x positive, so we need an ∧ at x, and have
the possibilities (up to equivalence) x = x′ ∧ y, x = x′ ∧ ¬y, x = ¬x′ ∧ y,
x = ¬x′ ∧ ¬y.

Again, if x is negative, all paths α : x → y, β : x → x′ (or βγ : x → x′ → y)
have to lead to a contradiction.
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(2.1) one negative arrow, with x = ±x′ ∧ ±y

(2.1.1) x → x′ ̸→ y, x → y, corresponding to x = x′ ∧ y, so if x is negative,
this is ¬x′ ∨ ¬y.
But, at y, this possible paths ends, and we have the same situation
again, with a negative start, as in Case (1).

(2.1.2) x → x′ → y, x ̸→ y
Here, we have again a positive path to y, through x′, so for x negative
both x′ and y will be negative, and neither gives a start for a new
contradiction.

(2.1.3) x ̸→ x′ → y, x → y
This case is analogous to case (2.1.1).

(Similar arguments apply to more complicated cells with an even number
of negative arrows until the first branching point - see Remark 1.5 below.

(2.2) 2 negative arrows: not contradictory.
(2.3) The original type of contradiction in Yablo’s construction

x ̸→ x′ ̸→ y, x ̸→ y.

This will be discussed in detail in the rest of the paper. But we see
already that both paths, x ̸→ x′ and x ̸→ y change sign, so x′ and y
will be positive, appending the same type of cell at x′ and y solves the
problem (locally), and offers no escape.

Definition 1.4.

(1) We call the contradiction of the type (2.3) of Example 1.4, i.e. x ̸→ x′ ̸→ y,
x ̸→ y, a Yablo Cell, YC, and sometimes x its head, y its foot, and x′ its knee.

(2) We sometimes abbreviate a Yablo Cells simply by ∇, without going into any
further details.

If we combine Yablo Cells, the knee for one cell may become the head for another
Cell, etc.

See Diagram 1.1, upper part.
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Diagram 1.1. Simple Contradictions

Horizontal lines indicate arrows pointing to the right,
the other lines downward pointing arrows

Yablo Cells

Head Knee

Foot

x

y

x′ Head
Knee=
Head’

Foot

Knee’

Foot’

x

y

x′

y′

x′′

Contradictory Cells

x

y

α β

x

y

x′

α

β

γ

See Remark 1.5

Head
Knee

Foot

x

y

x′ z

Remark 1.5.

(1) The distinction between x′ and y, i.e. between knee and foot, is very important.
In the case x+, we have at y a complete contradiction, at x′, we have not yet
constructed a contradiction. Thus, if we have at x′ again an ∧ (as at x), this
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becomes an ∨, and we have to construct a contradiction for all x′ → z (or
x′ ̸→ z), not only for x′ ̸→ y. Otherwise, we have an escape possibility for
x + . Obviously, the contradiction need not be immediate at z, the important
property is that ALL paths through all z lead to a contradiction, and the
simplest way is to have the contradiction immediately at z - as in Yablo’s
construction, and our saw blades.
See Diagram 1.1, lower part.
See also the discussion in Section 3.3 (page 25) and the construction of saw
blades in Section 3.2.

(2) As we work for a contradiction in the case x-, too, the simplest way to achieve
this is to have a negative arrow x ̸→ x′, and at x′ again an ∧. This gives a
chance to construct a contradiction at x′. Of course, we have to construct a
contradiction at y, too, as in the case x−, we have an ∨ at x.

Of course, we may have branches originating at x′, which all lead to contra-
dictions in the case x−, so x → x′ (resp. ∨ at x′) is possible, too.
But, for the simple construction, we need ̸→ between x and x′, and ∧ at x′.
And this leads to the construction of contradictions for all x′ → z (or x′ ̸→ z)
as just mentioned above.

Example 1.5.
This Example shows that infinitely many finitely branching points cannot always

replace infinite branching - there is an infinite “procrastination branch” or “escape
branch”. This modification of the Yablo structure has one acceptable valuation for
Y1 :

Let Yi, i < ω as usual, and introduce new Xi, 3 ≤ i < ω.

Let Yi ̸→ Yi+1, Yi → Xi+2, Xi ̸→ Yi, Xi → Xi+1, with
Yi := ¬Yi+1 ∧ Xi+2, Xi := ¬Yi ∧ Xi+1.

If Y1 = ⊤, then ¬Y2 ∧ X3, by X3, ¬Y3 ∧ X4, so, generally,
if Yi = ⊤, then {¬Yj : i < j} and {Xj : i + 1 < j}.

If ¬Y1, then Y2 ∨ ¬X3, so if ¬X3, Y3 ∨ ¬X4, etc., so, generally,
if ¬Yi, then ∃j(i < j, Yj) or ∀j{¬Xj : i + 1 < j}.

Suppose now Y1 = ⊤, then Xj for all 2 < j, and ¬Yj for all 1 < j. By ¬Y2 there
is j, 2 < j, and Yj , a contradiction, or ¬Xj for all 3 < j, again a contradiction.

But ¬Y1 is possible, by setting ¬Yi and ¬Xi for all i.

Thus, replacing infinite branching by an infinite number of finite branching does
not work for the Yablo construction, as we can always chose the “procrastinating”
branch.
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See Diagram 1.2.

Diagram 1.2. Escape Path

Diagram for Example 1.5

Y1 Lines represent downward (negated) arrows

Y2 X3

Y3 X4

Y4 X5

Y5 X6
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2 A Generalization of Yablo’s Construction to Formu-
las in Disjunctive Normal Form - Examples

2.1 Introduction

We discuss here a general strategy and a number of examples (in Example 2.1).
They have in common that the formulas are of the type ∨ ∧

, i.e. in disjunc-
tive normal form. The limiting cases are pure conjunctions (as in Yablo’s original
approach) or pure disjunctions.

The examples are straightforward generalizations of Yablo’s construction, as we
have here several columns, in Yablo’s construction just one column, and our choice
functions g (in all columns) correspond to the choice of one element in Yablo’s
construction.

Consider the first example below.
More precisely, as Yablo works with ∧

xi, there is one uniform set of xi. We work
with ∨ ∧

xi,j , so we have to distinguish the elements in the ∧ from the sets in ∨
.

We define for this purpose columns, whose elements are the elements in the ∧
, and

the set of columns are the sets in ∨
. Negation is now slightly more complicated, not

just OR of negated elements, but OR of choice functions of negated elements in the
columns. We also need some enumeration of ω × ω, or of a suitable set.

It is perhaps easiest to see the following example geometrically. We have a
vertical column Ci0 where a certain property holds, and a horizontal line (the choice
function g), where the opposite holds, and column and horizontal line meet.

More precisely, the property will not necessarily hold in all of Ci0 , but only from
a certain height onward. As the choice functions g will chose even higher in the
columns, the clash is assured.

For more details of the general strategy, see Definition 2.1, Case 5. and Example
2.1, in particular Case 6.

2.2 The Examples
We first introduce some notation and definitions.

Definition 2.1.

(1) The examples will differ in the size of the ∧ and ∨ - where the case of both
finite is trivial, no contradictions possible - and the relation in the graph, i.e.
which formulas are “visible” from a given formula. (In Yablo’s construction,
the xj , j > i, are visible from xi.) We will write the relation by ̸→, x ̸→ y,
but for simplicity sometimes x < y, too, reminding us that variables inside
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the formulas will be negated. We consider linear and ranked orders, leaving
general partial orders aside. All relations will be transitive and acyclic.
For the intuition (and beyond) we order the formulas in sets of columns. In-
side a column, the formulas are connected by ∧

, the columns themselves are
connected by ∨

. This is the logical ordering, it is different from above order
relation in the graph.

(2) The basic structure.

(2.1) So, we have columns Ci, and inside the columns variables xi,j . As we might
have finitely or countably infinitely many columns, of finite or countably
infinite size, we write the set of columns C := {Ci : i < α}, where
α < ω + 1, and Ci := {xi,j : j < βi}, where βi < ω + 1 again. By abuse of
language, C will also denote the whole construction, C := {xi,j : i, j < ω}.

(2.2) Given C and xi,j , C ↾ xi,j := {xi′,j′ : xi,j ̸→ xi′,j′}, the part of C visible
from xi,j .

(2.3) Likewise, Ci′ ↾ xi,j := (C ↾ xi,j) ∩ Ci′ .

(3) Let I(xi,j) := {i′ < α : Ci′ ↾ xi,j ̸= ∅}. (In some i′, there might be no xi′,j′ s.t.
xi,j ̸→ xi′,j′ .)
Given i′ ∈ I(xi,j), let J(i′, xi,j) := {j′ < βi′ : xi,j ̸→ xi′,j′}. By i′ ∈ I(xi,j),
J(i′, xi,j) ̸= ∅.

(4) Back to logic. Let xi,j := ∨{∧{¬xi′,j′ : j′ ∈ J(i′, xi,j)} : i′ ∈ I(xi,j)}, (∧ inside
columns, ∨ between columns). We will sometimes abbreviate d(xi,j) by xi,j .
(Note that the xi′,j′ are exactly the elements visible from xi,j .)

(4.1) If xi,j is true (written xi,j+), then all elements in one of the Ci′ , i′ ∈
I(xi,j), and visible from xi,j , must all be false - but we do not know in
which Ci′ . We denote this Ci′ by Ci(xi,j), and define C[xi,j ] := Ci(xi,j) ↾
xi,j .

(4.2) Conversely, suppose xi,j is false, xi,j − . Again, we consider only elements
in C ↾ xi,j , i.e. visible from xi,j . By distributivity, xi,j− = ∨{∧

ran(g) :
g ∈ Π{Ci′ ↾ xi,j : i′ ∈ I(xi,j)}}.

(g is a choice function choosing in all columns Ci′ the “sufficiently big”
elements xk,m, i.e. above xi,j , ran(g) its range or image.) See Fact 1.1.
Note that the elements of ran(g) are now positive!
The ∨ in above formula choses some such function g, but we do not know
which. Let g[xi,j ] denote the chosen one.

865



Schlechta

(4.3) Note that both C[xi,j ] and g[xi,j ] are undefined if there are no xi′,j′ > xi,j .

(5) The conflicts will be between the “vertical” (negative) columns, and “horizon-
tal” (positive) lines of the g. It is a very graphical construction. If we start
with a positive point, the negative columns correspond to the ∀ in Yablo’s
construction, the g to the ∃, if we start with a negative one, it is the other way
round.
More precisely:

(5.1) Let xi,j+, consider C[xi,j ] (the chosen column) - recall all elements of
C[xi,j ] are negative.
If there is xi′,j′ ∈ C[xi,j ] which is not maximal in C[xi,j ], then g[xi′,j′ ]
intersects C[xi,j ], a contradiction, as all elements of ran(g[xi′,j′ ]) are pos-
itive.
Of course, such non-maximal xi′,j′ need not exist. In that case, we have
to try again with the negative element xi′,j′ and Case (5.2).

(5.2) Let xi,j−, consider g[xi,j ] (the chosen function) - recall, all elements of
ran(g[xi,j ]) are positive.
If there is xi′j′ ∈ ran(g[xi,j ]) such that C[xi′,j′ ] ∩ ran(g[xi,j ]) ̸= ∅, we
have a contradiction. So xi,j ̸→ xi′,j′ ̸→ xi′′,j′′ ∈ C[xi′,j′ ]. (This case is
impossible in Yablo’s original construction.)
Otherwise, we have to try to work with the elements in ran(g[xi,j ]) and
Case (5.1) above, etc.
Note that we can chose a suitable xi′,j′ ∈ ran(g[xi,j ]), in particular one
which is not maximal (if such exist), but we have no control over the
choice of C[xi′,j′ ], so we might have to exhaust all finite columns, until
the choice is only from a set of infinite columns.

See Diagram 2.1, upper part, and Example 2.1, Case 6.
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Example 2.1.

(1) Case 1
Consider the structure C := {xi,j : i < α, j < ω}, with columns Ci := {xi,j :
j < ω}.

Take a standard enumeration f of C, e.g. f(0) := x0,0, then enumerate the
xi,j s.t. max{i, j} = 1, then max{i, j} = 2, etc. As f is bijective, f−1(xi,j) is
defined.
(More precisely, let m := max{i, j}, and e.g. we go first horizontally from left
to right over the columns up to column m − 1, then in column m upwards, i.e.
x0,m, . . . , xm−1,m, xm,0, . . . , xm,m.)
Define the relation xi,j ̸→ xi′,j′ iff f−1(xi,j) < f−1(xi′,j′). Obviously, ̸→ is
transitive and free from cycles. C ↾ k := {xi,j ∈ C : f−1(xi,j) > k} etc. are
defined.
We now show that the structure has no truth values.
Suppose xi,j + .

Consider C[xi,j ], let i′ := i(xi,j) and chose xi′,j′ ∈ C[xi,j ]. xi′,j′ is false,
ran(g[xi′,j′ ]) intersects Ci′ above xi′,j′ , so we have a contradiction.
In particular, x0,0+ is impossible.
Suppose x0,0−, then ran(g[x0,0]) ̸= ∅, chose xi,j ∈ ran(g[x0,0]), so xi,j+, but
we saw that this is impossible.
Note: for α = 1, we have Yablo’s construction.

(2) Case 2
We now show that the same construction with columns of height 2 does not
work, it has an escape path.
Set xi,0+, xi,1− for all i. Ci(xi,0) might be Ci, so C[xi,0] = {xi,1}, which is
possible. ran(g[xi,1]) might be {xj,0 : j > i}, which is possible again.

(3) Case 3
We change the order in Case 2, to a (horizontally) ranked order:
xi,j < xi′,j′ iff i < i′ (thus, between columns), we now have a contradiction:
Consider xi,0− and g[xi,0]. g[xi,0](i) is undefined. Let xi+1,j′ := g[xi,0](i + 1),
thus xi+1,j′ + . Consider C[xi+1,j′ ]. This must be some Ci′ for i′ > i + 1, so
C[xi+1,j′ ] ∩ ran(g[xi,0]) ̸= ∅, and we have a contradiction.
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For x0,0+, consider C[x0,0], this must be some Ci, i > 0, take xi,0 ∈ Ci, xi,0−,
and continue as above.

(4) Case 4
Modify Case 1, to a ranked order, but this time vertically: xi,j < xi′,j′ iff
j < j′.

Take xi,j+, consider C[xi,j ], this may be (part of) any Ci′ (beginning at j +1).
Take e.g. xi′,j+1− ∈ C[xi,j ], consider g[xi′,j+1], a choice function in {Ck ↾
xi′,j+1 : k, ω} this will intersect C[xi,j ]. In particular, x0,0+ is impossible.
Suppose x0,0−, take xi,j+ ∈ ran(g[x0,0]), and continue as above.
Note that the case with just one Ci is the original Yablo construction.

(5) Case 5
We modify Case 1 again: Consider the ranked order by xi,j ̸→ xi′,j′ iff
max{i, j} < max{i′, j′}.

This is left to the reader as an exercise.

(6) Case 6
The general argument is as follows (and applies to general partial orders, too):

(6.1) We show that xi,j+ leads to a contradiction. (In our terminology, xi,j is
the head.)

(6.1.1) we find C[xi,j ] (negative elements) above xi,j - but we have no control
over the choice of C[xi,j ],

(6.1.2) we chose xi′,j′ ∈ C[xi,j ] - if there is a minimal such, chose this one,
it must not be a maximal element in C[xi,j ] (xi′,j′ is the knee),

(6.1.3) we find g[xi′,j′ ] (positive elements) above xi′,j′ - again we have no
control over the choice of this g. But, as C[xi,j ] ↾ xi′,j′ is not empty,
ran(g[xi′,j′ ]) ∩ C[xi,j ] ̸= ∅, so we have a contradiction (xi′′,j′′ ∈
ran(g[xi′,j′ ]) ∩ C[xi,j ] is the foot).

(6.1.4) We apply the reasoning to x0,0.

(6.2) We show that x0,0− leads to a contradiction.
(6.2.1) We have g[x0,0] (positive elements) - but no control over the choice

of g. In particular, it may be arbitrarily high up.
(6.2.2) we chose xi,j ∈ ran(g[x0,0]) with enough room above it for the argu-

ment about xi,j+ in (6.1).
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(6.3) Case 3 is similar, except that we work horizontally, not vertically.

Remark 2.1.
Note that we may use here the ideas of Condition 4.1, based on the discussion in

Section 3.3, to construct and check constructions for arbitrary formulas in disjunctive
normal form.
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Diagram 2.1. Contradictions for Disjunctive Normal Forms

Diagram for Definition 2.1 Case 5
Case 5, (4.1)

xi′,j′

C[xi,j ], all -

xi,j+

g[xi′,j′ ], all +

Case 5, (4.2)

xi′,j′

xi,j− g[xi,j ], all +
xi′′,j′′

Diagram for Example 2.1 Case 1

C0
x0,0 Ci(xi,j)

xi,j

xi(xi,j),j′

C[xi,j ], all -

C ↾ xi(xi,j),j′

g[xi(xi,j),j′ ], all +
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3 Saw Blades
3.1 Introduction
Yablo works with contradictions in the form of x0 = ¬x1∧¬x2, x1 = ¬x2, graphically
x0 ̸→ x1 ̸→ x2, x0 ̸→ x2. They are combined in a formally simple total order, which,
however, blurs conceptual differences.

We discuss here different, conceptually very clear and simple, examples of a
Yablo-like construction.

In particular, we emphasize the difference between x1 and x2 in the Yablo con-
tradictions. The contradiction is finished in x2, but not in x1, requiring the barring
of escape routes in x1. We repair the possible escape routes by constructing new
contradictions for the same origin. This is equivalent to closing under transitivity
in the individual “saw blades” - see below.

The main difference to Yablo’s construction is that we first construct a contra-
diction x0 ̸→ x1 ̸→ y0, x0 ̸→ y0, and later x1 ̸→ x2, and then x0 ̸→ x2, like Yablo,
so our construction is first more liberal, but we later see that we have to continue
like Yablo.

So we use the same “cells” as Yablo does for the contradictions, but analyse the
way they are put together.

We use the full strength of the conceptual difference between x1 and x2 (in above
notation) only in Section 3.4, where we show that preventing x2 from being TRUE
is sufficient, whereas we need x1 to be contradictory, see also Section 3.3. Thus, we
obtain a minimal, i.e. necessary and sufficient, construction for combining Yablo
cells in this way.

We analyse the constructions (Yablo’s original construction and our variants) in
detail, and see how they follow from the prerequisites (x0+ is contradictory, and any
arrow x0 ̸→ z leads again to a contradiction in case z+ (and thus x0−)).

3.2 Saw Blades
First, we show the escape route problem.

Example 3.1.
Consider Construction 3.1 without closing under transitivity, i.e. the only arrows

originating in xσ,0 will be xσ,0 ̸→ xσ,1 and xσ,0 ̸→ yσ,0, etc.
Let xσ,0 = TRUE, then xσ,1 is an ∨, and we pursue the path xσ,0 ̸→ xσ,1 ̸→ xσ,2,

this has no contradiction so far, and we continue with xσ,2 = TRUE, xσ,3 is ∨
again, we continue and have xσ,0 ̸→ xσ,1 ̸→ xσ,2 ̸→ xσ,3 ̸→ xσ,4, etc., never meeting
a contradiction, so we have an escape path.
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Construction 3.1.
We construct a saw blade σ, SBσ.

(1) “Saw Blades”

(1.1) Let xσ,0 ̸→ xσ,1 ̸→ xσ,2 ̸→ xσ,3 ̸→ xσ,4, . . . .
xσ,0 ̸→ yσ,0, xσ,1 ̸→ yσ,0, xσ,1 ̸→ yσ,1, xσ,2 ̸→ yσ,1, xσ,2 ̸→ yσ,2, xσ,3 ̸→ yσ,2,
xσ,3 ̸→ yσ,3, xσ,4 ̸→ yσ,3, . . . .
we call the construction a “saw blade”, with “teeth” yσ,0, yσ,1, yσ,2, . . . .
and “back” xσ,0, xσ,1, xσ,2, . . . .
We call xσ,0 the start of the blade.
See Diagram 3.1 (page 24), upper part.

