

Equipping homes for a low-carbon future

New Homes

Matthew Bailey

BA (Hons) | MSc | Cenv | MEI 18th January 2018

Background to Hodkinson Consultancy

- A specialist energy & environmental consultancy for planning and development.
- Our aim is to provide innovative and cost-effective strategies that respond to increasing demands for quality and construction efficiency.
- Formed in 1999, now employee owned, we provide a range of specialist technical services from planning applications through to postconstruction assessments.

Our Work

Our Services

Energy & Environmental

Planning

- Acoustics & Environmental Noise
- BREEAM Communities
- Daylight Sunlight
- Energy Statements
- Environmental Impact Assessments (EIA)
- Health Impact Assessments
- Lighting Pollution
- Noise Reports
- Overheating Analysis
- Planning Policy Advice
- Planning Pre-Assessments
- Renewable Energy Feasibility Studies
- Specialist Environmental Reports
- Sustainability Statements
- Zero Carbon Homes

Energy & Environmental

Design

- Acoustic Design
- Alternative Methods of Construction
- Building Acoustics
- District Heating Advice
- Façade Optimisation
- Home & Building User Guides
- Inclusive Access
- Indoor Air Quality
- Overheating Analysis
- Passivhaus
- Post Occupancy Evaluation
- Secured by Design
- Solar Design
- Sustainable Drainage
- Thermal Bridging
- Utilities
- Water Use

Assessment & Compliance

- Air Tightness Testing
- BREEAM
- BREEAM Domestic Refurbishment
- CDM Advisor
- CDM Principal Designer
- Code for Sustainable Homes
- Home Quality Mark
- Passivhaus
- SAP
- SBEM
- Sound Testing

Background - why homes?

> Climate Change Act (2008): Greenhouse Gas emissions to be 80% of pre-1990 level

> Residential Sector accounts for 23% of end user emissions

> Carbon Plan required Zero Carbon homes from 2016 to deliver this target

> Zero Carbon target delayed in 2015

Carbon Plan

Background - why new build?

- > c.30 million total homes by 2050
- > 250,000 new homes/yr required
- > A further 8 million new homes yet to be built

Background – why heat?

Typical Regulated Energy Demands -2-bed flat

Success Criteria

How can we judge the success of energy strategies for newbuild homes?

- Environmental performance
- Affordability
- Reliability
- Comfort
- Deliverability

Energy Efficiency Challenges

> There is significant scope to further reduce residential heating demand beyond current new-build standards

Energy Efficiency Challenges

> Significant challenges when reducing space heating demands:

- Cold Bridging
- Overheating
- Ventilation and air quality
- Daylighting
- Quality of work
- > Complex design decisions required at an early stage:
 - Orientation
 - Massing
 - Glazing proportions
 - Shading

Dwellings will always require a small amount of space
 heating and will maintain a significant domestic hot water load

> Supply of this heat must be decarbonized by 2050

> The solution is far from clear, so a risk-based approach is needed in new-build housing

Space Heating and Domestic Water

> Electricity is decarbonising quickly, but supply and infrastructure challenges remain

> Gas is not – there is no clear pathway to low carbon gas currently being implemented

	2012	2016	2019	2022	2025
Gas Carbon Factor (kgCO ₂ /kWh)	0.216	0.208	0.208	0.208	0.208
Electricity Carbon Factor (kgCO ₂ /kWh)	0.519	0.398	0.302	0.229	0.183

	Pros	Cons		
Ultra energy efficient dwellings	 Key to meeting targets Reduces fuel costs Can provide high quality homes 	 How is hot water addressed in high density dwellings? Can lead to poor quality homes if bad design 		
Continued use of gas grid	 Cheap fuel source Extensive supply available Can meet peak heat demands 	 Gas decarbonisation far from guaranteed Grid upgrades required Security of supply 		
Electricity	 Flexible power source for heat pumps, resistance heating etc. Can lead to efficient heat delivery Rapidly decarbonising 	 Insufficient supply High cost option 50% generation increase required 1000% increase in storage required 		
Waste Heat	 Already sufficient to meet demand 2 times over Increased thermal generation of electricity to meeting heat pump loads will increase waste heat 	 How to get heat to customers? Supply is not yet guaranteed Requires significant infrastructure investment 		

 Building Regulations Part L needs to be updated to reflect lower carbon electricity

- Energy efficiency must improve through standards and build quality.
- > Heat pumps will form part of the solution in low density areas.
 - Size must be reduced through demand reduction (energy efficiency, solar etc)
 - Incentives required to increase uptake

- > Heat networks are key, but face significant challenges:
 - Heat losses and network efficiency

- > Heat networks are key, but face significant challenges:
 - Heat losses and network efficiency
 - Leadership on supply of low-carbon, waste heat
 - Clarity on role of gas Combined Heat and Power
 - Greater regulation and consumer protection
 - Improved skills

Contact us

Matthew Bailey Director BA (Hons) | MSc | Cenv | MEI matthew@hodkinsonconsultancy.com

The Heights, 59-65 Lowlands Road, Harrow, Middlesex, HA1 3AW Office: 020 3603 1600

Find us on <u>Twitter</u> and <u>Linkedin</u>

hodkinsonconsultancy.com

Company Registration Number: 03823513/England