
UNESCO-E
OLS

S

SAMPLE
 C

HAPTERS

COMPUTER SCIENCE AND ENGINEERING - Computer Architecture - Prabhat Mishra

©Encyclopedia of Life Support Systems (EOLSS)

COMPUTER ARCHITECTURE

Prabhat Mishra

University of Florida, Gainesville, Florida, U.S.A.

Keywords: computer organization, datapath and control, cache coherence, instruction-

set, pipelining, hazards, exceptions, instruction scheduling, speculation, memory

hierarchy, caches, virtual memory, hard disk, multicore, multiprocessor, processor

architecture.

Contents

1. Introduction

2. Instruction-Set Design

3. Processor Design

4. Improving Processor Performance

5. Memory Hierarchy

6. Multiprocessor Architectures

7. Input/Output and Storage Systems

8. Conclusions

Acknowledgments

Glossary

Bibliography

Biographical Sketch

1. Introduction

Our daily life is immersed in the vast ocean of computing. In some cases, computing is

obvious – when we use computers (laptop, desktop, workstation or servers) to perform

personal or official activities. However, in many scenarios computing is hidden inside

systems, popularly known as embedded systems. The examples of such systems include

cell phones, cameras and electronic appliances. Embedded systems are also present in

automobiles, airplanes, satellites, military and biomedical equipments. Embedded

systems are designed for specific applications and have stringent requirements in terms

of cost, energy requirements (battery life), real-time constraints, security, reliability, and

so on. Although, computers and embedded systems have certain differences, they have

one commonality – both uses efficient design to deliver fast computation. In fact, a $300

personal computer in 2012 can produce more performance than a 1 million dollar

supercomputer in 1985. This tremendous growth in performance improvement is

possible because of significant advances in computer architecture.

This chapter introduces history and basic principles of computer architecture. It

describes two important aspects of computer architecture: computer organization and

instruction-set architecture. Next, it describes various ways of improving processor

performance including pipelining, dynamic scheduling, branch prediction and

speculation. It also describes how caches are used in memory hierarchy to improve

memory performance. It describes the role and importance of both input/output devices

UNESCO-E
OLS

S

SAMPLE
 C

HAPTERS

COMPUTER SCIENCE AND ENGINEERING - Computer Architecture - Prabhat Mishra

©Encyclopedia of Life Support Systems (EOLSS)

and reliable storage systems. Finally, it describes the latest technology trend in

multiprocessor/multicore architectures, and concludes the chapter.

1.1. Brief History

There has been debate on when and how computers or automated computing started,

whether it is mechanical multiplier in the 16
th

 century, analog calculators in the 17
th

century, navigation instruments in the 18
th

 century, or electronic computers in the 19
th

century. In the early 1940s, John Atanasoff built a small-scale special-purpose

computer, called ABC (Atanasoff Berry Computer). Eckert and Mauchly built the

world‟s first fully operational electronic general-purpose computer, called ENIAC

(Electronic Numerical Integrator and Calculator). It was used during World War II for

computing artillery firing tables, but it was not publicly disclosed until 1946 [Hennessy

and Patterson, 2007]. It is widely acknowledged that the development of Turing

machine [Alan Turing] played a significant role in the creation of the modern

computers.

While working in the ENIAC project, John von Neumann wrote a memo proposing a

stored-program computer called EDVAC (Electronic Discrete Variable Automatic

Computer), which has served as the basis for the commonly used term von Neumann

computer. There have been many significant developments that led to the development

of the first IBM computer, the 701. In those days, many people used to believe that the

market for computers was very limited (“I think there is a world market for maybe five

computers.” Thomas Watson, 1943). IBM quickly became the most successful

computer company. In 1971, the first processor on a chip (Intel 4004) was developed,

which led to more powerful 8/16/32-bit high performance microprocessors and the rise

of the RISC processor in the 1980s.

1.2. Trends in Cost, Power and Performance

Cost is not important for high-end servers where companies are willing to pay a heavy

price for servers that can provide required level of throughput (e.g., number of emails

scanned per second), scalability and dependability. However, processor/memory cost is

a major concern for personal computers as well as for many commodity embedded

systems. A low-end embedded processor costs $1-$10, a low-end processor for personal

computer costs $50-$100, whereas a processor for server costs $200-$10000. Similarly,

cost for the memory is determined by the size and performance. When large number of

items are manufactured, the price goes down over a period of time due to improved

yield (manufacturing cost goes down).