(1.2) Add (against escape), e.g. first xσ,0 ̸→ xσ,2, xσ,0 ̸→ yσ,1, then xσ,1 ̸→ xσ,3,
xσ,1 ̸→ yσ,2, now we have to add xσ,0 ̸→ xσ,3, xσ,0 ̸→ yσ,2, etc, recursively.
This is equivalent to closing the saw blade under transitivity with negative
arrows ̸→ . This is easily seen.

(1.3) We set xσ,i = ∧ ¬zσ,j , for all xσ,j such that xσ,i ̸→ zσ,j , as in the original
Yablo construction.

(2) Composition of saw blades

(2.1) Add for the teeth yσ,0, yσ,1, yσ,2 . . . . their own saw blades, i.e. start at
yσ,0 a new saw blade SBσ,0 with yσ,0 = xσ,0,0, at yσ,1 a new saw blade
SBσ,1 with yσ,1 = xσ,1,0, etc.

(2.2) Do this recursively.
I.e., at every tooth of every saw blade start a new saw blade. See Diagram
3.2.

Note:
It is NOT necessary to close the whole structure (the individual saw blades

together) under transitivity.

Fact 3.1.
All zσ,i in all saw blades so constructed are contradictory, i.e. assigning them a

truth value leads to a contradiction.
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Proof
The argument is almost the same as for Yablo’s construction.
Fix some saw blade SBσ in the construction.

(1) Take any zσ,i with zσ,i+, i.e. zσ,i = TRUE. We show that this is contradictory.

(1.1) Case 1: zσ,i is one of the xσ,i i.e. it is in the back of the blade.
Take any xσ,i′ in the back such that there is an arrow xσ,i ̸→ xσ,i′ (i′ :=
i + 1 suffices). Then xσ,i′ = FALSE, and we have an ∨ at xσ,i′ . Take any
zσ,j such that xσ,i′ ̸→ zσ,j , by transitivity, xσ,i ̸→ zσ,j , so zσ,j = FALSE,
but as xσ,i′ = FALSE, zσ,j = TRUE, contradiction.

(1.2) Case 2: zσ,i is one of the yσ,i, i.e. a tooth of the blade.
Then yσ,i is the start of the new blade starting at yσ,i, and we argue as
above in Case 1.

(2) Take any zσ,i with zσ,i−, i.e. zσ,i = FALSE, and we have an ∨ at zσ,i, and
one of the successors of zσ,i, say zσ,j , has to be TRUE. We just saw that this
is impossible.
(For the intuition: If zσ,i is in the back of the blade, all of its successors are
in the same blade. If zσ,i is one of the teeth of the blade, all of its successors
are in the new blade, starting at zσ,i. In both cases, zσ,j = TRUE leads to a
contradiction, as we saw above.)

Remark 3.2.
Note that all yσ,i are contradictory, too, not only the xσ,i. We will see in Section

3.4 that we can achieve this by simpler means, as we need to consider here the case
xσ,i∨ only, the contradiction for the case xσ,i∧ is already treated.

Thus, we seemingly did not fully use here the conceptual clarity of difference
between x1 and x2 alluded to in the beginning of Section 3.2. See, however, the
discussion in Section 3.3.

873



Schlechta

Diagram 3.1. Saw Blade

Horizontal lines stand for negative arrows from left to right,
the other lines for negative arrows from top to bottom
Diagram Single Saw Blade
Start of the saw blade σ beginning at xσ,0,
before closing under transitivity

SBσ

xσ,0

yσ,0

xσ,1

yσ,1

xσ,2

yσ,2

xσ,3

yσ,3

xσ,4

yσ,4

xσ,5

yσ,5

xσ,6

yσ,6

Read xσ,0 ̸→ xσ,1 ̸→ yσ,0, xσ,0 ̸→ yσ,0, etc., more precisely:
xσ,0 = ¬xσ,1 ∧ ¬yσ,0, xσ,1 = ¬yσ,0 ∧ ¬xσ,2 ∧ ¬yσ,1, etc.

Diagram Simplified Saw Blade
Start of the saw blade before closing
the blade (without “decoration”) under transitivity

x0

y0

y′
0

x1

y1

y′
1

x2

y2

y′
2

x3

y3

y′
3

x4

y4

y′
4

x5

y5

y′
5

x6

y6

y′
6

Read y0 = y′
0 ∧ ¬y′

0 etc.
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Diagram 3.2. Composed Saw Blades

Horizontal lines stand for negative arrows from left to right,
the other lines for negative arrows from top to bottom
Diagram Composition of Saw Blades
Composition of saw blades (without additional arrows)
The fat dots indicate identity, e.g. y0,0 = x0,0,0

SB0

x0,0

y0,0

x0,1

y0,1

x0,2

y0,2

x0,3

y0,3

x0,4

y0,4

x0,5

y0,5

x0,6

y0,6

SB0,2

x0,2,0

y0,2,0

x0,2,1

y0,2,1

x0,2,2

y0,2,2

x0,2,3

y0,2,3

x0,2,4

y0,2,4

SB0,1

x0,1,0

y0,1,0

x0,1,1

y0,1,1

x0,1,2

y0,1,2

x0,1,3

y0,1,3

x0,1,4

y0,1,4

x0,1,5

y0,1,5

SB0,0

x0,0,0

y0,0,0

x0,0,1

y0,0,1

x0,0,2

y0,0,2

x0,0,3

y0,0,3

x0,0,4

y0,0,4

x0,0,5

y0,0,5

x0,0,6

y0,0,6

SB0,0,0

x0,0,0,0

y0,0,0,0

x0,0,0,1

y0,0,0,1

x0,0,0,2

y0,0,0,2

x0,0,0,3

y0,0,0,3

x0,0,0,4

y0,0,0,4

x0,0,0,5

y0,0,0,5

x0,0,0,6

y0,0,0,6

3.3 Discussion of Saw Blades
We analyse here the construction of saw blades from the prerequisites and show
that Yablo’s construction is a necessary substructure. The analysis applies as well
to Yablo’s original structure - it suffices to omit the y’s.

It will be illustrated in Diagram 3.3 and Diagram 3.4. They will also show that
the negative arrows are necessary - though this is not important here.
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3.3.1 Preliminaries

Yablo’s structure is sufficient, it shows that x0 there does not have a consistent truth
value.

We constructed in Section 3.2 a structure from the prerequisites which is more
general, and contains Yablo’s structure as a substructure. This shows that Yablo’s
structure is necessary (and minimal) under our prerequisites.

As we are mainly interested in constructing Yablo’s structure from the prereq-
uisites, we will stop analysing the rest of the saw blade structure after some initial
steps, in order to simplify things.

One of the consequences of the construction is that we will have a constructive
proof of the necessity of infinite depth and width.

We will work as usual with conjunctions of negations.
Recall:

Definition 3.1.

(1) A Yablo cell (YC) has the form x ̸→ x′ ̸→ y, x ̸→ y.

x is the head, x′ the knee, y the foot.
Without any branching at x′, x+ is impossible, as it is contradictory.
If x+, then x′ − ∨. Thus, if we add some x′ ̸→ y′ (or x′ → y′), we have
x′− = y ∨ y′, so x+ is not contradictory any more. Any x′ ̸→ y′ opens a new
possibility for x+ to be consistent, although x is the head of a YC.

(2) If, for all x′ ̸→ y′, we also have x ̸→ y′, x+ is again impossible.
We call such a system of x ̸→ x′, and for all x′ ̸→ yi also x ̸→ yi a Yablo Cell
System (YCS) - of course, with head x and knee x′.

Thus, if we want an contradiction at x, a YC with head x does not suffice, we
need a YCS with head x.

(3) If we discuss general contradictory cells, we will write CC instead of YC, and
CCS instead of YCS.

3.3.2 Prerequisites

We use the following prerequisites:
(1) x0 is contradictory

(2) If there is an arrow x0 ̸→ x, then x is contradictory.
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Translated to YC’s and Y CS’s, this means:

(1) x0 is the head of a YCS (for x0+)

(2) For any x0 ̸→ x, and x0−, thus x + ∧
, x+ is the head of a YCS.

3.3.3 Strategy and Details of the Construction

During the inductive construction, we will append new Y C’s, say z ̸→ z′ ̸→ z′′,
z ̸→ z′′, to the construction done so far, but we will see that prerequisite (2) in
Section 3.3.2 will force us to add new arrows to z′, say z′ ̸→ z′′′, so the YCS property
at z is destroyed, and we will have to repair the YCS by adding a new arrow z ̸→ z′′′.

The final construction is the union of infinitely many steps, so all YCS’s which
were destroyed at some step will be repaired later again.

Construction 3.2.

(1) Start:
We begin with x0 ̸→ x1 ̸→ y0, x0 ̸→ y0.

See Diagram 3.3, Top.
This is a YCS with head x0, thus x0 is contradictory, and prerequisite (1) in
Section 3.3.2 is satisfied.

(2) Prerequisite (2) is not satisfied, and we add two new YC’s to x1 and y0 to
satisfy prerequisite (2):
x1 ̸→ x2 ̸→ y1, x1 ̸→ y1, and
y0 ̸→ z0 ̸→ z′

0, y0 ̸→ z′
0.

See Diagram 3.3, Center, only x1 ̸→ x2 ̸→ y1, x1 ̸→ y1 shown.

(3) The new arrows x1 ̸→ x2 and x1 ̸→ y1 destroy the YCS at x0 with knee x1.

We could, of course, begin an new YC at x0 with different knee, say x0 ̸→
x′

1 ̸→ y′
0, which is a YCS, but this would take us back to step (1), step (2)

would have been a dead end, and we would be in the same situation again.
Thus, this does not lead anywhere.
Thus, we have to repair the situation of step (2) by adding x0 ̸→ x2 and
x0 ̸→ y1, and we have a YCS again.
See Diagram 3.3, Bottom.
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(4) Prerequisite (2) is again not satisfied, and we add two new Y C’s, to x2 and
y1, say
x2 ̸→ x3 ̸→ y2, x2 ̸→ y2, and
y1 ̸→ z1 ̸→ z′

1, y1 ̸→ z′
1.

See Diagram 3.4, Top, only x2 ̸→ x3 ̸→ y2, x2 ̸→ y2 shown.
Note:
It might be possible to find or add arrows x2 ̸→ u and x2 ̸→ u′ and u ̸→ u′

to already constructed u, u′, without introducing cycles. We continue with
u, u′, adding arrows x0 ̸→ u, x0 ̸→ u′, etc., but as the construction already
achieved is finite, in the end, we will have to add new points and arrows. More
precisely, such u, u′ cannot be some xi already constructed, this would create
a cycle, it has to be some y or z. We will neglect the y’s and z′ anyway, as our
main interest here lies in the xi and the arrows between them.

(5) We now want to construct arrows x0 ̸→ x3 and x0 ̸→ y2 using a broken YCS
property at x0, but we have here a new knee, x2 and not x1 (which is the knee
for x0). So, we have to proceed indirectly.

(6) The new arrows x2 ̸→ y2 and x2 ̸→ x3 destroy the YCS at x1 with knee x2,
and we add x1 ̸→ x3 and x1 ̸→ y2 to repair the YCS.
See Diagram 3.4, Center.

(7) But, now, we go from x0 via the knee, have new arrows x1 ̸→ x3 and x1 ̸→ y2,
and have to repair the YCS of x0 by adding x0 ̸→ x3 and x0 ̸→ y2.

See Diagram 3.4, Bottom.

(8) We use here in (6) and (7) the general property of the construction that xi+1
is the knee of the YCS with head xi.

Consequently, if we add an arrow xi+1 → x, then we have to add an arrow
xi ̸→ x to repair the YCS with head xi.

The argument goes downward until x0 (as xi is the knee of the YCS with head
xi−1 etc.), so, if we add an arrow xi+1 ̸→ x, we have to add new arrows xk ̸→ x
for all 0 ≤ k ≤ xi.

(9) (9.1) Thus, there are arrows xi ̸→ xj for all i, j, i < j, and the construction is
transitive for the x′

is.

(9.2) Every xi is head of a YCS with knee xi+1.
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(9.3) Thus, every arrow from any xi to any xj goes to the head of a YCS, and
not only the arrows from x0.

This property is “accidental”, and due to the fact that for any arrow
xi ̸→ xj , there is also an arrow x0 ̸→ xj , and property (2) holds for x0 by
prerequisite.

(10) The construction has infinite depth and branching.
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Diagram 3.3. Inductive Construction 1

Horizontal lines stand for negative arrows from left to right,
the other lines for negative arrows from top to bottom

Contradiction at x0+
(If x0−, all arrows from x0 have to lead to a
contradiction, so x0 ̸→ y0 and x0 ̸→ x1have to be negative arrows.
But if x0+, we need a contradiction in
{x0, x1, y0}, so x1 ̸→ y0 has to be
negative, too.)

x0

y0

x1

Contradiction for x0−, x0..x1 has to lead to
new Yablo Cell

x0

y0

x1

y1

x2

Repair contradiction at x0+
(due to new branches at x1−)
In future, we will not draw the new arrows
to the y′

is

(Again, x0 ̸→ x2 and x0 ̸→ y1 have to be
negative. But, as {x0, x1, y1} and
{x0, x1, x2} have to be contradictory, x1 ̸→ y1and x1 ̸→ x2 have to be negative, too.)

x0

y0

x1

y1

x2
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Diagram 3.4. Inductive Construction 2

Horizontal lines stand for negative arrows from left to right,
the other lines for negative arrows from top to bottom

Repair contradiction at x0−: new branch x0..x2 has
to lead to a new Yablo Cell

x0

y0

x1

y1

x2

y2

x3

Repair contradiction at x1+ due to new branch x2..x3
As x1 is the head of a Yablo Cell, we have the dotted
line from x1 to y2

x0

y0

x1

y1

x2

y2

x3

Repair contradiction at x0+ due to new branch x1..x3
(Because of the dotted line x1 to y2, we also need a
line x0 to y2. It has to be negative (for the case x0−).
As {x0, x1, y2} is contradictory, x1 ̸→ y2 is negative.
As {x0, x1, x3} is contradictory, x1 ̸→ x3 is negative.
As {x1, x2, x3} is contradictory, x2 ̸→ x3 is negative.
But as x2 is the head of a Yablo Cell,
and x2 ̸→ y2, x2 ̸→ x3, so x3 ̸→ y2, too.
Thus, ALL lines in the diagram are negative.)

x0

y0

x1

y1

x2

y2

x3

3.4 Simplifications of the Saw Blade Construction

We show here that it is not necessary to make the yσ,i contradictory in a recursive
construction, as in Construction 3.1. It suffices to prevent them to be true.

We discuss three, much simplified, Saw Blade constructions.
Thus, we fully use here the conceptual difference of x1 and x2, as alluded to at

the beginning of Section 3.2.
Note, however, that the back of each saw blade “hides” a Yablo construction. The

separate treatment of the teeth illustrates the conceptual difference, but it cannot
escape blurring it again in the back of the blade.

First, we discuss some “false” simplifications which do not work.
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3.4.1 “Simplifications” that Will Not Work

We try to simplify here the Saw Blade construction. Throughout, we consider for-
mulas of pure conjunctions.

We start with a Yablo Cell, but try to continue otherwise.
So we have x0 ̸→ x1 ̸→ x2, x0 ̸→ x2. So x0+ is impossible. We now try to treat

x0 − . We see in Construction 3.3 that appending x2 ⇒± y2 may take care of the
necessary contradiction at x2, see Diagram 3.1, lower part. When we try to do the
same at x1, i.e. some x1 ⇒± x3, we solve again the necessary contradiction at x1,
but run into a problem with x0+, as x1 is an ∨. So x3 has to be contradictory. If we
continue x3 ⇒± x4 ⇒± x5 etc., this will not work, as we may set all such xi−, and
have a model. In abstract terms, we only procrastinate the same problem without
solving anything. Of course, we could append after some time new Yablo Cells, as
in the saw blade construction, but this is cheating, as the “true” construction begins
only later. This shows the difference between “knee” and “foot”, it works with a
foot, but not a knee. (Recall that all xi, i > 1 are both foot and knee.)

Suppose we add not only x1 ⇒± x3, but also x0 ⇒± x3, then we solve x0+, but
x0− is not solved.

Working with cells of the type (2.1) in Example 1.4 will lead to similar problems.
Consequently, any attempt to use a “pipeline”, avoiding infinite branching, is

doomed:
Instead of x0 ̸→ x1, x0 ̸→ x2, . . . . etc. we construct a “pipeline” of x′

i, with
x0 ̸→ x′

1, x1 ̸→ x′
2, etc, x′

1 → x′
2 → x′

3 . . . ., and x′
1 → x1, x′

2 → x2, etc. or similarly,
to have infinitely many contradictions for paths from x0.

As this is a set of classical formulas, this cannot achieve inconsistency, see Fact
1.4.

3.4.2 Real Simplifications

Construction 3.3.

(1) Take ONE saw blade σ, and attach (after closing under transitivity) at all yσ,i a
SINGLE Yablo Cell yσ,i ̸→ uσ,i ̸→ vσ,i, yσ,i ̸→ vσ,i. We call this the decoration,
it is not involved in closure under transitivity.

(1.1) Any node z in the saw blade (back or tooth) cannot be z+, this leads to
a contradiction:
If z = xi (in the back):
Let xi+ : Take xi ̸→ xi+1 (any xj , i < j would do), if xi+1 ̸→ r, then by
transitivity, xi ̸→ r, so we have a contradiction.
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If z = yi (a tooth):
yi+ is contradictory by the “decoration” appended to yi.

(1.2) Any xi− (xi in the back, as a matter of fact, x0− would suffice) is im-
possible:
Consider any xi ̸→ r, then r+ is impossible, as we just saw.
Note: there are no arrows from the back of the blade to the decoration.

(2) We can simplify even further. The only thing we need about the yi is that they
cannot be +. Instead of decorating them with a Yablo Cell, any contradiction
will do, the simplest one is yi = y′

i ∧ ¬y′
i. Even just one y′ s.t. yi = y′ ∧ ¬y′ for

all yi would do. (Or a constant FALSE.)
See Diagram 3.1, lower part.
Formally, we set
x0 := ∧{¬xi : i > 0} ∧ ∧{¬yi : i ≥ 0},

for j > 0 :
xj := ∧{¬xi : i > j} ∧ ∧{¬yi : i ≥ j − 1},

and
yj := y′

j ∧ ¬y′
j .

(3) In a further step, we see that the yi (and thus the y′
i) need not be different

from each other, one y and one y′ suffice.
Thus, we set xj := ∧{¬xi : i > j} ∧ ¬y, y := y′ ∧ ¬y′.

(Intuitively, the cells are arranged in a circle, with y at the center, and y′

“sticking out”. We might call this a “curled saw blade”.

(4) When we throw away the yj altogether, we have Yablo’s construction. this
works, as we have the essential part in the xi’s, and used the y′

js only as a sort
of scaffolding.

Remark 3.3.
It seems difficult to conceptually simplify even further, as Section 3.3 shows

basically the need for the construction of the single Saw Blades. We have to do
something about the teeth, and above Construction 3.3, in particular cases (2) and
(3) are simple solutions.

The construction is robust, as the following easy remarks show (see also Section
6):
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(1) Suppose we have “gaps” in the closure under transitivity, so, e.g. not all
x0 ̸→ xi exist, they always exist only for i > n. (And all other xk ̸→ xl

exist.) Then x0 is still contradictory. Proof: Suppose x0+, then we have the
contradiction x0 ̸→ xn ̸→ xn+1 and x0 ̸→ xn+1. Suppose x0−, let x0 ̸→ xi. As
xi is unaffected, xi+ is impossible.

(2) Not only x0 has gaps, but other xi, too. Let again xn be an upper bound
for the gaps. As above, we see that x0+, but also all xi+ are impossible. If
x0 ̸→ xi, as xi+ is impossible, x0− is impossible.

(3) x0 has unboundedly often gaps, the other xi are not affected. Thus, for i ̸= 0,
xi+ and xi− are impossible. Thus, x0− is impossible, as all xi+ are, and x0+
is, as all xi− are.

See also Section 6.

4 The “Right” Level of Abstraction
4.1 Introduction
The basic elements in Yablo’s construction are negative arrows, from which Yablo
Cells are built. We show here that we can build arbitrarily complex structures
equivalent to negative arrows, and as a matter of fact to any propositional logical
operator. This suggests that the right level of abstraction to consider more general
Yablo-like structures is not the level of single arrows, but rather of paths.

Note that [1] and [5] also work with paths in graphs.

4.2 Expressing Logical Operators by Combinations of Yablo Cells
Remark 4.1.

In the diagrams in Diagram 4.1 the inner path x − y − z is barred by x − z, and
the outer path contains 3 or 2 negations.

Note that in all diagrams Diagram 4.1, and Diagram 4.2, upper part, y will
always be FALSE, and as x = ¬y ∧ ¬z, ¬y is TRUE and will not be considered, the
value of x depends only on the branch through z.

E.g., in Diagram 4.1, upper part, the path z − x has uneven length, so the
diagram describes negation, in Diagram 4.1, lower part, the path z′ − z − x has even
length, so the diagram describes identity.
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Definition 4.1.
We define negations and their type.
See Diagram 4.1.
A negation (diagram) is a diagram all of whose arrows are of the ̸→ kind.
We define negation diagrams, or, simply, negations, and their type.

• An arrow x ̸→ x′ is a negation of type 0.
A negation of the type x ̸⇒ z, x ̸⇒ y ̸⇒ z, y ̸⇒ y′ ̸⇒ z (see Diagram 4.1,
upper left) is of type n + 1 iff
all negations inside are of type ≤ n, and at least one negation inside is of type
n.

Similarly, we may define the type of an identity via the type of the negations it
is composed of - see Diagram 4.1, lower part.

This all shows that we may blur the basic structure almost ad libitum, making
a characterisation difficult. (See here Diagram 4.2, lower part, etc. too.)

Remark 4.2.
Thus, it seems very difficult to describe Yablo type diagrams on the level of single

arrows. It seems to be the wrong level of abstraction.

We now give some examples.

4.3 Some Examples
Example 4.1.

See Diagram 4.1, and Diagram 4.2.

(1) Negation (1)
x = ¬y ∧ ¬z, y = ¬z ∧ ¬y′, y′ = ¬z, so ¬y = z ∨ y′, and x = (z ∨ y′) ∧ ¬z =
(z ∨ ¬z) ∧ ¬z = ¬z.

(2) Negation (2)
x = ¬y ∧ ¬z, y = ¬y′′ ∧ ¬y′, y′ = ¬z, y′′ = z, so y = ¬z ∧ ¬y′, and continue as
above.

(3) Identity
x = ¬y ∧¬z, y = ¬z ∧¬z′, z = ¬z′, so ¬y = z ∨z′, and x = (¬z′ ∨z′)∧z′ = z′.
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(4) TRUE
x = ¬y∧¬z, y = ¬y′∧¬z, y′ = ¬z, z = ¬z′∧¬z′′, z′ = ¬z′′. Thus, z = z′′∧¬z′′,
¬z = z′′ ∨ ¬z′′ = TRUE, y′ = TRUE, y = FALSE ∧ TRUE = FALSE, and
x = TRUE ∧ TRUE.

(5) z′ ∧ ¬u

x = ¬z ∧ ¬y ∧ ¬u, y = ¬z ∧ ¬u′ ∧ ¬u, z = ¬z′, u′ = ¬u, so y = z′ ∧ u ∧ ¬u,
¬y = ¬z′ ∨ ¬u ∨ u = TRUE, and x = z′ ∧ TRUE ∧ ¬u = z′ ∧ ¬u.

.

Diagram 4.1. Propositional Formulas 1

Lines represent negated downward arrows, except for the
line y"-z, which stands for a positive downward arrow.
Diagram Negation

x

y

y’

z

We can achieve this using a diamond, too, see
Section 5.4

x

y

y’

y"

z

Diagram Identity

x

y

z

z’

Diagram 4.2. Propositional Formulas 2
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Diagram TRUE

(Lines represent negated downward
arrows)

x

y

y’

z

z’

z"

Diagram z′ ∧ ¬u

(Lines represent negated downward arrows)

x

u

y

u’

z

z’

4.4 Paths Instead of Arrows
We concluded above that the level of arrows might be the wrong level of abstraction.
We change perspective, and consider paths, i.e. sequences of arrows, sometimes
neglecting branching points.

We assume all formulas attached to nodes are as in Yablo’s paper, i.e. pure
conjunctions of positive or negative nodes.

Condition 4.1.
Note that we speak only about special cases here: The formulas are of the type∧ ¬, we use Yablo cells for contradictions, and every arrow (negative path below)

leads directly to a new Yablo cell, see Section 3.3.2.
(We use an extension of the language beyond ∧ ¬ for simplifications (“cutting

unwanted branches”), so, strictly speaking, our result is NOT an equivalence result.
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In addition to ¬xi as components of ∧
, we also admit formulas of the type (xi ∨¬xi)

or the constant TRUE.)
Suppose a graph Γ contains an infinite set of points xi : i ∈ ω, which can be

connected by negative paths σi,j : xi . . . xj for all i < j, then we can interpret this
graph so that x0 (as a matter of fact, all xi) cannot have a truth value.

Thus, the graph is directed, the arrows are not necessarily labelled (labels +
or -), but labelling can be done such that for each pair of nodes x, y, where y is a
successor of x, there is a negative path from x to y. (See Definition 1.2.)

Remark: The condition “negative paths” is not trivial. Suppose that σ : x . . . y
and σ′ : y . . . z are both negative, and σ ◦ σ′ is the only path from x to z, then the
condition is obviously false. The author does not know how to characterize graphs
which satisfy the condition. Some kind of “richness” will probably have to hold.

Proof
We saw in Section 3.3 that we can generate from the prerequisites a structure

isomorphic to Yablo’s structure.
Conversely: Let y be any node in Γ, if y ̸→ y′ is not part of the σi,j , then interpret

y ̸→ y′ by (y′ ∨ ¬y′). Thus, y ̸→ y′ has no influence on the truth of y. In particular,
the branching points inside the σi,j disappear, and the σi,j become trivial. The xi

are not influenced by anything apart from the xj , j > i.

Thus, the construction of the xi, xj , σi,j is equivalent to Yablo’s structure.

Definition 4.2.
Our argument above was a bit sloppy. We can make it more precise.
If x is contradictory, i.e. both x+ and x- lead to a contradiction, we have

M(x) = ∅, and M(¬x) = ∅, with M(.) the set of models.
Still, the following definition seems reasonable:
M(x ∧ ϕ) := M(x) ∩ M(ϕ), and M(x ∨ ϕ) := M(x) ∪ M(ϕ).
In above proof, we used M(x ∧ TRUE) = M(x).

5 Possible Contradiction Cells

5.1 Introduction

We consider alternative basic contradiction cells, similar to Yablo cells. We
saw in Example 1.4 that Yablo cells are the simplest contradictions suitable to a
contradictory construction (i.e. without possible truth values). We now examine
more complicated contradiction cells, the only interesting one is the “diamond”, but
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this cell fails to fit into our construction principle - at least in our logical framework,
see Section 5.4.1.

The Yablo cell has the form x ̸→ y ̸→ z, x ̸→ z, whereas the diamond has the
form x ̸→ y ̸→ z, x ̸→ y′ → z. The diamond is more complicated, as it contains
two branching points, y and y′, before the contradiction is complete, and we have
to “synchronize” what happens at those branching points.
5.2 Prerequisites

In Yablo’s construction, and our Saw Blades, the basic contradiction had the form
x ̸→ y ̸→ z, x ̸→ z (Yablo Cell, YC). We generalize this now, as illustrated in
Diagram 5.1, x0 corresponds to x, a2 to y, b2 to z. The arrow x ̸→ y is replaced by a
perhaps more complicated path via a1, x ̸→ z by a perhaps more complicated path
via b2, but we still want a2 and b2 origins of new contradictions in the case x0 − .
Thus, both σ : x0 . . . a2 and σ′ : x0 . . . b2 have to be negative paths.

The most interesting modification is of the type of Case (2.4.2) in Remark 5.1,
where the contradiction originating at x0 is via an additional point, z. We call this a
“Diamond”, and examine this case in more detail in Section 5.4, and Section 5.4.1.

In the Diamond case, we need a positive arrow (equivalently two negative arrows
without branching in between), either from a2 to z, or from b2 to z.

In all cases, σ from x0 to a2, and σ′ from x0 to b2 has to be negative, so x0−
results in a2+ and b2 + . Omitting a1 and b1, and adding a direct arrow a2 ̸→ b2
results in the original Yablo Cell.

We continue to work with pure conjunctions, now of positive or negative proposi-
tional variables. (We will be forced to look at more complicated formulas in Remark
5.5.)

5.3 Various Types

Remark 5.1.
See Diagram 5.1.
We examine here the different modifications of Yablo’s basic construction.
Note that e.g. x0 . . . a1 need not be an arrow, it may be a longer path.
The contradiction need not be e.g. a2 . . . b2, but they might take a “detour”

a2 . . . z and b2 . . . z. (The cases like a2 . . . z . . . b2 are already covered by a2..b2.) So
z will be the “point of conflict”. We will call these cases “detour to z” (and the
construction “diamonds”).

We do not break e.g. x0 . . . a1 further down, this suffices for our analysis.
The situation:
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(1) x0+ must be contradictory, the contradiction formed with (perhaps part of) σ
and σ′,

(2) both a2+ and b2+ must be contradictory if x0 − .

Recall that the paths x0 . . . a1 . . . a2 and x0 . . . b1 . . . b2 are both negative (as a2
and b2 must be positive, if x0 is negative).

We look at the following cases of building the contradiction at x0, e.g. Case
(1.1) means that we have the contradiction between x0 . . . a1 . . . b1 and x0 . . . b1, Case
(1.4.1) means that we have a contradiction between x0 . . . a1 . . . z and x0 . . . b1..z.

(1) a1 as additional branching point

(1.1) from a1 to b1

(1.2) from a1 to b2

(1.3) from a1 to b3

(1.4) from a1 to z and
(1.4.1) from b1 to z, b1 as additional branching point
(1.4.2) from b2 to z, b2 as additional branching point
(1.4.3) from b3 to z, b3 as additional branching point

(2) a2 (again bi as additional branching points)

(2.1) from a2 to b1

(2.2) from a2 to b2

(2.3) from a2 to b3

(2.4) from a2 to z and
(2.4.1) from b1 to z

(2.4.2) from b2 to z

(2.4.3) from b3 to z

(3) a3 (again a3 and bi as additional branching points)

(3.1) from a3 to b1

(3.2) from a3 to b2

(3.3) from a3 to b3

(3.4) from a3 to z and
(3.4.1) from b1 to z
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(3.4.2) from b2 to z

(3.4.3) from b3 to z

We will examine the cases now.

(1) Case (1):

In all cases, we have to branch at a1 with a1 + ∧, as we need to have a
contradiction for x0+, so we have x0 → a1. But then, for x0−, we branch at
a1 − ∨. Now, one branch will lead to a2, the other to b1, b2, b3, or z.

Cases (1.1) and (1.2):

Suppose x0−, and a1 is chosen at x0. As a1−, suppose b1 is chosen at a1.
By prerequisite (we need a contradiction), x0 . . . a1 . . . b1 contradicts x0 . . . b1,
moreover x0 . . . b1..b2 is negative, so x0 . . . a1 . . . b1 . . . b2 is positive, and the
chosen path misses a2 and makes b2 negative, contradicting (2) above in “The
situation”. (Thus, appending the same type of construction at b2 again, etc.
will result in an escape path x0−, b2−, etc.)

Case (1.3) and (1.4):

Consider x0−, chose at x0 a1 and chose at a1 b3 (or z). Then x . . . a1 . . . b3 or
x . . . a1 . . . z will not meet a2 nor b2.

(2) Case (2):

Cases (2.1) and (2.2) are (equivalent to) a Yablo Cell.

Cases (2.3), (2.4.2), and (2.4.3) are equivalent, and discussed below (“Dia-
mond”), see Section 5.4. Note that, e.g. in case (2.4.2), to have a contradiction,
we need val(ρ) ̸= val(ρ′).

Cases (2.4.1) and (1.4.2) are symmetrical.

(3) Case (3):

Similar considerations as for Case (2) apply.

Diagram 5.1. General Contradiction
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See Remark 5.1

x0+

a1

a2

a3

z

Recall that val(x0..a2) = val(x0..b2) = −
but val(ρ) ̸= val(ρ′)

σ

b1

b2

b3

ρ

ρ′

σ′

The solid arrows stand for positive or negative paths
For the dotted arrows see Remark 5.1, Case (2.4.2) -
they form part of the Diamond contradiction:
x0..b1..b2..z, x0..a1..a2..z.
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5.4 Diamonds

We first give some simple examples as “warming up exercises”, before we turn in
Section 5.4.1 to a proof that - at least in our setting - Diamonds cannot replace
Yablo Cells, see Remark 5.5.

Recall that in all examples below val(x0, x1) = val(x0, x2) = −.

Remark 5.2.
We may, of course, imitate a diamond a ̸→ b ̸→ d, a ̸→ c → d by a triangle

a ̸→ b ̸→ d, a ̸→ c → d, where the “detour” via c is integrated in the line a ̸→ d.
But this is “cheating”, and would neglect the essential property, that each of b and
c should have a new diamond attached to it.

Remark 5.3.
Case (1), see Diagram 5.2.
x0 and x1 should be heads of contradiction cells.
Take e.g. Case (1.1). Here, x1 is a conjunction of positive or negative occurences

of y1, y2, y, Thus, if x0+, ¬x1 is a disjunction of (the negatives) of above occurences.
So, it might e.g. be y1 ∨ ¬y2 ∨ y, and we cannot be sure of going to y, and thus we
are not sure to have a contradiction for the case x0 + . In more detail:

If x0+, then x1−, and let x1− be expressed by some logical formula ϕ = ϕ1 ∨
. . . ∨ ϕn, with each ϕi a conjunction of letters. We know that, for the contradiction
to work for x0, val(x1, y) ̸= val(x2, y) has to hold. Suppose val(x2, y) = −, so val
(x1, y) = +. Then, in each conjunction, we must have y. Take now the case x0−, then
x1+ and consequently val(x1, y1) ̸= val(x1, y2, y1) has to hold. Fix val(y2, y1). The
negation of ϕ is the disjunction of the (negated) conjunctions of all choice functions
in the conjunctions for ϕ. But one of those conjunctions is just ¬y ∧ . . . ∧ ¬y = ¬y,
it says nothing about y1 or y2, so we cannot force any coherence between val(x1, y1)
and val(x1, y2, y1).

Note that this argument works for arbitrary infinite formulas, too.
The argument for Case (1.2) is similar.
Case (3) is more interesting, see Diagram 5.3.
We want x0, x1, and x2 to be heads of contradiction cells. We discuss Case (3.1),

(3.2) is similar.
Suppose val(x1, y) = −, val(x2, y) = +
We distinguish two possibilities:
Case A: val(y, z) = +.

Then val(x1, z) = +, val(x2, z) = −. If x0+, then x1 − ∨
, x2 − ∨

. Suppose x1
chooses z, and x2 chooses y, then we have no contradiction.
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Case B : val(y, z) = −.

Then val(x1, z) = −, val(x2, z) = +. Again, if x1 chooses z, and x2 chooses y,
we have no contradiction.

Diagram 5.2. Simple Diamonds 1

See Remark 5.3
Unmarked lines denote positive or negative upward pointing arrows.

Case (1.1)

x0

x1 x2

y1 yy2

Case (1.2)

x0

x1 x2

y1 y

z

y2
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Diagram 5.3. Simple Diamonds 2

See Remark 5.3
Unmarked lines denote positive or negative upward pointing arrows.

Case (3.2)

x0

x1 x2

y

z

u

Case (3.1)

x0

x1 x2

y

z
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5.4.1 Nested Diamonds

We present here some examples and problems of constructions with nested dia-
monds.
Remark 5.4.

We first try to imitate the Yablo construction using diamonds instead of triangles.
See Diagram 5.4, for the moment both sides.

The basic construction is x0 − x1,1 − x2, x0 − x1,2 − x2.
To make the construction recursive, we have to add, among other things, a new

diamond at x1,1, x1,1 − x3,1 − x4 and x1,1 − x3,2 − x4, etc.

(1) Consider first the left hand side of the diagram.
x0 − x1,2 − x2 contradicts x0 − x1,1 − x2, and x0 − x1,2 − x2 − x3,2 contradicts
x0 − x1,1 − x3,2.

x0 −x1,1 −x3,1 −x4 and x0 −x1,2 −x2 −x3,2 −x4 are not contradictory, just as
x0 −x1,1 −x3,1 −x5,2 and x0 −x1,2 −x2 −x3,2 −x4 −x5,2 are not contradictory.
More generally, the paths via xi,1 to xi+1 and via xi,1 to xi+2,2 behave the
same way. It is also easy to see that xi,1 −xi+2,2 −xi+3 and xi,1 −xi+2,1 −xi+3
behave differently with respect to contradicting the simple vertical path, e.g.
x0 − x1,2 − x2 − x3,2 contradicts x0 − x1,1 − x3,2, but x0 − x1,1 − x3,1 − x4 and
x0 − x1,2 − x2 − x3,2 − x4 are not contradictory.
Consider now x0⊕, then x1,1 ⊖ ∨

, and we have to make all paths to contradict
the corresponding simple vertical path. This works for x1,1 −x2 and x1,1 −x3,2,
but not for x1,1 −x3,1 −x4 and x1,1 −x3,1 −x5,2. As x3,1 ⊕∧

, we have a “second
chance” to continue via x0 − x1,1 − x3,1 − x5,1, but x5,1 is ⊖ ∨

, so x5,1 − x6 and
x5,1 − x7,2 are ok, but x5,1 − x7,1 is not, and we have an escape path.

(2) The construction on the right hand side of the diagram avoids this problem,
as for x0⊕, x3,1 ⊕ ∧

, and x0 − x1,1 − x3,1 − x6,2 contradicts x0 − x1,2 − x2 −
x3,2 − x4 − x5 − x6,2.

But we created a different problem for the added diamond: If x1,1⊕, then
x3,1⊖, so not only x1,1 − x3,1 − x4 has to contradict x1,1 − x3,2 − x4, but also
x1,1 − x3,1 − x6,2 has to contradict x1,1 − x3,2 − x4 − x5 − x6,2, which does not
work.
In addition, we have a triangle contradiction in x3,1 → x4 ̸→ x5 ̸→ x6,2,
x3,1 ̸→ x6,2.

In summary: both attempts fail, but, of course, a different approach might
still work.
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(3) Note that the roles of ∧ and ∨ are exchanged when we go from x0 to x1,1 and
x1,2.

In Yablo’s construction, this presents no problem, as the structure seen from
x0 and any other xi is the same.
This is not the case in our example.