Although, performance was the most important aspect of designing computer

architecture until 2000, power and energy (energy = power x time) are the prime

considerations these days. Energy requirements directly translate to battery life.

Therefore to improve battery life, it is important to design an architecture that delivers

the required level of performance while minimizes energy requirements. Even if a

personal computer or server is connected to wall power, it is still important to reduce

energy requirements since higher power dissipation causes the system temperature to

rise, which in turn significantly affects the reliability and lifetime of the system.

UNESCO-E
OLS

S

SAMPLE
 C

HAPTERS

COMPUTER SCIENCE AND ENGINEERING - Computer Architecture - Prabhat Mishra

©Encyclopedia of Life Support Systems (EOLSS)

Performance is a key design consideration. Prior to the mid-1980s, processor

performance growth was about 25% per year and largely driven by technological

advances. In 1965, Gordon Moore predicted that the number of transistors that can be

integrated on a die would double every 18 to 24 months i.e., grow exponentially with

time. Exponential growth in transistors leads to dramatic performance improvement.

From 1986 to 2002, the increase in performance growth is about 52% primarily due to

advanced architectural designs [Hennessy and Patterson, 2007]. Since 2002, focus has

shifted to reducing power dissipation while maintaining 20% performance growth. Use

of multiple cores enabled designers to improve performance while maintaining

power/energy constraints.

1.3. Amdahl’s Law

Amdahl‟s law is an important mechanism to measure performance gain by improving

certain portions of a computer. The law states that the impact of improving the

performance of a specific component on overall computer depends on the fraction of the

time the faster component can be used. In other words, if a component is rarely used,

even if we improve it significantly, it will not significantly improve the overall

performance. Amdahl‟s law can be described using the following equation, where I is

the enhancement (improvement) of a component that is used f (fraction) percentage of

time, and Speedup implies the overall speedup (ratio between overall execution time

before the improvement over the overall execution time after the improvement).

I

f
f

Speedup





)1(

1

Consider a processor that can perform scientific computation as well as image

processing. The designers have improved the image processing part by 10 times (i.e.,

10I ). In the given application, image processing is performed 20% of the time

(0.2f ). Note that the performance of scientific computation is not affected due to

this enhancement. We can compute the overall speedup =

  1 / 1 0.2 0.2 /10 1 / .82 1.22    . Although, the image processing part is improved

10 times, the overall speedup is only 22%.

1.4. The Big Picture

Figure 1 shows a broad overview of computer architecture where a processor is

connected to memory using a bus. The processor also has a cache for performance

improvement. In general, many input/output (I/O) devices are connected to bus using

I/O controllers. In this figure, external secondary storage (hard disk) and computer

display is connected to processor via bus.

It is important to understand how this computer architecture relates to program

execution? A compiler translates a high-level description of a program (e.g., written in

C, Java or C++) into machine representation (binary code). This binary code is stored in

hard disk or loaded using a USB drive.

UNESCO-E
OLS

S

SAMPLE
 C

HAPTERS

COMPUTER SCIENCE AND ENGINEERING - Computer Architecture - Prabhat Mishra

©Encyclopedia of Life Support Systems (EOLSS)

During execution processor fetches the suitable binary code (instructions and data),

performs the required computation and stores the results back in memory. At the end of

computation, these results will be transferred to I/O devices such as stored back in hard

disk and/or displayed in the computer display.

Figure 1. An overview of computer architecture

2. Instruction-Set Design

We communicate with others using some natural language such as Bengali, Chinese,

English, French, German, Spanish, and so on. However, to communicate with processor

(computer‟s hardware) we need to use computer‟s language, called instructions. The

vocabulary of commands (instructions) is known as instruction-set.

2.1. Instruction Types

Each processor supports different types of instructions. For example, the MIPS

processor [Patterson and Hennessy, 2008] supports four major types of instructions:

arithmetic, logical, data transfer, and decision making. Arithmetic instructions

correspond to arithmetic computations such as addition, subtraction, multiplication and

division. Similarly, logical instructions are designed to support logical computations

such as shift, and, or, nor etc.