Diagram 5.4. Nested Diamonds 1

x0

x2

x4

x6

x8

x10

x1,2

x3,2

x5,2

x7,2

x9,2

−

−

−

−

−

−

−

−

−

−

x1,1

x3,1

x5,1

x7,1

x9,1

−

−

−

−

−

+

+

+

+

+

−

−

−

−

x0

x2

x4

x6,2

x1,2

x3,2

x5

x7

−

−

−

−

−

−

−

x1,1

x3,1

x6,1

−

+

+

+

−

−

−

−
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Remark 5.5.
See Diagram 5.5, and in more detail Diagram 5.6.
We neglect the triangles like x1,1 − x3,2 − x2, x1,1 − x2. (See (5) below for a

comment.)
The diagrams show the basic recursive construction, but additional Diamonds

still have to be added on top of the existing Diamonds.
To make the Diagram 5.5 more readable, we noted some points several times

(x2, x4,1, x4,2), they are connected by vertical fat lines.
We have 7 diamonds, (x0, x1,1, x2, x1,2), (x1,1, x3,1, x4,1, x3,2), (x1,2, x3,3, x4,2,

x3,4), (x3,1, x5,1, x6,1, x5,2), (x3,2, x5,3, x6,2, x5,4), (x3,3, x5,5, x6,3, x5,6), (x3,4, x5,7,
x6,4, x5,8). They are drawn using thick lines.

In all diamonds, the bottom and the upper right lines are supposed to be nega-
tive, the upper left line is meant positive for a contradiction.

This diagram, or some modification of it seems the right way to to use diamonds
instead of triangles for the contradictions recursively, as the triangles are used re-
cursively in Yablo’s construction.

We will discuss here problems with this construction.

(1) “Synchronization”

(1.1) We have a conflict between the diamonds starting at x1,1 and x1,2 and
the diamond starting at x0.

If x0 + ∧
, then x1,1 − ∨ and x1,2 − ∨

. As the choices at x1,1 and x1,2
are independent, any branch x0 − x1,1 − x3,1 − x2, x0 − x1,1 − x3,2 − x2,
x0 − x1,1 − x2 combined with any branch x0 − x1,2 − x3,3 − x2, x0 − x1,2 −
x3,4 − x2, x0 − x1,2 − x2 must be conflicting, thus, given x0 − x1,1 − x2 is
negative, all branches on the left must be negative, likewise, all branches
on the right must positive.
However, if x1,1 is positive, the diamond x1,1 − x3,1 − x2, x1,1 − x3,2 − x2
has to be contradictory, so not both branches may be negative.

(1.2) A solution is to “synchronise” the choices at x1,1 and x1,2 which can be
done e.g. by the formula
x0 = ¬x1,1 ∧ ¬x1,2 ∧ [(x3,1 ∧ x3,4) ∨ (x3,2 ∧ x3,3) ∨ (x2 ∧ ¬x2)], and
¬x0 = x1,1 ∨x1,2 ∨ [¬(x3,1 ∧x3,4)∧¬(x3,2 ∧x3,3)∧¬(x2 ∧¬x2)] = x1,1 ∨x1,2
∨ [(¬x3,1 ∨ ¬x3,4) ∧ (¬x3,2 ∨ ¬x3,3) ∧ (¬x2 ∨ x2)].
(This poses a problem, as validity of ¬x0 might involve validity of ¬x2, so
we construct an Escape path. This can be transformed into a semantical
argument, so we cannot avoid considering ¬x2.)
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This formula is of a different type than ∧ ¬. In addition, arrows from x0
to the x3,i are missing.
Even if we simplify further and consider only the paths x0 −x1,i −x3,j −x2
(i.e. do not consider the direct paths x0 − x1,i − x2), we have the formula
x0 = ¬x1,1 ∧ ¬x1,2 ∧ [(x3,1 ∧ x3,4) ∨ (x3,2 ∧ x3,3)], and
¬x0 = x1,1 ∨x1,2 ∨ [¬(x3,1 ∧x3,4)∧¬(x3,2 ∧x3,3)] = x1,1 ∨x1,2 ∨ [(¬x3,1 ∨
¬x3,4) ∧ (¬x3,2 ∨ ¬x3,3)], so we can make x1,1 and x1,2 false, and chose
(¬x3,1 and ¬x3,3) or (¬x3,4 and ¬x3,2), and have x2− or x2+, the first
possibility results again in an escape path.
Note: Adding the information about x1,1 and x1,2 does not help: ¬x1,1 =
x3,1 ∨x3,2, ¬x1,2 = x3,3 ∨x3,4, so ¬x1,1 ∧¬x1,2 = (x3,1 ∧x3,3) ∨ (x3,1 ∧x3,4)
∨ (x3,2 ∧ x3,3) ∨ (x3,2 ∧ x3,4) still leaves the possibility (¬x3,1 and ¬x3,3)
by making the last disjunct true.

(1.3) Summary:
This concerns, of course, the type of constructions we analysed here:
direct nesting of diamonds, and direct contradictions.
The use of diamonds, together with synchronisation problems, seems to
present unsolvable problems, not only for the simple type of formulas
considered here, but also to arbitrary formulas. We do not, however,
have a formal proof.
There is no synchronisation problem in Yablo’s construction, as there is
only one choice there, and “meeting” is avoided by the universal quanti-
fier. The latter is impossible with diamonds as we need a contradiction
on both sides, thus both sides cannot be uniform.

(2) If we modify the construction, and consider for x0+ not the direct lines x1,1 −
x3,1 and x1,1 − x3,2, but go higher up (x3,i are all +, ∧) e.g. lines x4,1 − x2,
then this will not work either, as one way to go to x4,1 is positive, the other is
negative, so the paths x1,1 − x3,1 − x4,1 − x2 and x1,1 − x3,2 − x4,1 − x2 cannot
both be positive as required.

(3) If we try to go higher up, e.g. to x5,3 and x5,4 we have again an ∨, and need
a contradiction in the diamond (x3,2, x5,3, x6,2, x5,4), so we are in the same
situation as with the diamond (x1,1, x3,1, x4,1, x3,2).

(4) (If we create after x3,1 or x3,2 new branching points, these points will be − ∨

either for x0+ or for x1,1+, so one case will fail.)

(5) Back to the triangles like x1,1 − x3,2 − x2, x1,1 − x2.
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The probably simplest way would be to create an intermediate point, say x1,1,a

between x1,1 and x2 (here with x1,1 ̸→ x1,1,a ̸→ x2, on the right hand side of
the diagram with x1,2 ̸→ x1,2,a → x2) to create a situation similar to the
diamonds discussed here.
We did not investigate this any further, as it is outside our framework.

(6) We give a tentative, abstract approach to the problem, allowing a mixture of
different types of contradictions, in Remark 5.6.

Remark 5.6.
In a general construction, we may use a mixture of different contradictory cells,

Yablo triangles, diamonds (if we can solve the associate problems), etc.
Thus, it is probably not the right level of abstraction to consider full CCS’s (see

Definition 3.1), as they might be composed of CC’s of different types.
We will, however, keep the following:

(1) the formulas will be basically of the form ∧ ¬,

(2) x0 is the head of a contradiction, so x0+ is impossible,

(3) every path from x0 will lead to (the head of) a new contradiction, and this
path will be negative, so we make x0− impossible, too.

Consequently:

• if x0+, and a negative path σ leads from x0 to the head x1 of a new contra-
diction, then x1 − ∨

, so we have to form new negative paths σ′ from x0 to
contradict all x′

1 reached from x1 to build contradictions starting at x1. These
new x′

1 will have the same properties as x1, leading to an infinite (in depth
and width) construction as detailed in Construction 3.2, Diagram 3.3, and
Diagram 3.4.
Of course, we might have to add new properties, like “synchronisation”.

In Section 6 we discuss additional problems which arise if we do not construct
contradictions as soon as possible, preventing local solutions.
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Diagram 5.5. Nested Diamonds 2

See Remark 5.5

x0

x1,1 x1,2

x2

x3,1 x3,2 x3,3 x3,4

x2

x2

x4,1 x4,2

x5,1 x5,2 x5,3 x5,4 x5,5 x5,6 x5,7 x5,8

x6,1 x6,2 x6,3 x6,4

x4,1 x4,2
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Diagram 5.6. Nested Diamonds 2, Details

Example for synchronisation, see Remark 5.5

x0

− −

x1,1 x1,2

− − − −
x3,1 x3,2 x3,3 x3,4

+ − + − + −

x2

x1,3

−

+

Adding x1,3 etc. does not help, as we also add the same problems again.

6 Illustration of (Finite) Procrastination
6.1 Introduction

This section is about the original Yablo construction and its modifications, post-
poning contradictions. Throughout, we work with Yablo’s order (of the natural
numbers).

In Yablo’s construction, full transitivity guarantees contradictions. If full transi-
tivity is absent, we may still have contradictions, provided we have “enough” tran-
sitivity. We discuss this here.

The most important problem seems to be to find a notation which is easy to
read and write, expressing the alternation between ∀ (or ∧) and ∃ (or ∨

, arbitrary
choice). We do this as follows:

(1) vertical lines beginning at some x illustrate all y > x, they express ∀y.y > x.
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(2) diagonal lines to the left starting at x and going to x′ express the choice of x′

for x, i.e. ∃x′.x′ > x.

First, we consider the meaning of nested quantifiers in our context. This is
obvious, but writing it down helps.

We did not elaborate all details, but hope that these notes suffice to illustrate
the important cases and considerations.

Note that the situation also suggests - in hindsight - a game theoretic approach,
as taken e.g. in [5].

Remark 6.1.
(Trivial)
Consider the order in the graph as in Yablo’s construction. Quantifiers are

mostly restricted, and range only over all elements bigger than some reference point:
∀y.y > x . . . ., etc.

In the case of mixed quantifiers, essentially the last one decides the meaning. If
the chain of quantifiers ends by ∀, then the property holds for an end segment of
the graph, if it ends by ∃, then we only know that there is still some element where
it holds. In the case ∀∃, this means that there are cofinally many elements where is
holds.

Some examples for illustration:

(1) ∃x∀y : all y from x + 1 onward have a certain property, this is a full end
segment of the natural numbers.
In particular, this set has a non-empty intersection with any cofinal, i.e. infi-
nite, sequence.

(2) ∀x∃y : this might e.g. be the next prime after x, the next prime +1, etc.
Thus, the intersection with a cofinal sequence might be empty, but not the
intersection with an end segment.

(3) ∃∀∃ : this is like ∀∃, starting at a certain value, again, the intersection with a
cofinal sequence may be empty.

(4) ∀x∃y∀z : this is like ∃y∀y, for all x there is a start, and from then onward, all
z are concerned, i.e. we have a full end segment.

(5) Thus, ∀∃ ∩ ∃∀ ≠ ∅

(6) Thus, ∀∃ ∩ ∀∃ = ∅ is possible, see above the primes and primes + 1 cases.
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(7) ∀∃ : it helps to interpret this as f(a) for all a in ∀, similarly ∀∃∀∃ as f1(a),
f2(b) etc. Chose first a, then f1(a), then for all b > f1(a) f2(b).

(8) In the following diagrams, the diagonal lines describe the choice functions f(x)
corresponding to ∃.

In Yablo like diagrams it sometimes helps to consider “local transitivity”, which
we introduce now.
Definition 6.1.

⟨xn, xn′⟩ is locally transitive iff
(1) xn ̸→ xn′ and
(2) ∀xn′′ s.t. xn′ ̸→ xn′′ , xn ̸→ xn′′ too.

Fact 6.2.

(1) If ⟨xn, xn′⟩ is locally transitive for some xn′ , then xn+ is impossible.

(2) Let m < n, and
∀ xn s.t. xm ̸→ xn ∃ xn′ s.t. ⟨xn, xn′⟩ is locally transitive,
then xm− is impossible.

(3) Thus, we need (1) and (2) for x0.

6.2 Discussion of More Complicated Cases
Example 6.1.

See Diagram 6.1.
We consider the case xi + .

(1) Notation:
The nodes are ordered by the natural order of ω. We have here partial transi-
tivity of ̸→ only, with x ̸→ x + 1 as basis.
x ≪ y means: x < y and x ̸→ y.

(2) The vertical lines show the nodes above the bottom node.
A full circle at a node expresses that there is an arrow ̸→ from the bottom
node to this node, an empty node expresses that there is no such arrow. No
circle expresses that the case is left open (but usually there will be an arrow)
- see the text below.
The dotted slanted lines indicate choices. E.g., if x1−, then there is some x2,
s.t. x1 ≪ x2 (and thus x2+).
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(3) We want to show that x0+ is contradictory.

(3.1) In Yablo’s construction, we find a contradiction going through x0 + 1, as
a matter of fact, through all x1 > x0. Thus, chose any x1 > x0, then
x1 − ∨

, so we have to find for all x1 ̸→ x2 an arrow x0 ̸→ x2, which, of
course, exists.

(3.2) In our diagram, we try to find a contradiction through x1.

Suppose x0 ≪ x1, so for x0+, x1 − ∨
, and for all x2 s.t. x1 ≪ x2 we look

for an arrow x0 ̸→ x2, i.e. for x0 ≪ x2, transitivity for ≪ .

This does not hold, see the empty circle at x2 in the x0 column. So x1
cannot be a suitable knee in the contradiction for x0.

(3.3) We try to “mend” x2 now, and make it contradictory itself.
Suppose x2 ≪ x4 ≪ x5, then we want x2 ≪ x5, but x5 has an empty
circle in the x2 column, so this does not hold.
Suppose x2 ≪ x6 ≪ x7. As noted by the full circle at x7 in the x2 column,
x2 ≪ x7.

So, for this one choice of x7 at x6, we have a contradiction at x2. To
have a contradiction for x2 in all choices at x6, we need: if x6 ≪ y, then
x2 ≪ y has to hold. This is, of course transitivity for x2 ≪ x6 ≪ y.

(As indicated by the full circle for x7 in the x0 column, we also have a
contradiction between x0 ≪ x7 and the path of length 4 x0 ≪ x1 ≪ x2 ≪
x6 ≪ x7 - for this path, and neither for all y such that x6 ≪ y, nor for
all y such that x1 ≪ y.)
Note that this is not necessary for all x6 with x2 ≪ x6, one such x6
suffices to show that x2+ is contradictory.

(3.4) Suppose we do not have some x1 with x0 ≪ x1 s.t. for all x2 with x1 ≪ x2
we also have x0 ≪ x2, then we can look for another, better, x1, or try to
mend the old x1.

Suppose we have x0 ≪ x1 ≪ x2, but not x0 ≪ x2. We make now x2 itself
contradictory, as described above in (3.3).
This repair possibility holds, of course, recursively.
If the procedure fails (for all x1, x6 etc.) we construct an escape path
which shows that x0 is not contradictory.

(3.5) Apart from the remark in (3.3) above, we do not discuss here more com-
plicated contradictions with paths longer than 1, as any contradicting
path, e.g. x0 ≪ x′

1 ≪ x′′
1 ≪ x2 would involve a new “OR”, here at x′

1,
so we have new branchings, and no control over meeting x2 - unless the
new branchings also meet x2.
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Diagram 6.1. Procrastination

See the discussion in Example 6.1

x3

x4 x4

x1

x3

x7

x5

x6
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x0

x1•

•
•
•

906



Comments on Yablo’s Construction

References
[1] T. Beringer, T. Schindler, “A Graph-Theoretical Analysis of the Semantic Paradoxes”,

The Bulletin of Symbolic Logic, Vol. 23, No. 4, Dec. 2017
[2] L. Rabern, B. Rabern, M. Macauley, “Dangerous reference graphs and semantic para-

doxes”, in: J. Philos. Logic (2013) 42:727-765
[3] K. Schlechta, “Remarks on an article by Rabern et al.”, arXiv 1808.01239
[4] K. Schlechta, “Truth and Knowledge”, College Publications, Rickmansworth, UK, Series

“Studies in Logic and Argumentation” 2022
[5] Michal Walicki, “There are only two paradoxes”, arXiv:2309.03137v1
[6] S. Yablo, “Grounding, dependence, and paradox”, Journal Philosophical Logic, Vol. 11,

No. 1, pp. 117-137, 1982

Received October 2023907





Evolutionary Temporal Logic for
Modelling Many-Lives Argumentation

Networks

D. M. Gabbay
King’s College London and University of Luxembourg

dov.gabbay@kcl.ac.uk

Gadi Rozenberg
Ashkelon Academic College,

President Israel Association of Clinical Therapists

Abstract

This paper deals with the temporal aspects of the many-lives argumentation
networks. The many-lives idea comes from modelling the reasoning behaviour
of sex offenders, which required argumentation systems where each argument x
has a natural number Mpxq, indicating how many live attackers are needed to
ensure that x is out. The temporal aspect associated with such applications (in
general: how many complaints are required to take x out) is that the attackers
come at different times. It seems that traditional temporal logic is unable to
properly deal with such behaviour and a new type of temporal logic is required.

We call it “evolutionary temporal logic". Thus argumentation many-lives
systems inspire new developments in temporal logic.

1 Introduction
This introductory section explains the ideas and results of this paper. It describes
two related but independent components in formula argumentation. The idea of
many-lives and the idea of evolutionary temporal argumentation. From the formal
point of these two ideas are independent, from the applicational/pragrmatic point
of view they are strongly related in the sense that they appear strongly intertwined
in a major application area of reasoning and modelling the argumentation logic of
sex offenders.

The two components are the following:
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Many-lives component. In formal argumentation developed and studied Dung
style [10, 11], there is the notion of attack of argument x on argument y (notation
x↠ y) and the property that if one attacker (say x) is live (“in”) then the target y
is dead (“out”). The notion of many-lives is an index given to any target argument
y (a notation Mpyq) which requires that at least Mpyq live (“in”) attackers x1 ↠
y, . . . , xMpyq ↠ y on y to be able to render y dead (“out”).

Evolutionary temporal logic component. Intuitively for the purpose of this
Introduction, think of a time sequence of finite logical databases, ∆1,∆2, . . . ,∆n, . . .
in which the constraints on the logical properties of ∆n`1 depends on the nature
of t∆1, . . . ,∆nu. So there must be some algorithmic function Fp∆1, . . . ,∆nq which
constrains ∆n`1. Examples will be given in the next subsection.

These two components strongly appear in argumentation, interacting in many
ways. The simplest example for such an interaction is that when argument y with
Mpyq ą 1 lives is attacked by an “in” argument x (i.e., x ↠ y) at time n, then at
time n` 1 we have M 1pyq “Mpyq ´ 1.

Such interaction is very common in the area of complaints and sex offender
abuse allegations. We know that one complaint is not sufficient to open a formal
investigation but in many cases more and more independent complaints show up in
time and there is a number M of complaints which will force action to be taken.

1.1 Motivating examples
Example 1.1 (Mr Malkinson Case). . This case is real and actually happened in
2023 (see next Example 1.1.

Seventeen years ago, in the year 2006, Mr Malkinson was convicted of committing
rape and was sentenced to prison, on the basis of circumstantial evidence and one
witness. There was no DNA evidence at the time.

This year (2023) new DNA evidence emerged and on the basis of this new ev-
idence, Mr Malkinson was declared not guilty (backwards from the year 2006) and
released from prison (in the year 2023).

The law required prisoners to pay rent to the government but if they are guilty
and are imprisoned, they do not have to pay rent.

Since in 2023 Mr Malkinson was declared not guilty from 2006 the prison system
asked for rent for providing free lodging for him. This outraged public opinion and
the law was cancelled retroactively backwards in time.

Example 1.2 (Story of the article in the Daily Mail). https: // www. dailymail.
co. uk/ news/ article-12377133/ Innocent-man-wrongly-
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jailed-17-years-rape-didnt-commit-WONT-pay-staying-prison-
Justice-Secretarys-intervention-following-outrage-shocking-
miscarriage-justice. html

Wrongly convicted people WON’T have to pay for staying in prison after shock
miscarriage of justice involving man jailed for a rape he didn’t commit sparked min-
isterial intervention. JACK WRIGHT, PUBLISHED: 00:00 BST, 6 August 2023 |
UPDATED: 09:27 BST, 6 August 2023.

The innocent man who was wrongly jailed 17 years for a rape he did not commit
will not have to pay living costs covering his time in prison following a dramatic
intervention by Rishi Sunak’s Government. Justice Secretary Alex Chalk KC made
the change covering wrongly convicted people with immediate effect on Sunday after
the miscarriage of justice case of Andrew Malkinson sparked outrage.

Mr Malkinson spent 17 years in prison for a rape he did not commit, and appeal
judges quashed his conviction last week after DNA linking another man to the crime
was produced. The 57-year-old expressed concern that the rules meant expenses
could be deducted from any compensation payment he may be awarded to cover the
costs of his jail term. Downing Street indicated that the Prime Minister believed the
deductions were unfair amid demands to drop the charges.

Mr Chalk has now updated the guidance dating back to 2006 to remove them from
future payments made under the miscarriage of justice compensation scheme. The
reform to eligible cases was broadly welcomed, but there were calls to pay back the
money already deducted from wrongly convicted individuals

Let us now describe the flow of events of this story. Since the present paper
is on Temporal Evolutionary aspects of argumentation networks, we will use argu-
mentation notation and use this example to illustrate the technical details of this
paper.
Remark 1.3.

1. An argumenation network with attack and (deductive) support has the form
pS,R, ÞÑq where S is a set of arguments atoms R Ď SˆS is the attack relation
and ÞÑ is a deductive support relation. ÞÑ is a subset of Sˆ S. ÞÑ is really a
logic, say classical propositional logic provability $.
We hasten to comment that we are giving here a very special case definition
of bipolar argumentation network (i.e., with attack and support) where the
support is deductive support. This is sufficient for analysing our example.

2. To be able to explain/formalise better the Mr Malkinson example, we also
add to our argumentation language the classical negation ␣ and the classical
conjunction ^.
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So we can write ␣x and x^y, when x and y are arguments. Of course we must
impose the restriction that only one of tx,␣xu can appear in any network.

3. Thus if x, y, z are arguments and we write

px^ yq ÞÑ z.

We mean that px^ yq $ z in classical logic.
When we write

px^ yq↠ z

we mean that tx, yu jointly attack z
Note that logic is not involved in this attack, the attack is generated from the
meaning/content of x, y, z, as they appear in the application to be modelled.
Thus for tx, yu to force z to be “out”, then both x and y must be “in”.
Also note that if we have a network with arguments

t␣x, x↠ yu

we have by the meaning of ␣x that x must be “out” and therefore y is “in”.
This is not the traditional Dung language but equivalent to the network

x↞↠ ␣x
x↠ y

with the choice ␣x to resolve the loop.

4. Note that our purpose in this subsection 1.1 is only to provide a motivating
example for the machinery of evolutionary argumentation networks. We chose
a real example from the Daily Mail to formalise. For this we need to present
the example as a network in time with attack and deductive support.
Since the example is a simple real life example we do not need to develop
formally the argumentation theory of attack + (deductive) support.

Definition 1.4.

1. Let the following denote arguments related to the Daily Mail story of Example
1.2.

1.1. GM = Mr Malkinson is guilty of rape
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1.2. LPR = The law says that prison residents have to pay rent to the prison
authorities

1.3. PM = Mr Malkinson is a resident in prison
1.4. RM = Mr Malkinson has by law to pay rent for his residence in prison.

1.5a. By law, resident prisoner must pay rent. This is represented by pPM ^
LPRq ÞÑ RM . We need jointly PM and LPR to get RM.
So if the law is changed and we have ␣LPR then we cannot get RM .

1.5b. Guilty prisoners need not pay rent (This is represented in argumenation
by the attack arrow ↠ in

GM ↠ RM
pPM ^ LPRq ÞÑ RM

1.6. DNA = DNA was discovered proving that Mr Malkinson did not commit
the rape (and is therefore not guilty of rape).

2. The following is the time flow of events in terms of the argumentation networks
pS,Rq available at each time interval.

2.1. [2006–2022]
S2006´2022 “ existing arguments at the time “ tLPR,PM,RM,GMu.
R2006´2022 “ attacks at the time:

"
GM ↠ RM

pP ^ LPRq ÞÑ RM

*

• The extension at the time is tLPR “ in, PM “ in, GM “ in, RM “
outu.

2.2. [2003]
S2003 “ tLPR,␣PM,RM,GM,DNAu.
R2023 “

"
DNA↠ GM ↠ RM
pLPR^ PMq ÞÑ RM

*

• The extension in 2023 is therefore

tDNA “ in, GM “ out, LPR “ in, PM “ out, RM “ inu.

Remark 1.5. There is a problem with the description of what happens the minute
the DNA proves the innocence of Mr Malkinson in 2023.
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1. Clearly Mr Malkinson will immediately leave his residence in prison. Thus in
argumentation terms PM is no longer an element of S2023.
Technically this means that elements of St1 can leave the network in St2, t1 ă
t2.

2. To help us express this fact more clearly we can take out PM from the network
and put in instead ␣PM .
This is a better way of doing it, as we shall see later.

3. The second problem with the situation in 2023 is that “DNA” attacks “GM”,
not only in the year 2023, but the attack goes backwards in time since the
conviction in 2006.
So in 2023, the view of history changes.
This requires modelling in two dimensional temporal logic. The first dimension
is the time of the point of view and the second dimension is the time of the
event (according to the point of view). To clarify this point, we need to write
the history explicitly.
We caution the reader that the general theory of two dimensional temporal
logic does not require any evolution in the view of history from time t to time
t ` 1. In comparison, the view of history at time t in our example depends
on the views and data of what happened in earlier times. So evolutionary
temporal logic is a special case of two dimensional temporal logic and in fact
it is so special that it needs to be formalised directly without any input/use of
the theory two dimensional temporal logic.
In fact the theory of evolutionary temporal argumentation is even more of a
special case of the theory of evolutionary temporal logic.

4. We remark here that for the clarity of the example we assume that in 2024 the
law LPR was cancelled (see Example 1.2. The law was actually changed later
in 2023 but we do not want to split the year into two parts. So for clarity, we
use 2024)

Definition 1.6.

1. Let P be a set of labels denoting points of view. It can be names of people, or
moments of time, etc.

2. For each π P P, and each moment of time t, let pSπ
t ,Rπ

t , ÞÑq be a deductive
argumentation network (at time t from the point of view of π).
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3. When P is also a set of moments of time, we can talk about evolution of the
network at a fixed time t0, through times s1, s2, s3, . . .. We look at pSsj

t0 ,R
sj

t0 , ÞÑq
for j “ 1, 2, 3, . . .

Example 1.7. Let us use Definition 1.6 to trace the evolution in the case of Mr
Malkinson.

S2022
2022 “ tLPR,PM,RM,GMu

R2022
2022 “

"
GM ↠ RM
pLPR^ PMq ÞÑ RM

*

S2023
2023 “ tLPR,␣PM,RM,GM,DNAu

R2023
2023 “

"
DNA↠ GM ↠ RM
pLPR^ PMq ÞÑ RM

*

We have a problem representing R2023
2022.

Intuitively the set of arguments S2023
2022 remains the same as S2022

2022.
However, we know in 2023 that the DNA argument makes Mr Malkinson not

guilty (i.e. DNA↠ GM). So GM must be out. But in the language of 2022, DNA
is not present! So how can we see that GM is out?

For this reason we allowed negation ␣ in the language. We can write

S2023
2022 “ tLPR,PM,RM,␣GMu.

The attacks and supports remain the same

R2023
2022 “

"
GM ↠ RM
pLPR^ PMq ÞÑ RM

*

Since ␣GM is available, RM is not attacked and since in 2022 the 2023 point of
view accepts that PM is “in” and the law “LPR” is also in. We get that M is “in”
meaning that Mr Malkinson has to pay rent. This is why public opinion forced the
cancellation of the law. Thus from the point of view of 2024 we have ␣LPR present
in S2024

2022.
We get that the following

`
S2024

2022,R2024
2022

˘
`
S2024

2023,R2024
2023

˘

and`
S2024

2024,R2024
2024

˘

cases are the same as the pS2023,R2023q cases except that the arguement LPR is
replaced by ␣LPR. So in pS2024

2022,R2024
2022q RM is out, because pLPR ^ PMq ÞÑ RM

cannot be used to get RM.
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Example 1.8. This example gives a possible imaginary variation on the Mr Malkin-
son story, a variation which will illustrate what role the many-lives idea can play in
the example.

According to the real story, a DNA test showed conclusively in the year 2023 that
Mr Malkinson was not the rapist and he was found not guilty backwards from the
year 2006.

Let us consider a different possible scenario where in 2023 a new witness shows
up which casts doubt about the 2006 conviction. The prosecutor is not going to
hasten and find Mr Malkinson not guilty on the basis of just one new witness. The
conviction has inertia and possibly many more witnesses (many-lives) are required.

Let M “ 6 be a reasonable number of additional new independent and solid
witnesses that would force the prosecution to re-open the case and possibly declare
Mr Malkinson not guilty.

Imagine then the following variation on the sequence of temporal data:

[2022] GM, (with MpGMq “ 6)

[2023] GM (with MpGMq “ 5), W1 and W1 ↠ GM .

[2024] GM(MpGMq “ 4), W1,W2 with W1 ↠ GM ;W2 ↠ GM

...

[2028] GM is out (MpGMq “ 0), and W1, . . . ,W6, with

W1 ↠ GM
...
W6 ↠ GM

So only in 2028 will Mr Malkinson be declared not guilty, backwards to 2006.

Remark 1.9. This is a methodological remark about what is the kind of evolutionary
temporal logic we want to use for hte case of argumentation for legal cases.

We do not need to consider the full two dimensional temporal model. In terms
of Example 1.7 we need only the following:

`
S2022

2022,R2022
2022

˘

`
S2023

2023,R2023
2023

˘

and`
S2024

2024,R2024
2024

˘
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In other words, we need to compute

pStime k
time k,R

time k
time kq

for k “ 1, 2, . . ., now.
We do not need to know what time t2 thought about time t1, where t1 ă t2.
This will simplify our notation considerably and we can use a single graph (ar-

gumentation network) where each element x P S, y P S and each attack arrow x↠ y
is annotated by the moments of time up to “now” in which they exist. Example 1.1
discusses how to do it for the main Mr Malkinson example, for the years 2022, 2023,
2024.

Remark 1.10.

1. We are going to give a better notation for the temporal evolution of argumen-
tation network. Before we do that, let us distill the essential features of what
was going on in the Mr Malkinson real (with DNA) example.

2. In 2022, we had a situation of

1. guilty ↠ pay rent
2. guilty
3. law in force and resident ÞÑ pay rent

In 2023 the DNA evidence was introduced and we got ␣ guilty because back-
wards in time we have

DNA of 2023 ↠ guilty of 2022.

So we got in 2023 that Mr Malkinson has to pay rent using the rule:

law in force ^ resident ÞÑ pay rent.

In 2024 the law in force of 2022 was cancelled. Let us represent this as an
attack on the law in force by a new argument called “cancellation”.
So we have

cancellation of 2024 ↠ law in force of 2023–2023

The above presentation shows that the reason of evolution in time are the
backwards in time attacks.
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2024

Pay rent

Resident

guilty

Law in force

2024

2023

Joint
2022
2023
2024

2022

2023
2022

2024

2022, 2023, 2024
2022

2023
2024

2022 DNA2023
2024

2022, 2023, 2024

cancellation 2024

2022
2023

Figure 1

3. Our model is to timestamp attackes and arguments for the time they are active.
Figure 1 shows what we get.
Let us try to read this figure by looking at each argument and its time of
existence/validity.

cancellation: [2024]
DNA: [2023–2024]
Law in force: [2022–2024]
Pay rent: [2022–2024]
Resident: [2022]

Note the following: The argument “Resident” is a statement of fact. It cannot
be attacked. The others are legal constructs. They can be changed.

1.2 Technical introduction
Let G “ pS,Rq be an argumentation network. This means that S is a non-empty
set and R Ď S ˆ S is the (attack) binary relation on S. For the purpose of this
introduction, let us view G “ pS,Rq as a directed graph R on the set S.

There are various possible operations we can perform on G “ pS,Rq. One such a
general operation is a semantic function SM operating on G “ pS,Rq and extracting
from it a subset CSM pGq Ď S using an algorithm α and a choice function on the
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properties of R. (See, for example, item 9 of Definition 2.1.) So SMαG yields a
family of subsets of S and CSMαpGq chooses one of them.

Now we imagine that we have a temporal linear sequence of such networks. Let t
be a temporal index running over t1, 2, 3, . . .u and for each such a t let Gt “ pSt, Rtq
be the network at time t of the sequence.

We can assume for the moment (but not in general) that St Ď St`1.
We also get a sequence CSMαGt, t “ 1, 2, . . . of subsets.
From the point of view of argumentation, there are three ways of looking at the

sequence tGtu, t “ 1, 2, 3 . . ..

Timed view. This view (discussed in [4]) regards time as annotating the argu-
ments of S, to form for each x P S, an annotated argument px,Hxq, where Hx is
Hx “ tt|x P Stu. Let S8 “ Ť

t St. Let S7 “ tpx,Hxq|x P S8u.
Define an attack relation F 7 on S7 by

• px,HxqR7py,Hyq iff there exists a t P Hx XHy such that xRty.

We thus get a timed network
G7 “ pS7, R7q.

According to the Timed View, we are interested in studying G7 in a traditional Dung
style way.

A major application for this view is in the area of Laws and Regulations, which
keep on changing and we need to be confident that they do not contradict one
another at any given moment of time.

Modal view. This is the view of [5]. We regard the time flow t1, 2, 3, . . .u as a
modal possible world model of the form pT,ăq, where T “ t1, 2, 3, . . .u and ă is
the relation of smaller than among numbers. With each “possible world” t P T we
associate a classical model pSt, Rtq “ Gt. We use modal operators and temporal
operators on this system pT,ă St, Rtq, t P T and possibly define arguments and
attacks using this modal language and St and Rt.

Evolutionary view. This view regards the future as open and has not happened
yet and we can influence it by stipulating some actions and rules. For example, if
an element x P S1 has not attacked any other elements in t “ 1, 2, 3, . . . , 10 then we
stipulate that x is a “peaceful” element and expect that it not be attacked at time
11.

Let us now continue and focus on the evolutionary view of the sequence Gt “
pSt, Rtq.
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A major application for this view is in laws and regulations which keep on chang-
ing and we need to be sure that they do not contradict one another at any given
moment.

Ordinary linear temporal logic can deal with the sequence Gt “ pSt, Rtq, t “
1, 2, 3, . . . viewed as a temporally changing graph or with the sequence
CSMpGtq, t “ 1, 2, 3, . . . viewed as a temporally changing classical model.

This is the modal view. However, if we want to deal with both sequences and
deal with the effect that Gt`1 has on Gt via the algorithm α and the choice function
CSM, then we are dealing with a case of evolutionary temporal logic.

This is best explained by an example. Consider the network of Figure 15 (where
↠ denotes attack). The problems with the temporal analysis of this figure are
discussed at Example 3.3. For the purpose of this introduction, it is sufficient to
say that for the purpose of continuity we must require that the algorithm gives two
possible choices, tau, tbu for the figure at time one and the choice function for time
1 is allowed to choose one of these two options for example CSM(time 1) =tau. If
this is the case then for the sake of continuity (if we wish to stipulate continuity) we
expect CSM to yield ta, cu for the figure at time 2. However, without the continuity
principle it could choose tb, cu.

This coherence–continuity–rationality postulate becomes important when the
graph is annotated. Imagine a graph tS,R,Mu where M is an annotation function
giving a natural number n “ 0, 1, 2, . . . for any x P S. Mpxq means how many-lives
x has (which algorithmically implies under the principle that each living attacker
can take away one life) how many living attackers are needed to “neutralise it” (i.e.
to reduce Mpxq to 0). The algorithm α for networks with many-lives then works on
pS,R,Mq taking into account the values of M and of R and yields several choices of
a new network of the form pS,R,Mi̊ q (i is the index of several choices). The choice
function chooses one of them, say SCMpS,R,Mq “ pS,R,M˚q.

Again, if we have a sequence of pSt, Rt,Mtq, we get a sequence of
SCMpSt, Rt,Mtq “ pSt, Rt,Mt̊ q. We need to formulate principles of continuity
and choice connecting the two sequences.

A natural view of both sequences is to consider their Tensor product sequence:
G1bCSMpG1q, Time 1

G2bCSMpG2q, Time 2
...

Evolutionary temporal logic can talk about this sequence.

Example 1.11. To further illustrate the need for evolutionary temporal logic is the
notion of flow product [8]. Figure 2 explains it all. It is the tensor product of the
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speed axis

time
axis

Man 1 walking slower at speed 1

Man 2 walking faster at speed 2

1

2

3

4

1 2 3 4

‚
position at time 2
(man 1 = 2, man 2 = 4)

Figure 2

two axis, the horizontal for Man-1 and the Vertical for Man-2.
There are two men walking at different speeds. Man 1 at speed 1 meter per second

and Man 2 at speed 2 meters per second.

Remark 1.12. We now offer a methodological remark for the perceptive reader. The
reader may ask, why introduce a new concept of evolutionary temporal logic, when
all we need is the well-known two dimensional temporal logic?

This has already been discussed in item 3 of Remark 1.5 in the context of the
Malkinson Example as well as Figure 1, but it is better to revisit this discussion
again.

My answer to that is that the “two” dimensions is deceptive. If you consider the
case of Figure 15, it is actually a choice of two paths out of four possible histories.
You need a dimension for each possible choice.

Consider Figure 3. We use the notation:
Time 1, Time 2, . . . to indicate points in the Time axis. (Compare with Figure

2.) At each of such time points the following predicates get truth values:

dpxq : x exists
inpxq : x is in
outpxq : x is out
Hi: temporal history i.
Time t:
Path i: composite path i.

With the principle of continuity only H3 and H1 are allowed.
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Time 2 dpcq dpcq dpcq dpcq
inpaq inpaq outpaq outpaq
outpbq outpbq inpbq inpbq

Time 1 ␣dpcq ␣dpcq ␣dpcq ␣dpcq
inpaq outpaq outpaq inpaq
outpbq inpbq inpbq outpbq

History H1 H2 H3 H4

Figure 3

Figure is Jana b Time of

Figure 4

To consider what history is allowed, we need to list all histories! So
we do not have here the traditional two dimensional temporal logic.

We now offer a better evolutionary temporal language, better than the two di-
mensional tensor product. We begin with a running example.

Example 1.13. Consider another example from argumentation. The temporal story
is as follows.

1. At January there are two arguments attacking each other. The graph for Jan-
uary is Figure 4. We can take the view that the figure has a graph plus a box
indicating the time of its existence.
So, if the figure came into existence at time “January”. This includes the nodes
a and b and the attacks a↠ b and b↠ a. So we can annotate components by
the time each component exists and this way we do not need the box. We get
Figure 5.

2. In February a new attacker came into existence, call it c. The figure for
February is Figure 6.

Jan a b

Jan

Jan
Jan

Figure 5
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c

a b Time of
Figure is Feb

Figure 6

We can write the time of existence of components in Figure 7.

{Jan, Feb}
a b

{Jan, Feb}

{Jan, Feb}{Jan, Feb}

c {Feb}

Figure 7

Figures 4 and 6 can be retrieved from Figure 7 by respectively collecting all
items labelled Jan (resp. Feb) and forming the respective graphs.

3. Let us offer you a narrative for the above graph and continue to time of March.
In January a attacked b claiming that b raped a. b counter-attacked a by
claiming that there was consent. Thus the January Figure 4 was created. In
February a new possible witness appeared on the scene, ready to possibly testify
against b (attack b). b’s lawyers quickly paid c off and in March c was no longer
available to testify. Furthermore by April, b settled with a as well and a simply
went abroad, but did not withdraw her accusation. Thus in April a was not
in the graph. However, public opinion and pressure forced a to come back in
May, but did not apply any pressure on c to show up again in May because it
has not attacked b. See also Example 3.13
We get the following May graph annotation in Figure 8.
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c {Feb}

{Jan, Feb, March, April, May}{Jan, Feb, March, May} a b

{Jan, Feb, March, April, May}

{Jan, Feb, March, April, May}

Figure 8

Definition 1.14.