The data transfer instructions enable transfer of data between processor and memory

using operations such as load and store. Finally, the decision making instructions allow

conditional branches and unconditional jumps. Although different processor supports

different types of instructions, all of them cover the similar set of computations to

ensure that any high-level program can be mapped by a compiler using the instructions

supported by that processor. For example, the ARM [ARM] processor supports different

instruction types such as data processing and flow control instructions.

2.2. Operations and Operands

Consider a simple MIPS-like arithmetic instruction “add a, b, c”. This instructs the

processor to add two variables b and c and put their sum in a. This instruction has four

parts. The first part (“add”) is known as operation and the next three parts are termed as

UNESCO-E
OLS

S

SAMPLE
 C

HAPTERS

COMPUTER SCIENCE AND ENGINEERING - Computer Architecture - Prabhat Mishra

©Encyclopedia of Life Support Systems (EOLSS)

operands. In this case, the first operand (“a”) is a destination operand whereas the last

two operands (“b” and “c”) are source operands. Source operands provide the input

values whereas the destination operand stores the result of computation performed by

the respective operation.

A program, written in high-level language, may use many variables to describe the

computation. However, in computer hardware the number of operand locations is

limited – these hardware locations are called registers. For example, MIPS arithmetic

instructions can choose operands from 32 32-bit registers including $s0–$s7, $t0–$t9,

$zero, $a0–$a3, $v0–$v1, $gp, $fp, $sp, $ra and $at. Figure 2a shows the general

instruction format (called assembly) for arithmetic instructions. Figure 2c shows a

simple addition statement in C language (a popular high level programming language)

and its corresponding MIPS assembly in Figure 2d.

The assembly assumes that the variable A, B and C are mapped to registers $s1, $s2 and

$t0, respectively. Interestingly, the computer hardware does not even understand

assembly instruction. It only understands binary („0‟ and „1‟) representation of this

assembly. As a result, each processor describes the binary format for each type of

instruction. For example, the binary format for arithmetic instruction is shown in Figure

2b where the first and last field is 6 bits and the remaining fields are 5 bits. Figure 2e

shows the binary representation of the assembly shown in Figure 2d.

Figure 2. An example statement and corresponding MIPS assembly and binary

representation

The assembly as well as binary formats are different for different types of instructions.

For example, to load (transfer) data from memory location a sample assembly would be:

lw $s1, 20($s2). The operand “lw” implies that it is loading a word from memory. The

destination operand is register $s1, and the source memory location (address) is

“$s2+20”. Note that data transfer instructions uses register locations as well as memory

locations, whereas arithmetic instructions uses only register locations. The logical

instructions are similar to arithmetic instructions. For example, and $s1, $s2, $s3

UNESCO-E
OLS

S

SAMPLE
 C

HAPTERS

COMPUTER SCIENCE AND ENGINEERING - Computer Architecture - Prabhat Mishra

©Encyclopedia of Life Support Systems (EOLSS)

performs a bit-by-bit logical and operation of $s2 and $s3 and places the result in $s1.

There are two types of decision making instructions. The conditional branch instructions

(such as “beq $s1, $s2, 25”) checks whether a condition is true (whether $s1 is equal to

$s2 in this case) and if yes it jumps to the branch target. The unconditional branches

(such as “j 2500”) directly jump to the branch target.

2.3. Representation of Numbers

The computer hardware understands only binary values. Therefore, when any value is

provided in the assembly, it needs to be translated to binary representation by assembler

(last stage of compiler). High-level languages differentiate between positive and

negative numbers by using a negation operator („–‟). However, the computer hardware

follows different representations for signed and unsigned numbers. Given a 32-bit

location, it can represent unsigned values between 0 and 2
32

 – 1. However, the signed

numbers can be represented by sign-magnitude, 1‟s complement or 2‟s complement.

Typically, signed binary numbers use 2‟s complement representation. In 2‟s

complement representation, positive numbers are same as it‟s unsigned binary

counterpart whereas the negative numbers requires 2‟s complement computation. For

example, in a 4-bit representation, the unsigned binary for 3 is 0010. In signed 4-bit

representation, +3 is also 0011, where –4 is 1101.