1. An evolutionary argumentation network has the form pS,R, T q, where pS,Rq
is a directed graph, namely S is a non empty set of nodes and R is a binary
relation on S, and T is a function giving to each element x is SYR a set T pxq
of numbers from t1, 2, . . .u.

2. Given an evolutionary argumentation network and a natural number n, we
define the network existing at time n as the network Gn “ pSn, Rnq where

Sn “ tx P S|n P T pxqu
Rn “ tpx, yq P R|n P T px, yqu

Remark 1.15.

1. Note that according to item 2 of Definition 1.14, we may have in pSn, Rnq
attack arrows without any attacker or target or both.

2. Note that the traditional Dung machinery for defining extensions works also
with networks of Definition 1.14 despite Item 1 in this Remark.

3. Note that item 1 of definition 1.14 may as well define a timed argumentation
network, for the Timed View p. 11. However item 2 of this definition already
moves towards the Evolutionary View p. 11.

Example 1.16. Let us give one more example showing how the sequences of Gn “
pSn, Rnq and CSMpGnq interact. We allow for many-lives.

Consider the following two sequences in Figure 9. The sequences give general
graphs where the arguments x also have many-lives Mpxq

Think of a court case where b is accused of being a sex offender by a. b says a is
lying. The court believes b and passes a verdict that b is innocent (option 2). Now
at time 2, we get another victim which attacks b. Our questions are the following:
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b

G1

a b

Mpbq “ 1Mpaq “ 1

SMpG1q
Option 1, time 1
a “ in, M1paq “ 1
b “ out, Mnewpbq “ 0
Option 2, time 1
a “ out, Mnewpaq “ 0
b “ in, Mpbq “ 1

SMpG1q
Option 1, time 2
c “ in, b “ out
a “ in?
Option 2, time 2
b “ in, c “ out, a “ out

G2

Mpbq “ 1

Mpcq “ 0
c

Mpaq “ 0

(we chose b “ in, a “ out)

a

Figure 9

• Do we believe c?

• Do we rely on the verdict at time 1 and say we decided b is innocent so the
case is closed and we do not believe/dismiss c?

• What if 10 other c1, . . . , c10 come at time 2 and attack b? Do we now believe
that b is guilty?

• Do we give b more lives and believe tciu only if there are at least two c’s? (I.e.,
(Mpbq “ 2 at time 2)?

We can formulate new policies depending on what options we choose in the past time
to decide what we choose at the present time.

Remark 1.17. We conclude this Section by explaining why linear evolutionary tem-
poral logic is sufficient for our considerations as opposed to say open future tree
temporal logic.

The reason is very simple. Even when we have branching time, at any point on
any branch the evolutionary aspect have to do with looking into the past, and the
past on any branch is always linear.

Also, even when we have loops in the past , because we are dealing with argu-
mentation, the loops will be resolved by choice at the time in the past which enable
us to continue without this loop into the future.
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2 Background and orientation
This section gives background from abstract argumentation and from temporal logic
and identifies why traditional temporal logic cannot deal with the many-lives ar-
gumentation, evolutionary aspects and explains intuitively our proposed possible
solutions.

2.1 Background and concepts from abstract argumentation
This subection presents, for the convenience of the reader, some basic concepts of
what we called traditional argumentation theory. Such systems contain attacks
only. We refer to such system as Argumentation with Attack only. One can also
add support to the system and in this case we get systems of Argumentation with
Attack and Support. We shall then explain in what way the systems required for
this paper depart from the traditional ones.

There are two ways to present the semantics for argumentation with attack, the
traditional set theoretical approach and the Caminada labelling approach. For the
mapping connections between the two approaches, see [10, 11]. Let us briefly quote
the traditional set theoretic approach:

Definition 2.1.

1. We begin with a pair pS,Rq, where S is a nonempty set of points (arguments)
and R is a binary relation on S (the “attack" relation, we read xRy as x attacks
y). In the diagrams and figures we use the notation a↠ b, to denote aRb.

2. Given pS,Rq, a subset E of S is said to be conflict free if for no x, y in E do
we have xRy.

3. E protects an element a P S, if for every x such that xRa, there exists a y P E
such that yRx holds.

4. E is admissible if E is conflict free and protects all of its elements.

5. E is a complete extension if E is admissible and contains every element which
it protects.

6. A subset E is a stable extension if E is a complete extension and for each
y R E there exists x P E such that xRy.

7. E is the grounded extension if it is the unique minimal complete extension (it
exists, see Lemma 2.2).
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8. E is a preferred extension, if E is a maximal (with respect to set inclusion)
complete extension.

9. A Semantics is a (metalevel) property S of extensions, such as being stable, or
being grounded or being preferred or being complete. Thus we can talk about
S-Semantics, (stable semantics, grounded semantics and preferred semantics
or complete semantics) where we consider only S- extensions.

Lemma 2.2. For any network pS,Rq there exists a grounded extension (which may
be empty).

Proof. This can be proved, using set theoretical methods, see [11]. ■

We can also present the complete extensions of A “ pS,Rq, using the Caminada
labelling approach, see [11].

Definition 2.3. A Caminada labelling of S is a function λ : S ÞÑ tin, out, und}
such that the following holds.

(C1) λpxq “ in, if for all y attacking x, λpyq “ out.

(C2) λpxq “ out, if for some y attacking x, λpyq “ in.

(C3) λpxq “ und, if for all y attacking x, λpyq ‰ in, and for some z attacking
x, λpzq “ und.

Lemma 2.4.

1. A consequence of (C1) is that if x is not attacked at all, then λpxq “ in.

2. Given an extension E let λE be defined by λEpxq “ t in if x P E, out if for
some y P E we have yRx, and undecided otherwise}. Conversely given a λ,
define Eλ to be tx|λpxq “ in u.

3. Any Caminada labelling yields a complete extension and vice versa.

4. Any {in, out} Caminada labelling (i.e. with no “und" value) yields a stable
extension and vice versa.

5. Set theoretic minimality or maximality conditions on extensions E correspond
to the respective conditions on the “in" parts of the corresponding Caminada
labellings.

Proof. See [11]. ■
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Remark 2.5 (Convenient Notation). In anticipation of future examples and dis-
cussions and sometimes for the sake of language and expression or in anticipation
of the concept of many-lives , we also use instead of the “in", “out", “extension "
words used in Definition 2.1 and Definition 2.3 we use the the words below (think of
a cat having nine “lives" and can “survive" 8 “deaths" and still be “alive"):

(*) x = “out", or x is “out", or x is “dead", or x= “out/dead", or x has “0 lives",
or simply x “ 0.

(**) x = “in", or x is “in", or x is “alive", or x= “in/alive", or x has “more than
0 lives", or simply x ą 0.

(***) “complete extension" = “Survival (picture)"

2.2 Traditional discrete linear temporal models

Our starting point is a model for the classical propositional calculus with a set of
atomic propositions Q and the evolutionary connectives t␣,^,_ Ñu.

A model for this calculus is a function h giving for each q P Q a value hpqq P t0, 1u.
“0” is false (K) and “1" is true (J).

The assignment function h is arbitrary, and there are no restrictions on h. In
fact the set of theorems of classical propositional logic rely on this fact. If we impose
restrictions on h, coming possibly from some application area, we may get a more
restricted set of theorems. See Remark 2.6, where we give restriction on h coming
from the area of argumentation networks.

Remark 2.6. Note that given an argumentation network A “ pS,Rq, which always
has some extensions, we can regard each extension E of A as generating a classical
propositional model hE for the set of atoms QS “ S. For x in S we define hEpxq “ 1
iff x is in E (i.e., iff x “ in). So if x is out or if x is undecided then hEpxq “ 0.

We can use the network A as a restriction on what assignments we can give to
the atoms of QS “ S.

We can turn classical propositional logic into a temporal system by adding a flow
of time pT,ăq and making h time dependent (see [24, 25] for an extensive coverage
of this area).

Let us take T “ t1, 2, . . .u the set of natural numbers and let ă be the usual
“smaller than” relation on the numbers. Thus the function h becomes time depen-
dent, giving for each t P T and q P Q a truth value hpt, qq P t0, 1u. We also write
htpqq, to stress that h is dependent on the time t P T .
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In general, we can make any system S dependent on time in a methodological
way. Let S be a system with components tCiu. We add a parameter t P T to each
of the components, denoting the time dependent component by Ci,t and turning the
system S into the time dependent system St “ tCi,tu.
Example 2.7. Let us add a time parameter to an argumentation system of the form
A “ pS,Rq, where S is the set of arguments and R Ď S ˆ S is the attack relation.
We take a flow of time to be, say pt1, 2, 3, . . .u, q, and let pSt, Rtq be time dependent
networks and let At “ pSt, Rtq.

What else does temporal logic do to the time dependent system St, thus defined?
Let us illustrate for the case of the classical propositional calculus.

Definition 2.8. A traditional temporal logic starts with a given flow of time of
the form pT,ăq, where T is the set of moments of time and ă is the transitive,
irreflexive, earlier-later binary relation on T . In addition to the classical connectives,
Temporal Logic adds temporal connectives to the classical language, for example the
connectives tF,G,P,H,J,Y,Tu with the following truth conditions, where t ( φ
means that the temporal formula φ (written using Q) and t^,_,␣,Ñ,F,G,P,Hu
holds at t P T under h which is an assignment hpt, qq dependent on both time t, and
atomic q. Note that h is arbitrary function without restrictions.

• t (h q, if hpt, qq “ 1 for q P Q
• t (h φ^ ψ iff t (h φ and t (h ψ.

• t (h φ_ ψ iff t (h φ or t (h ψ.

• t (h ␣φ iff t *h φ.

• t (h φÑ ψ iff t *h φ or t (h ψ.

• t (h Fφ iff for some s, t ă s we have that s (h φ.

• t (h Pφ iff for some s ă t we have that s (h φ.

• t (h Gφ iff for all s, t ă s implies s (h φ.

• t (h Hφ iff for all s ă t we have that s (h φ.

• t (h Jφ iff we have that s (h φ, where s is the first element of the time flow
if a first element exists and otherwise s “ t.
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• t (h Yφ iff we have that s (h φ, where s is the immediately preceding element
of t in the time flow (i.e. the Yesterday element) if such an element exists and
otherwise s “ t.

• t (h Tφ iff we have that s (h φ, where s is the immediately following element
of t in the time flow (i.e. the Tomorrow element) if such an element exists and
otherwise s “ t.

Remark 2.9. Traditional (as opposed to evolutionary) temporal logic is concerned
with mathematical and logical properties of temporal models and languages for a
variety of flows of time. In other words, the temporal connectives want to talk about
variations in time of various components of the system. So for example in the case
of a time dependent argumentation network of the form pSt, Rtq temporal logic will
talk about time variations in S and R, but it is not meant to, and possibly not able
to, talk about extensions and how they vary in time.

As we shall see later, for temporally dependent such networks, this is a problem
because we really do want to talk about extensions and how new and old arguments
in time can affect extensions. To be able to do that we need to define what we call
“Evolutionary Temporal Logic for Argumentation”.

In general talking about variations in time of system components Ct is quite
valuable.

Indeed, evolutionary temporal logics have wide applications in philosophy, gen-
eral logic, theoretical computer science, artificial intelligence and the formal analysis
of language.

However, as we said, traditional temporal logic is not suitable for argumentation
(despite papers [26, 27] which followed traditional methodology), for the following
two reasons, which are certain features of traditional temporal logic:

(71): The models ht, involved in temporal logic, given for each time t, come from
some application area and are fixed. We are not given any details of how
they are computed. So formally, our choice of the assignment ht is arbitrary
and given by us in the meta-level.

(72): The future temporal connectives, such as Fφ are reduced to the temporal
behaviour of φ in the model. They are not considered as atomic, with inde-
pendent values.1

1Fφ is true now if φ will be true in the future. So if we know the values of φ we know the
values of Fφ. Compare this with the connective Bφ “ “I believe φ”. I can believe or not believe φ
independent of whether φ is true or not.

930



Evolutionary Temporal Logic

(73): There are no global restrictions on the assignments to atomic q’s beyond
what is forced by axioms on the connectives. For example the axiom

rq ^Gq ^Hqs
forces q to be true at all moments of time, but the axiom

tt|hpt, qq “ 1u is finite

is not expressible using the connectives and thus cannot be enforced. Simi-
larly see the restrictions mentioned in Remark 2.6.

2.3 The many-lives networks; A quick formal reminder
We give quick definitions of how to define extensions for many-lives argumentation.
The exact details are not important for the investigation of the temporal aspects.
It is given here just for the record. See [2]. We assume that the networks pS,Rq we
deal with are acyclic for the purpose of certain inductive definitions.

Definition 2.10 (Labelling annotation for a network).

1. Let pS,R,Mq be an annotated network as follows: pS,Rq is a finite acyclic
argumentation network.
M is a function on S giving for each x P S a natural number in t1, 2, 3, ...u
being the number of lives of x (in argumentation terms, to ensure that x will
be labelled out, we need at least Mpxq nodes e such that eRx and Mpeq ą 0,
i.e. e is labelled in, see next item).

2. Let Attackpxq, for x P S be the set of all y in S such that yRx holds.

3. Let M˚ be defined for x P S using structural induction on the finite acyclic
network as the function derived from M , satisfying the implicit equation (*1)
and (*2) as follows:

(*1) M˚pxq “Mpxq, if there is no y in S attacking x
(*2) M˚pxq “ maxt0, pMpxq — the number of elements y in Attackpxq such

that M˚pyq ą 0qu.
4. Using M˚ we can give Caminada like in, out labelling of the nodes of pS,R,Mq,

following our calculation in item 3 above:

x is out if M˚pxq “ 0
x is in with remaining lives M˚pxq if M˚pxq ą 0.
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x

c a

b

The number of lives of each node in this figure pS,R,Mq is one

Figure 10

Example 2.11. For practical examples of many-lives consider the following:

1. How many complaints of students against a lecturer can we tolerate before we
open a case (hearing) against the teacher? (Probably maybe 5–8, certainly not
just one.)

2. Driving licence example, see Example 4.1.

Example 2.12. We illustrate the computation of M˚ as in Definition 2.10 and
make an important point about this definition. Consider Figure 10, in this figure
Mpzq for each node is 1.

We now calculate M˚:

• M˚pxq “Mpxq “ 1

• M˚pbq “ 0, because it is attacked by x. We do not need to care about M˚paq,
(which also attacks b because no matter what M˚paq is, M˚pbq must be 0). See
Remark 2.15.

• M˚pcq “ 1. This is so not because c is not attacked but because it is given that
Mpcq “ 1. Had we given Mpcq “ 0 we would have had M˚pcq “ 0 and not
M˚p1q even though M˚pbq “ 0. See clause (*2) in Definition 2.10.

• Since M˚pcq “ 1, we get M˚paq “Mpaq ´M˚pcq “ 1´ 1 “ 0.

Example 2.13. We continue Example 2.12 by modifying Figure 10 into Figure 11:

First consider the graph of this figure as a Dung argumentation network. From
that point of view we have y “ in and x “ out and therefore the loop ta, b, cu stands
alone as a three loop with the only extension for the loop is “all undecided”. The
fact that there is x “ out attacking b does not help or make any difference.

Let us now view the element of Figure 11 as having many-lives M , each having
one life, i.e. we have Mpaq “Mpbq “Mpcq “Mpxq “ pyq “ 1.
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y

c a

b x

Figure 11

Let us now calculate M˚ from M for this network using Definition 2.10.
We get

Mpyq “ 1,
M˚pxq “ 0,
M˚pbq,Mpbq ´M˚paq ´M˚pxq,
M˚paq “Mpaq ´M˚pbq,
M˚pcq “Mpcq ´M˚pbq.

Substituting known values we get the equations:

M˚pbq “ 1´M˚paq
M˚paq “ 1´M˚pbq
M˚pcq “ 1´M˚pbq

which yields
M˚pcq “M˚paq
M˚pbq “ 1´M˚paq

If we allow M˚paq “ M˚pcq “ 1 we get an anomaly since c ↠ a. So we must have
(M˚ is a t0, 1u function giving stable extension)

M˚paq “M˚pcq “ 0 and M˚pbq “ 1

Remark 2.14. Example 2.13 raises several questions which require our answers:

1. We introduce the idea of solving Dung loops by using many-lives stable seman-
tics. Namely:

(a) Give all points in the loop single life, i.e., let Mpxq “ 1 for all x in the
loop.

(b) Choose a point in the loop. Fix this point (call it b).
(c) Calculate M˚ from M and get equations.
(d) The equations in (c) might allow for several solutions. Do not allow for

any solution which gives M˚pxq “M˚pyq “ 1 when x↠ y.
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We need to check under what conditions of the loop (geometry of the graph) we
always get solutions.

Note that the calculation of M˚ is not Dung like. We may have all attackers y
of x all have M˚pyq “ 0 but yet also M˚pxq “ 0.

This is because of item *2 of Definition 2.10.

Remark 2.15. In Definition 2.10 we mentioned that the function M˚ is defined
for each x P S using structural induction on the finite acyclic pS,Rq network as the
function derived from M . Let us explain how this is done.

Define the Rank of x P S as follows:

• x is of rank 1 if Attack(x) is empty.

• x is of rank 2 if all members of Attack(x) are of rank 1

• x is of rank n` 1 if all members of Attack(x) are of rank ă n` 1 and at least
one member of Attack(x) is of rank n.

The structural induction is on the Rank of points x

Remark 2.16 (Case of Loops). Our starting point is the definition of M˚ from
M in Definition 2.10, and Remark 2.15. The assumption there is that the network
pS,R,Mq is acyclic, and we use structural induction on the notion of Rank to define
M˚.

If we have loops we need to define the structural induction differently to be able
to define M˚ from M .

We proceed as follows:

1. By a backward chain from point y to point x we mean a sequence of points
z1, z2, ..., zn such that for each ipi “ 1, 2, ..., n´ 1q we have that yRz1, ziRzi`1
and znRx.

2. The length of the chain in (1) is n.

3. If xRx we say the length of the chain in this case is 0.

4. Let S1 be a subset of S. We say S1 is a loop if for every x, y in S1 there exists
a backward chain from y to x built up all of points of S1.
S1 is a maximal loop if it is not properly contained in a bigger loop.

5. We say that a maximal loop S1 is a top loop if for every y and x in S1 such
that there is a backward chain from y to x we have that y is also in S1.
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Time 2
a b c

Time 1

Time 1

Figure 12

b

c

Mpcq “ 2

Mpbq “ 2Mpaq “ 1 a

Figure 13

6. Let S1 and S2 be two maximal loops Define a relation R on the set S of
maximal loops by:
S1RS2 iff for some y in S1 and x in S2 there exists a backward chain from y
to x.
Then pS,Rq is finite acyclic.

7. For a maximal loop C in S let MpCq be defined in some reasonable way as the
number of lives given to the loop as a unit, taking into account the lives of the
members of the loop. For example define it as MpCq “ mintMpyq|y in Cu.

8. Let M˚ be calculated out of M as in Definition 2.10 for the system pS,R,Mq.
9. Let M˚ for the system pS,R,Mq be finally defined for each y in a reasonable

way from the values Mpyq and M˚ (the max loop containing y), for example
as M˚pyq “ maxp0,Mpyq ´M˚pCq, where C is the the unique loop containing
y.

Example 2.17. To illustrate the ideas of Remark 2.16, consider Figure 13:
In this figure the top loop is ta, bu. The minimum life of the top loop is 1 and

therefore the M˚ for loop members if M˚paq “ 0,M˚pbq “ 1 and propagating to c
we get M˚pcq “ 2.
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This calculation is consistent with activating the simultaneous attack of all ele-
ments of the loop ta, bu on one another to get

M1̊ paq “ 0,M2̊ pbq “ 1

and continuing attacking c, we get M1̊ pcq “ 2.
It is possible to give other algorithms, for example, allow members of the top loop

to attack all possible targets, not just only other members of the loop. In this case
both a and b will attack c and we will end up with M2̊ , where

M2̊ paq “ 0,M2̊ pbq “ 1,M2̊ pcq “ 1.