The representation of floating-point numbers follows IEEE 754 floating-point standard

[IEEE 754]. It allows 32-bit single precision (excess-127) or 64-bit double precision

(excess-1023) representations. In both forms the binary is divided in three parts. The

first bit is to indicate the sign („0‟ for positive and „1‟ for negative). The next 8 bits (11

bits for double precision) represent exponent whereas the last 23 bits (52 bits for double

precision) are used to represent the mantissa. For example, +2
6
 x 1.01000111001 has a

positive sign (i.e., „0‟). In excess-127 representation the exponent would be 133 i.e.,

“10000101”. Extra 0s can be added at the right to create 23-bit mantissa of

“01000111001000000000000”. Therefore, 32-bit representation of the number +2
6
 x

1.01000111001 is “0 10000101 01000111001000000000000”.

2.4. Computer Arithmetic

Once a processor receives an arithmetic instruction, it needs to read the source registers

and perform the required computation. For example, if it receives “addi $s1, $s2, -6” it

needs to perform addition of the content of $s2 with -6. Note that “addi” is an add

operation same as “add” except that it directly uses the value of one of the source

operands (known as immediate value). Let us assume that register $s2 has a value of 7.

Therefore, we need to computer 7 + (-6). Figure 3 shows the addition where the

numbers are first converted into its 2‟s complement 8-bit representation, and then

addition is performed in a bit-by-bit fashion from right to left. Adding „0‟ with „1‟

produces sum as „1‟ and carry as „0‟, adding „1‟ with „1‟ produces sum as „1‟ and carry

as „1‟. The carry is passed to the next digit to the left, exactly the way we add decimal

numbers. The result is +1. In general, the computation needs to keep track of overflow

when adding two positive or two negative numbers. If the carry output at the last bit

(leftmost bit) is „1‟, it implies an overflow in case of 2‟complement addition. Certain

instructions ignore overflow, whereas other instructions uses it as an exception and

UNESCO-E
OLS

S

SAMPLE
 C

HAPTERS

COMPUTER SCIENCE AND ENGINEERING - Computer Architecture - Prabhat Mishra

©Encyclopedia of Life Support Systems (EOLSS)

performs appropriate corrective action. Subtraction is a special case of addition

since  A – B A –B  . In other words, addition is performed by treating the second

one as a negative number i.e., computing the 2‟s complement of the second number.

Floating-point addition is performed in a similar manner except that first decimal points

are aligned (exponents are adjusted) followed by addition and normalization of result

and rounding, if necessary.

Figure 3. Addition using 2‟s complement arithmetic

Other arithmetic operations are also performed in a similar fashion using binary values.

For example, Figure 4a shows multiplication of two 4-bit binary numbers (8 x 3 = 24).

The 8-bit result is produced by padding „0‟s on the leftmost side. Similarly, Figure 4b

shows how 8 is divided by 3 to produce 2 as quotient and 2 as remainder.

Figure 4. Multiplication and division of binary numbers

3. Processor Design

As mentioned earlier, the memory holds the program (sequence of instructions) and

these instructions are executed by the processor. Figure 5 shows a simplified overview

of the five major activities in the processor when executing an arithmetic instruction.

The program counter (PC) contains the address of the instruction that needs to be

fetched from the memory. Next, the instruction (32-bit binary) is decoded to understand

its different parts, operations and operands. The source operands of the instruction are

read from registers. Next, the intended computation (execution) is performed. Finally,

UNESCO-E
OLS

S

SAMPLE
 C

HAPTERS

COMPUTER SCIENCE AND ENGINEERING - Computer Architecture - Prabhat Mishra

©Encyclopedia of Life Support Systems (EOLSS)

the result is stored back in the destination register. When load (store) instruction is

executed, the data is read from (written back to) memory.

Figure 5. Five major activities during instruction execution – i) fetch an instruction from

memory pointed by PC, ii) decode to figure out the operation and operands, iii) read

thesource operands, iv) perform the required computation, and v) write back the result.