3 Evolutionary temporal argumentation
In Subsection 3.1 we introduce evolutionary temporal logic and give some example
from argumentation. In the next subsection we give many more examples.

3.1 Evolutionary propositional temporal logic for argumentation
Let us start with the classical propositional calculus with atoms Q and the classical
connectives t␣,^,_,Ñu. We have already said that we can turn any assignment
to the atoms into a time dependent function by taking a flow of time pT,ăq and for
each t P T look at a function htpqq “ hpt, qq P t0, 1u for each P T, q P Q.

Example 3.1. Now consider the flow of time T “ p1, 2, 3, . . .q and the usual ă and
assume for each t in T that we have a set Ht of assignments Ht “ tht,i, i “ 1, 2, 3u
to choose from. So we can get a sequence h1, h2, h3, . . . with hn in Hn. We can
impose conditions on the choice of sequences. Examples of such conditions can be in
a meta-language talking about the sequences, (not a temporal language but any other
language). For example

• no change, hn`1 “ hn

• all h P Ht must be obtained from some algorithms (e.g. be complete extensions
of a varying argumentation network)

• For each t, ht is generated from an argumentation network At as in Remark
2.6. Thus Ht is the set hE, of all extensions E of At.

• H can be generated probabilistically

• and so on.
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Let us illustrate by defining on meta-level condition as an example, and so we choose
the condition of continuity.

We say that the sequence h1, h2, h3, . . . preserves continuity if for each n, hn`1
is a minimal change from hn. We have to define what we mean by minimal change,
i.e. hn`1 is chosen from Hn`1 representing a minimal change to hn.

(*) Given a set H˚ of assignments h P H˚ and given h1 P H, then h2 P H˚ is
a minimal change from h1 according to a policy of change P of Hamming
Distance defined in Definition 3.2.

Note that we do not require that h2 be unique, only that it be minimal.

Definition 3.2.

1. Let pT,ăq “ pt1, 2, 3, . . .u,ăq
2. Let Q “ tq1, . . . , qnu be a finite set of atoms.

3. Let Ht, for each t in T be a set of assignments h

h : Q ÞÑ t0, 1u

4. We now define the Hamming distance policy P as follows

(a) We can regard each h P Ht as a vector Vh “ phpq1q, . . . , hpqnqq and for
any two h1, h2 thus define dph1, h2q “ the number of coordinates i for
which Vh1piq is different from Vh2piq.

(b) Let hi P Hi be a sequence of assignment i “ 1, 2, 3, . . .. We say that this
sequence preserve continuity according to policy P, iff for each i, and each
h P Hi`1 we have dphi, hi`1q ď dphi, hq.

An evolutionary temporal model for pT,ăq, based on a sequence of sets of
assignment Ht, t P T , is any sequence of assignments from Ht preserving con-
tinuity P.

5. An evolutionary temporal model for argumentation is any model bases on sets
Ht obtained from respective argumentation networks At, as defined in Example
3.1.

The above definition is just for illustration, it is not suitable for the notion of
continuity in the case of many-lives argumentation. The next section examines what
happens in argumentation and what is needed.
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network (ii)

Time 1:

a b

Time 2:

a b c

network (i)

Figure 14

Note that the notion of continuity is external (meta-level) to the temporal logic
semantics. Some continuity policies P may be expressible as axioms on the temporal
connectives (e.g. no change can be written as GpAÑ GAq) but some may not. Such
lines of research belong to pure traditional temporal logic and do not concern us
here.

We now give examples to illustrate evolutionary temporal logic for argumenta-
tion. Compare with p71q and p72q of Subsection 1.2.

Example 3.3. We illustrate evolutionary temporal logic for argumentation by two
example networks, that of Figure 14 and that of Figure 15.

1. Analysis of Figure 14:
The two networks in this figure (network (i) and network (ii)) show the evo-
lution of a network from network (i):

S1 “ ta, bu,
R1 “ tpa, bq, pb, aqu

into network (ii)
S2 “ ta, b, cu
R2 “ tpa, bq, pb, aqpc, bqu

Evolutionary temporal logic can only talk about the change. It can only say
that c showed up at Time 2 and that c attacks b.
This is not what we are interested in argumentation. We want to look at
extensions. So what we want to say is either option 1 or option 2 or option 3.
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Option 1. At Time 1 there were three possible extensions. We chose at Time
1 the extension

E1
2 “ ta “ in, b “ outu.

At Time 2 we got extra information of a new c attacking b and as a result we
modified the chosen extension into

E1
2 “ ta “ in, b “ out, c “ inu

Option 2. At Time 1 there were three possible extensions. We chose exten-
sion

E2
1 “ ta “ out, b “ inu

At Time 2 we got an extra c attacking b and so the only extension possible at
Time 2 was

E2
2 “ ta “ out, b “ in, c “ inu

Option 3. At Time 1 there were three possible extensions. We chose
E3

1 “ ta “ und, b “ undu
At Time 2 we got an extra c attacking b and so the only possible extension was

E3
2 “ ta “ in, b “ out, c “ inu

We note that none of these options can be expressed in traditional temporal
logic, because traditional temporal logic can only give the assignment generated
by the chosen extension at time 1 and time 2, and, not how the extension was
calculated, nor how the associated networks changed. So we have:

Problem 1. What kind of temporal logic do we need? How do we extend
temporal logic to suit our need?
Answer. We need what we describe in Definition 3.2, which we call evolu-
tionary temporal logic.

2. Analysis of Figure 15:
We make one more point. Consider Figure 15:
In this figure there are two independent parts, and there is no change in Time
2 on the ta, bu part of the network.
Therefore we should expect to say that the extension chosen in Time 1 remained
unchanged in Time 2 as far as ta, bu is concerned because the network did not
change on ta, bu. What we do not want to say is Option 4.
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c

Time 1:

a b

Time 2:

a b

Figure 15

Option 4 (we do not want this option). At Time 1 the extension chosen
was

E1 “ ta “ in, b “ outu.
At Time 2 we changed our mid on the ta, bu part and although the network did
not change this part, we chose extension

E2 “ ta “ out, b “ in, c “ undu.

This presents us with a serious problem 2.

Problem 2. Having chosen an extension E1 at time 1, how do we continue
modifying the same extension in future times without changing our minds like
we did change in Option 4? In other words, how do we force/express continuity
of our choice of extension, yielding only to necessary unavoidable change?
Answer. We can use the concept of continuity as item (c) of Definition 3.2.
See also [30].

Example 3.4. Let a “ we cannot appoint Professor X.
b “ In the future Professor X can get big projects.
We have that at Time 1 b ↠ a. This holds independently of the question of

whether b is true or not. The reason being that we do not know the future (Time 2,
3,4,. . . ), but we need to make a decision at Time 1 (take the extension E1 “ tb “
in, a “ outu.

Example 3.5. We conclude with one more example showing that we may want the
opposite of continuity. Consider networks (i) and (ii) of Figure 14 and assume that
network (ii) comes temporally before network (i). Think that the cycle ta↠ b, b↠ au
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Time 2
a b c

Time 1

Time 1

Figure 16: Combining the two parts of Figure 15, (Time 1 and Time 2) into this single
figure by time stamping the arrows in it. The arrows a ↠ b and b ↠ a are timestamped
“Time 1" and the arrow c ↠ b is time stamped “Time 2". This is a much better notation
because we have a single growing figure. See Remark 3.6.

are two arguments attacking each other and that at Time 1 we have a witness c
attacking b, so the only extension of the cycle is ta “ in, b “ outu. At Time 2 we
have network (i), i.e. c withdraws, and we have the option of ta “ out, b inu. We
do not want continuity in this case. Our meta-level condition is to want b “ in. In
this case we take the option ta “ out, b “ inu.

We cannot express this condition in temporal logic, because the condition is Fb,
which cannot always be true. But we can insist on an algorithm for computing
the extension at any time t (this is meta-level for obtaining an extension ht from
pSt, Rtq) which attempts to start with b “ in and checks if one can find an extension
containing b “ in.

Remark 3.6. The perceptive reader might notice that the temporal progression de-
scribed and discussed in Figure 14 can be represented in a single figure, where the
arguments and attacks are time-stamped. See Figure 16, also compare with the gen-
eral Figure 17.

This perception is more than an alternative representation. It implies a criticism
of what we are proposing here.

Criticism. Why propose evolutionary temporal logic for argumentation, showing
a sequence of temporal nodes t and argumentation networks pSt, Rtq attached to t,
why not put them all in one big argumentation network pS,Rq with time stamping
as in Figure 17. In this figure each node of the form z in the figure and each attack
of the form pz1, z2q in the figure has the further annotation of a Time Stamp T pzq
and T pz1, z2q respectively indicating the temporal moments in which the item exists.
The annotation is a set of moments. In case there is persistence, that is an item
which exists at a moment t continue to exist (and does not disappear after time t)
we can use the annotation “t`”.

So if x, y P St and px, yq P Rt we put pt, xq, pt, yq P S and pt, x, yq P R.
We can retrieve pSt, Rtq from pS,Rq.
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Since the emphasis of “evolutionary temporal logic for argumentation” is on the
argumentation part, it makes more sense to use pS,Rq.
Remark 3.7. Note that formally, from the point of view of formal argumentation,
pS,Rq of Example 3.5, looks like just another annotated argumentation network. It
is in the meta- level that we interpret this annotation as leading to an evolutionary
argumentation network and use it in our intended application. If we have a different
application in mind, (see [29]) we might interpret the annotation differently and get
different results. (See Example 4.3 in our discussion in the section Comparison with
the Literature, in which [29] is discussed.)

Answer to criticism.

1. The notion of evolutionary temporal logic for arbitrary temporal sequences of
systems is more general. We can have it for modal logic, for changing prefer-
ences, etc.

2. However, for some properties we are interested in argumentation, the big pS,Rq
with time stamping are more transparent in the evolutionary time stamping
temporal logic approach. For example if some element x keeps attacking over
time every element y other than himself, then the attack behaviour over time
of x becomes an argument which can attack x. We can add that as a “temporal
attack behaviour” which becomes an “argument".

3. Why not use both methods, depending on convenience?

3.2 Further examples
This section examines examples from the application area of complaints about sex
offenders. This area actually inspired the idea of many-lives argumentation networks.
The temporal aspects come from the fact that the victims of a sex offender might
complain at different times and so we need to time stamp the appearance of victims
and their attacks. So the correct annotation is as in Figure 17.

The notation T py1, xq is the time that yi complained about x. It annotates the
double arrow from y1 to x. We need to explain in our notation the interaction
between the many-lives of an argument x and the question of whether x is in or out
or undecided.

• If the many-lives of x is positive then x is in (also we can say that x is alive).

• If the many-lives of x is 0, then we can say that x is out, or dead.
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y1 : Mpy1qT py1q` , . . . ,

x : MpxqT pxq`

T py1, xq` T pyk, xq`

yk : MpykqT pykq`

Figure 17: In this figure, x has Mpxq lives and exists at T pxq and, afterwards, yi,
which exists at T pyiq and, afterwards, attacks x at time T pyi, xq and, continue to
exist and attack afterwards, and has lives Mpyiq, for each i “ 1, ..., k and x exists
from time T pxq onwards. We have to assume that attacks px, yq exist only at times
where both x and y exist. However mathematically this is just a reasonable but not
a necessary condition.

life and attacking x in March)

y1 : 1 y3 : 1y2 : 1
(showing in Feb with one

life and attacking x in Jan)

x : 3
(is alive in Jan with 3 lives)

Jan + Feb + March

(is alive in Jan with 1
life and attacking x in Jan)

(showing in March with one

Figure 18

• If the number of lives of x is not known, or cannot be calculated because of
loops, we can say that x is undecided or unknown.

The question we ask is if we look at a time, say when there were only 2 complaints,
we ask how many-lives does x have at that time? The answer is that x has Mpxq´2
lives, because of the fact that if Mpxq´2 more attackers come forward and complain
then x will be “dead”.

Figure 14 is a concrete example of this annotation (see Remark 3.6 for this
temporal annotation):

x has only 2 lives remaining in January. In February he has 1 life left and when
in March we have the third y3 complain then x has 0 lives, i.e. x is dead.

We note that Figure 18 is a simplification of the temporal sequence. In January
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Jan

y1 : 1

x : 3

(is alive in Jan with 1 life
and attacking x in Jan)

(is alive in Jan with 3 lives)

Figure 19

x : 3

y1 : 1 y2 : 1 y3 : 1

Figure 20

we had only the victim y1 coming forward. We did not yet know about the victim y2
who came forward in February, nor did we know of victim y3, who came forward in
March. So the January network should be the network of Figure 19 and not Figure
20.

We can use the convention that we always look at past figures from the point
of view of the latest attack, in this case from the point of view of March, thus
time-stamping all attacks.

So elements “show up” at the first time in which they attack others or are being
attacked by others. So in Figure 18 we read that x and y1 “showed up” in January,
y2 in February and y3 in March.

To be consistent in using this notation/convention, we need the assumption of
persistence, namely once there is an attack or an attacker or a target it does not
disappear. Without this assumption we have to attach a set label to each element
in S YR, stating all the time moments in which it exists. See Definition 1.14.

Obviously mathematically this is consistent but we need to consider applications
where attacks can exist without an attacker and/or without a target. We further
discuss this below following principle PP4.
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Jan

y : 2 z : 1

u : 1

b : 1

x : 2

Jan
Feb March

Feb

Figure 21

We now state our third principle:2

PP3: An attack from y to x is time stamped with a time t “ T py, xq unique to
y and x. Any algorithms governing the number of lives of any node in the
system will take account of these time stamps.

Figure 21 describes the more general type of networks, which uses the time
stamping mentioned in PP3.

In Figure 21, z attacks two targets at two different times. We need to calculate
the situation (that is, the semantical extension, showing which element is in, or
out or undecided and with how many-lives, also viewed as the survival situation,
who is alive and who is dead) each month. In January the graph is very simple as
illustrated in Figure 22. Note that the nodes z and b do not show up in the figure
because in January they have not come forward yet.

The life of y is 2 because it is not attacked by anyone. Since y is alive it can
attack x, reducing the life of x by 1. So x is still alive and the life of x is 1 even
though it is attacked by y. x is alive so it can attack u and the life of u is 0. u is
dead.

2This paper continues our previous paper [2] entitled “Introducing Abstract Argumentation
with many-lives" The previous principles PP1 and PP2 appear there, they are:
PP1: Every element x has a number Mpxq of lives (including possibly the value 0 in which case
the element is out, or dead). To really kill x (reduce its many-lives to 0) you need to kill it Mpxq
times (attack it by Mpxq different lives/in elements). In particular non-attacked elements retain all
their many-lives intact and have the capability of attacking other elements (reducing the target’s
number of lives) if their value is not 0.
PP2: Although an element y may have Mpyq lives, when attacking any x it can kill/reduce only
one of x lives.
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y : 2

u : 1

x : 2

Figure 22

Feb

x : 2 b : 1

u : 1

y : 2 z : 1

Jan Feb

Jan

Figure 23

So the survival in January is

y : 2, x : 1, u : 0

Let us now move to February. The graph now is Figure 23 (recall our notation of
Remark 2.5; where we say that alive means in and dead means out).

y : 2 and z : 1 are alive and attack x : 2. Thus x : 2 is dead and we write x : 0.
However, b : 1 is alive and can attack u, and so u : 1 becomes u : 0.

We have the following survivals in February:

y : 2, z : 1, b : 1, x : 0, u : 0.

Let us now address another point of principle: we look at Figure 24.
The question we ask is what happens in January? Answer: we have Figure 25.
So the survival picture is a : 1, b : 0.
In February we have Figure 24. So we have a loop. We ask the question: what

do we do with node b? Do we say that b was dead in January, and although we
allow b to come back to life in February, b, once dead, can no longer attack?
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Feb

b : 1a : 1

Jan

Figure 24

b : 1a : 1

Jan

Figure 25

So b cannot attack in February.
We now introduce a new principle,

PP4: In a system with time stamps, an element y may become dead at at time t
but may come back to life at a later time s, with t ă s. In such a case, we
accept that y can be alive at time s but we do not allow y to attack any more
at time s.

Let us refine better our understanding of principle PP4. Let us look again at
Figure 23, and imagine that the node b : 1 is deleted from the figure. If b : 1 did not
exist then u : 1 would have been alive in February, but it was dead in January. So
do we consider u dead or alive? The answer is since its attacker x died in February
then u would be alive in February if b : 1 was not there.

In March we have Figure 18 and the survivors are

y : 2, z : 1, x : 0, b : 0, u : 1.

If we apply this principle to Figure 24, the node b is dead in January. In Febru-
ary, the node cannot attack, having died in January and so is killed by node a.
Without the principle PP4, the node b can counter-attack in February and we get
the traditional network of two nodes attacking each other, which has three solutions,
ta “ 1, b “ 0u, ta “ 0, b “ 1u, and ta “ b “ 0u.3 See the next example 3.8.

Example 3.8. Let us illustrate our computational options and offer possible refine-
ments to the principle PP4. Consider Figure 26.

3We use the simplified notation “x “ n" for the expression “Mpxq “ n" or equivalently the
expression “x : n" which we use in figures. We will be explicit when needed.
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March
b : 1 a : 1 y : 1

x : 1

Feb Jan

Jan

u : 1

Figure 26

Computation January. At this time b : 1 has not come forward. Therefore a : 1
is alive/in, and since a : 1 attacks y : 1 we have y is dead/out (i.e. Mpyq “ 0)
and hence x : 1 is alive/in and so is u : 1. The survival in January is therefore
ta “ y “ x “ u “ inu.

Computation February. b : 1 comes forwards and attacks a : 1. So a is dead.
So y becomes alive since it is no longer attacked by a. We have two options

1. If we apply PP4 we do not allow y to attack x at February and so x is alive.

2. Without PP4, y can attack x and x is dead. The two outcomes are therefore

(a) b “ in, a “ out, y “ in, x “ in, u “ in
(b) b “ in, a “ out, y “ out, x “ out, u “ in

Computation March. In March we have the full Figure 26, including the March
attack of y : 1 on u : 1, namely y : 1 ↠ u : 1. According to principle PP4, since
y : 1 was dead in January then even though it came back to life in February and
in march, it cannot attack any more and so the attack of y : 1 on u : 1 is to be
discarded and ignored. It is at this point that we might fine-tune principle PP4
into the more sensitive new principle PP4*. The attack of y : 1 on x : 1 is a January
attack and this attack was discarded because in January y : 1 was dead. Having
come back to life in February, does not mean that we revive the January attack of
y : 1 on x : 1. But the March attack of y : 1 on u : 1 is a new attack, newly executed
in March when y : 1 is alive. So we can argue that it should be accepted and not
discarded. To give a motivating example, suppose in January y : 1 complained that
x : 1 sexually abused y : 1. A witness a : 1 came forward in January saying he heard
clearly y : 1 boasting that y : 1 invented false accusations against x : 1. As a result
of that testimony, y : 1’s complaint was declared false and rejected and x : 1 was
declared innocent and the proceedings against x : 1 were terminated.
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u : 1b : 1 a : 1 y : 2

x : 2

Feb Jan

Jan

March

Figure 27

In February b : 1 attacked a : 1 saying that a : 1 was nowhere near y : 1 and
could not have reported any boasting of y : 1. Thus the complaint of y : 1 against
x : 1 is now (in February) credible. But the January proceedings against x : 1 are
over and it stands to procedural reason that we adopt the view that “whatever is
gone is gone”. In February y : 1 credibility is reinstated and so y : 1 complaint
against u : 1 is credible. There is no reason to reject it. We therefore could modify
principle PP4 into PP4* as follows:

PP4* In a system with timesteps an element y may become dead at time t. We
thus declare dead at time t any attack emanating from y at any time t1 ď t.
If at some later time s the element y comes back to life, then y coming back
to life does not bring back to life any attack declared dead at any time s1 ď s.

According to PP4*, in Figure 26, the March attack of y : 1 on u : 1 is alive and
the survival picture in March is b “ in, a “ out, y “ in, x “ in, u “ out.

Example 3.9. Consider the situation of Figure 26 but let us give y and x the two
lives. This is illustrated in Figure 27. We note that the network in the Figure is
finite acyclic, allowing for the calculation which follows. If the figure contains loops
or is one big loop itself , a specific algorithm for loops is required. See Remark 2.16.

Let us calculate what happens in January. We get a “ 1 attacks y : 2 and so y
becomes y : 1. y : 1 is still alive and it attacks x : 2 and so we get x : 1.

The answer is
a “ in, y “ in, x “ in.

Let us present the answer in Figure 28
Figure 28 is the same as the January part of Figure 26.
The problem is, if we look at this figure as the January part of Figure 26, we

should execute the attacks indicated in the figure and get a “ 1, y “ 0, x “ 1.
But if we look at this figure as the result of having already executed the attacks

of Figure 27, then we do nothing and execute nothing.
This gives us ambiguity. We have two options:
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Jan

a : 1 y : 1

x : 1

Jan

Figure 28

1. Do nothing and say that Figure 28 comes from Figure 27 after execution.

2. Continue the execution until the process is stable.

3. We note that the question of which option to use depends on our interpreta-
tion of the network. The sex offender interpretation requires option 1. Each
complaint/attack reduces one life. We do not use the complaint again as if it
were another victim complaining. In comparison, if we have a baby complain-
ing/crying because it wants its nappy changed, then it will complain again and
again until the parent cannot take it any longer and does the job (i.e. parent
runs out of lives).

PP5: Let pS,R,Mq be a network as in Definition 2.1 and Remark 2.16 and Remark
2.15. Consider M˚ as defined from M in the above definitions and remarks.
Continue the derivation of M˚˚ from M˚ etc., until we reach an M˚...˚ such
that another application of the derivation does not give anything new. Call
this M function Mp˚q. Principle PP5 says use Mp˚q and not M˚. Compare
with item 3 of Example 3.9.

So to summarise, let us calculate the survival picture of the network in Figure
27 using principle PP5.

Computation January.

1. We start with Figure 29
We make one pass of calculation as described already and get the network of
Figure 28.

2. We make a second pass of calculation on Figure 28 and get Figure 30.

3. If we make another pass of calculation of Figure 30 we get the same figure. So
we are stable and the survival picture for January is (using PP5) a “ in, y “
out, x “ in.
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Jan

a : 1 y : 1

x : 2

Jan

Figure 29

Jan

a : 1 y : 0

x : 1

Jan

Figure 30

Computation February. The February network is Figure 31.
The attack y : 2 ↠Jan x : 2 is dead, but we left it in the figure for expositional

reasons. y was dead in the January calculation (item (2)) and so it cannot attack.
x : 2 is not attacked in Figure 31. We get the survival picture b “ in, a “ out, y “
in, x “ in.

Computation March. This computation works on Figure 32.
The calculation is straightforward. The survival picture is b “ 1, a “ 0, y “

2, x “ 2, u “ 0.

Remark 3.10. The temporal annotation aspects have no counterpart in the tradi-
tional Dung semantics, not even in any traditional modal temporal logic version of
it. The main reason for this is because we use principle PP4˚ on the one hand

a : 1b : 1
Feb Jan

The attack is dead Jan

x : 2

y : 2

Figure 31
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u : 1b : 1
Feb Jan March

The attack is dead Jan

x : 2

y : 2a : 1

Figure 32

x

Jan

Jan

ba

y

Feb Jan

Figure 33

and there may be more than one extension at a given time on the other hand. See
Example 3.11.

Example 3.11. This example makes a methodological distinction which is useful at
this point and also explains a possible problem/warning in using principle PP4˚.

Consider the network of Figure 33. Assume all nodes have one life and all attacks
are of strength one.

In January we have the network of Figure 34
We have three non-empty extensions in January, i.e. in the network of Figure

34
E1

1 “ ta “ in, b “ out, x “ in, y “ inu
E1

2 “ ta “ out, b “ in, x “ out, y “ inu
E1

3 “ ta “ b “ x “ undecided, y “ inu
We note the following

1. The network of January (Figure 34) is a traditional network.

2. E1
1 chooses a “ in and E1

2 chooses a “ out.
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x

ba

y

Jan

Figure 34

x

ba

y

Figure 35

Let us now ask what is the network in February? It is the traditional Dung
network of Figure 35.

The extensions are

E2
1 “ ta “ out, b “ in, x “ in, y “ outu

E2
2 “ ta “ out, b “ in, x “ out, y “ inu

E2
3 “ ta “ b “ x “ y “ undecidedu.

Our methodological point is the following: If in January we choose to resolve the top
loop (a ↠ b and b ↠ a) by letting a “ in can we now in February choose another
extension for the top loop and take a “ out, b “ in?

There is a consequence to this change of choice because if we take E1
1 in January

and E2
2 in February we get that b was dead (b “ out) in January and b came alive

(b “ in) in February. But then according to principle PP4˚, the January attack
a ↠ x does not come back to life in February so we must have x “ in in February
because x is not attacked in February.

We might argue that this is not acceptable because b came back to life owing to
the administrative means (choice of extension) and not because of any substance.
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x

Jan

Jan

ba

y

Feb Jan

Figure 36

Let us be clear about this point.
The top loop, namely (a ↠ b and b ↠ a) is not internally affected between

January and February. Therefore we might argue/expect that if in January we chose
ta “ in, b “ outu then we chose the same in February and if in January we chose
ta “ out, b “ inu then we choose the same in February. By switching choices between
January and February, we activate principle PP4˚ generating possibly unwanted
consequences. We therefore need to define/identify mathematically the circumstances
under which we are making a change of choice and use this identification to modify
principle PP4˚. Let us call the yet to be defined principle CPP4˚ (PP4˚ with
continuity).

The problem is how we formulate such a principle. If we use the declarative set
theoretical definitions of extensions as in Subsection 2.1, how do we say that E2

2
involves a change in choice and is not the correct February extension, which follows
E1

1 In other words, how do we define continuity in a set-theoretical way?
This is also a problem for traditional modal and temporal logics. Such logics do

not deal with continuity in time.
To see the difficulty with the set theoretical instrument, consider the network of

Figure 36
In this figure we are forced to move from E1

1 to E2
2 because y’s attack on a forces

it! However, it is not easy to tell the difference from the previous case. In fact, in
February there is only one extension, so it does not matter what we did in January.

We postpone handling this question to a subsequent offshoot paper.

Remark 3.12. There may be a way to maintain temporal continuity if the extension
are chosen using an algorithm. We examine the algorithms used in previous Example
3.11. First we divide pS,Rq into maximal loops (called SCC’s, see [3]), then we
choose points in the top SCC and propagate the attacks. We get a new pS1, R1q and
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repeat recursively. Each sequence of choices give an extension.
If new points are added or deleted, we use the same algorithm but try to retain

the same choices as much as possible.

Example 3.13 (Public Pressure). Case 1: On February 11, 2021, the police an-
nounced that a young man named Yarin Sharaf, who was initially suspected of raping
a 13-year-old girl at the Corona Hotel, was charged with the lesser offences of con-
sensual, sexual harassment, threats and assault. Following the announcement, there
was a wide public outcry and on 25.03.21 the prosecutor’s office announced that it
was filing an indictment for a more serious offence, which is rape. The change was
following public criticism from the victim’s family and women’s organizations

Case 2: A criminal known to the police was arrested on suspicion of murdering
Yuri Volkov after detectives waited outside the house where he had been staying for
hours. According to the suspicion, he stabbed the deceased after the deceased and his
wife warned him that he almost hit them on the road. At first the police announced
that he was charged with the relatively minor offence of manslaughter, but after
public pressure the charge was changed to a charge of murder.

4 Comparison with the literature
We have already compared with the literature when we presented in Section 1,
subsection 1.1 the Malkinson real example, and in subsection 1.2 the three views,
Timed View, Modal View and Evolutionary View . Also relevant is Remark 3.7. In
this section we discuss the differences between the views in more detail.

Example 4.1. This example is to further illustrate the difference between the Timed
View and the Evolutionary View.

Consider legislation about driving licences. In many countries, traffic offence
τ can give bad points on a driving licence D (of the offender). Usually when you
accumulate 3 bad points your driving licence is revoked. If you continue to drive
after your licence is revoked then the offence τ becomes more serious, say τ 1.

The best way to view this is to say that D has 3 lives, and τ attacks D and takes
one life from D.

Figure 37 shows an evolutionary sequence:
If we want to take the timed point of view, we have to write the following argu-

ments (doing the evolution in the syntax) and we use D0, D1, D2, D3 where “Dx”
is “D with x lives”. We get a new table 38

In this example the timed view is forced to put the evolution in the syntax!
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D,x “ Driving licence with x lives
τ “ Offence
τ˚ “ Driving with no licence
␣D “ Licence suspended

Time Network
1 D with 3 lives
2 D, τ, τ ↠ D

D two lives
3 D, τ τ ↠ D

D one life
4 D, τ τ ↠ D

D no lives
5 ␣D, τ, τ˚

offence
6 ␣D, τ˚
... ␣D

36 ␣D
Figure 37

Time 1: D3, τ ↠ D3
Time 2: D2, τ ↠ D2
Time 3: D1, τ ↠ D1
Time 4: D0, τ ↠ D0
Time 5: ␣D, τ, τ˚
Time 6–36: ␣D

Figure 38

Example 4.2. This example shows an application where the timed view does not
work.

In the UK if one has insurance paid for on direct debit then UK law says that if
when it is time to renew the policy (say by December 31st) and something goes wrong
and the direct debit does not work, then one is given one month (until January 31st)
to renew (from December 31st).

So in this scenario the following can happen.
We have a claim C on, say, January 15th and the claim is rejected on the grounds
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Dictionary
Cr15s: claim for accident January 15
P rxs: policy valid at time x
Πpxq: policy is paid for at time x.

Time January 15th – January 30th

1. ␣Πpxq,␣Πpxq↠ P pxq
2. ␣P pxq↠ Cpxq

Time January 31st

3. Πp31q, P p31q, Cp15q
4. Πp31q↠ ␣P p15q

Figure 39

that the policy is not valid, it not having been renewed! However, if payment is done
by January 31st, then the policy is renewed retrospectively from December 31st and
the January 15th claim is accepted.

The timed presentation of this scenario is as follows (Figure 39):
In the timed presentation we cannot avoid contradiction in the presentation at

time January 31st.
We need to add to the timed presentation the attack Πp31q ↠ ␣P p15q but to

explain where it comes from we need the evolutionary representation of the insurance
law.

The evolutionary reality allows for the consumer not to renew the insurance on
December 31st and wait to see if a claim arises in the period January 1st to January
30th. If no claim arises the consumer can move to another new insurance company
beginning a new insurance policy from January 31st. If asked why he is leaving the
old company to the new one he can say he was hoping for a better deal.

Example 4.3 (Comparison with [29] Part 1). This example compares directly with
two important papers [32] from COMMA 2010 and paper [29] from 2015.

We address directly the longer paper [29]] of 2015. The authors say in their
abstract, and we quote:

Temporal Argumentation Frameworks (TAF) represent a recent exten-
sion of Dungs abstract argumentation frameworks that consider the tem-
poral availability of arguments.
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In a TAF, arguments are valid during specific time intervals, called avail-
ability intervals, while the attack relation of the framework remains static
and permanent in time; thus, in general, when identifying the set of ac-
ceptable arguments, the outcome associated with a TAF will vary in time.
We introduce an extension of TAF, called Extended Temporal Argumen-
tation Framework (E-TAF), adding the capability of modeling the tem-
poral availability of attacks among arguments, thus modeling special fea-
tures of arguments varying over time and the possibility that attacks are
only available in a given time interval.

1. The first and second paragraphs of the above quotation declares that TAF is a
temporal extension of the Dung approach. This means ( and indeed is used in
their paper) that they use the concepts of conflict free subsets and admissibility
to form extensions and the the “Arguments Entities” they use and to which
they apply the Dung machinery are “Temporally annotated arguments units”.
This is not the case with our paper. Our Malkinson example and discussion
in Section 1.1 does not conform to the basic dung machinery but we use time
in evolutionary way.

2. The third paragraph of the above quotation adds that their system E-TAF also
temporally annotates the attack arrows. We also do that in our paper but we
use all annotations in an evolutionary manner.

3. So what paradigm example application is compatible with the authors’ machin-
ery? Our answer is the consistency checking of legal laws that apply differently
at different times and we want to verify the laws do not clash.
For example taxation laws. The government may declare a new package of
business tax increases spread forward over a period of 5 years and the author
model may check whether any clashes arise. The key word is tax legislation
into the future NOT LEGISTLATION INTO THE PAST.4

Let us now examine one of the authors examples which brings out the difference.
We quote from their paper:

Begin quote 2, from [29] page 33, (I modified the notation):
The arguments are tA,Bu

4(The UK government does legislate into the past causing sometimes great resentment, and
Evolutionary Temporal Argumentation is needed to model such legislation, but other EU countries
do not do that and consider backwards Tax Legislation a TABOO!)
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The Attack is A↠ B

The temporal span is [0...60]
The temporal annotation for the arguments are
E “ tpA, r0...40sq, pB, r30...60squ, and note that according to [29] E is
the set of “Temporally annotated arguments units” for which the Dung
Conflict free concept is applied.
The attack of A on B (i.e. the double arrow A ↠ B) is annotated by
tppA,Bq, r30...35squ
The authors say, and I quote

“Indeed, E is not a conflict-free collection of t-profiles, since
the argument A attacks the arguments B in the time interval
[3035]”

Going back to our proposed interpretation of consistency of legislation, a
reasonable “consistency- conflict free” is the set

E ´ Con “ tpA, r0...29s, p36...40qq, pB, r36...60squ

of arguments from time 0 to time 60.
The period [30...35] contains a conflict between A and B. We can decide
in the Meta-level that A is dominant or we may not.

From the point of view of our paper, we look at the evolution from time 0 to
time 60. We see that at time 30 there is an attack from A to B. Depending on the
meaning of A and B we could extend the attack into the future up to time 60. This
is forward looking.

Let us give a tax interpretation to A and B:
Assume A is a new tax on Builders B of luxury apartments. If the contract B

starts at the time 30 when the tax A is instituted then we can adopt the view that it
will continue to be valid until time 60 when the contract B terminates, despite the
fact that the tax law A was canceled at time 36. The PP rationale could be that the
contract B activity is still ongoing until time 60.

Example 4.4 (Comparison with [29] Part 2). We continue our comparison with [29]
by giving our own very simple algorithm which does the same job as the machinery
in Sections 1–4 of [29].

Let us take the example of Figure 4 of [29], page 30.
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[15-30]
A B C

[20-50]

[10-50] [0-60][0-30]

Figure 40

C

0 10 15 20 30 50 60

A, C A, B, C A, C A, C B

AAAA

BB B B

C CC C C

C

Figure 41

This example contains a time-stamped network (E-TAF) containing several inde-
pendent parts. We use one of the parts to illustrate our algorithm. This illustration
will make clear what [29] is doing, and how [29] is different from our paper. We
concentrate on the tA,B,Cu part of Figure 4 of [29]. We represent it in our own
Figure 40.

Note that all figures in [29] are finite. The temporal annotations of all com-
ponents, arguments and attacks, are a finite list of intervals. We now give the
algorithm.

Step 1. Construct vertical lines, ordered according to time of all starting points
and end point of each interval appearing in the Figure.

Executing step 1 will yield the following figure 41.

Step 2. For each minimal box of the form ra, bs in the figure, we include the units
(arguments and attacks) which are valid in the interval of the box. This is within
Figure 41 in colour red.

Step 3. For each box compute all possible complete extensions. In our example
there is only one. It is possible in general that there might be more. In general for
each box ra, bs, let E1

ra,bs, E
2
ra,bs . . . be all extensions. In Figure 41 at the bottom row

of the figure we indicate the extensions for each in colour blue.
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[0-30]

E

F
D

[0-30]

[20-30]

[20-30]

[10-30][20-30]

Figure 42

[20-25]

K

J

IH

[20-30]

[20-25]

[20-30]

[20-30]

[20-25]

[20-30][10-50

[20-25]

Figure 43

Step 4. The extensions according to [29] for the annotated Figure 40 can be ob-
tained from the blue bottom box of Figure 41.

We get
C r0´ 30s, r50´ 60s
B r10´ 15s, r30´ 50s
A r0´ 30s

Indeed, in [29, page 31]. Example 5 (of [29]), this is exactly what is declared.

Example 4.5 (Comparison with [29], Part 3). We continue our analysis of parts of
Figure 4 of [29, p. 30].

We use our algorithm on two more subfigures of Figure 4 of [29, p. 30]. These
are the loop of arguments tD,E, F u and the loop of arguments tH, I, J,Ku.

These are presented here in Figures 42 and 43.
Applying our algorithm to the network of Figure 42, we get the box Figure 44.
Applying our algorithm to the network of Figure 43, we get the box Figure 45.
The colour coding is as in the previous example 4.4.
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20 30

D,E, F
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F FF

EE

DD

10

Figure 44

250 20 30 50

Two Extensions
H

IIHH H

J J

K K

H I, J, KE1 : H, K
E2 : I, K

10

Figure 45

We make the following observations.

1. The results of the extensions we get agree fully with the extensions in [29,
Example 5, bottom page 31, and top of page 32].

2. The authors of [29] use Dung machinery. For this reason, in Figure 44 the
three cycle in box [20-30] has the empty extension. The way our algorithm
works it allows us to choose the extensions in any box according to how we
want. For example, we can choose CF2 semantics [3] for cycles in one box and
Dung in another, all depending on the application area involved.

3. Our algorithm is simple conceptually and effective computationally. It can be
easily generalised to an infinite number of intervals annotations. We just get
an infinite number of boxes.

962



Evolutionary Temporal Logic

4. In [29, Sections 5–end] the authors investigate structured argumentation with
time stamping. For the purpose of comparing with our evolutionary approach
there is nothing new to compare. The temporal approach of [29] remains the
same when structure is added.

5 Discussion, future research and conclusion
The many-lives approach is new (see [1, 2]), the idea of adding the many-lives func-
tion to abstract argumentation network. It does not fall under numerical argumen-
tation. The way it is handled is inspired by the sex offenders case studies area.

There is a need for further research, investigating the place of many-lives in the
general abstract argumentation landscape. There are many questions to be answered
, among them the following:

1. What kind of semantics we should offer for systems with many-lives?

2. Can many-lives semantics simulate known semantics for traditional single life?
For example can we simulate CF2 semantics by giving the elements of maximal
conflict free sets more lives? (See Remark 2.14.)

3. How to handle support in the context of many-lives? Does support add lives?
Is support (in the context of sex offender’s many-lives) a higher level attack
(on attack)?

4. How to define reinstatement? How many-lives to reinstate?

5. What is the best view of temporal change of a many-lives network?

6. What is the variation of the many-lives concepts across different application
areas which use many-lives? (See Example 4.1.)

7. We are currently also looking at many-lives case studies in Nutrition. The liver
for example can be attacked by a variety of foods, such as Alcohol, Sugar,
Gluten and more. Such attacks combine in different ways, requiring/moti-
vating new types of higher level attacks. In fact we require 3 dimensional
argumentation networks for proper modelling.

8. We can regard many-lives as a resource (say M gives American $). An attack
destroys resources of the target but also costs resources of the attacker. We
need to develop the evolutionary temporal logic of resource attack and defence.
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9. The algorithm presented in the detailed analysis and comparison or our pa-
per with the important 2015 paper [29] suggests we can write a new paper
extending and simplifying their results also to the infinite case. We shall use
Neibourhood Ultrafilter Semantics on the temporal line.

We leave these and other questions for follow up papers
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