3.1. Design of Datapath and Control

To build the processor hardware, the designers need to build two types of components

(units): datapath units and control units. The datapath units are designed to operate on

data or hold data. Instruction/data memories, registers and Arithmetic Logic Unit (ALU)

are examples of datapath units. The control units, also known as controllers, are

responsible for generating required control signals. Based on the current instruction the

controller needs to activate the intended computation in the ALU. Assume that an ALU

supports 16 types of arithmetic and logical operations. Therefore, the ALU controller

needs to generate 4-bit (2
4
 = 16) control to activate the required operation. For example,

„0000‟ is generated for „addition‟, „0001‟ for subtraction etc. We also need a control

signal to identify whether a register is being read or written (e.g., „0‟ means read and „1‟

means write). If there are 32 registers, the register address will be 5-bits (2
5
 = 32) to

indicate which specific register needs to be read or written. For example, „00000‟

implies the first register ($s0), „00001‟ implies next register ($s1), and so on. Table 1

shows a sample set of data and control signals for an example instruction during

instruction fetch, decode, operand read, ALU operation, and writing result. Assume that

$s2 and $s3 have values 3 and 4, respectively, represented in four bit representation.

The “Function” field represents the values of the last six bits of the 32-bit binary that

represents the opcode for the MIPS arithmetic instruction. Note that x‟s indicates that

the values are either not known or not required at that stage. For example, during

register write only three sets of signals are important: register read/write signal should

be 1 (to indicate write), register address bus should be loaded with register address for

$s1 (i.e., 00001), and the result should be ready. In this example, operation and operand

addresses become available after instruction decode, the source operand values becomes

ready after operand ready and result is available after the execution. Similarly, control

signals are required to activate read and write from memory.

UNESCO-E
OLS

S

SAMPLE
 C

HAPTERS

COMPUTER SCIENCE AND ENGINEERING - Computer Architecture - Prabhat Mishra

©Encyclopedia of Life Support Systems (EOLSS)

Function

(opcode)

Data Values Control Signals

Source 1 Source 2 Destination ALU

operation

Register

Read/Write

Address Value Address Value Address Value

Inst. Fetch xxxxxx xxxxx xxxx xxxxx xxxx xxxxx xxxx xxxx x

Inst. Decode 100000 00010 xxxx 00011 xxxx 00001 xxxx xxxx x

Operand Read 100000 00010 0011 00011 0100 00001 xxxx xxxx 0

Execution 100000 00010 0011 00011 0100 00001 0111 0000 x

Write Result 100000 000010 0011 00011 0100 00001 0111 xxxx 1

„x‟ indicates unknown/undefined/don‟t care values

Table 1. Sample data and control signals for an example instruction “add $s1, $s2, $s3”

-

-

-

TO ACCESS ALL THE 32 PAGES OF THIS CHAPTER,

Visit: http://www.eolss.net/Eolss-sampleAllChapter.aspx

Bibliography

Hennessy J.L., Patterson D.A. (2012). Computer Architecture – A Quantitative Approach. Morgan

Kaufmann Publishers, San Francisco, California. [This is a popular textbook on computer architecture. It

covers a wide variety of topics related to design of high-performance and low-power architecture.]

Turing A. (1937). On Computable Numbers, with an Application to the Entscheidungsproblem,

Proceedings of the London Mathematical Society, series 2, volume 42, pages 230-265, 1937. Errata

appeared in Series 2, volume 43, pages 544–546, 1937. [This is a famous paper on defining computability

and development of Turing machines.]

ARM. ARM Instruction Set. http://infocenter.arm.com [ARM processors are widely used in embedded

and mobile systems]

Patterson D.A., Hennessy J.L. (2009). Computer Organization and Design – The Hardware / Software

Interface. Morgan Kaufmann Publishers, San Francisco, California. [This is a popular undergraduate-

level textbook on computer organization. It covers fundamentals of processor and memory design

including design of instruction-set (assembly language), datapath and controller, pipeline, memory

hierarchy, and so on.]

IEEE 754 (2008). IEEE 754: Standard for Binary Floating-Point Arithmetic.

http://grouper.ieee.org/groups/754/ [This standard specifies binary formats, basic operations, conversions,

and exceptional conditions for floating-point numbers.]

SPEC Benchmarks. http://www.spec.org/. [These are widely used benchmarks for performance

evaluation of computer architecture. These benchmarks are developed and maintained by Standard

Performance Evaluation Corporation (SPEC)]

Flynn M. (1972). Some Computer Organization and Their Effectiveness, IEEE Transactions on

Computers, volume C-21, issue 9, pages 948-960, September 1972. [The paper classifies different types

of computer architectures into four major categories.]

http://infocenter.arm.com/
http://grouper.ieee.org/groups/754/
http://www.spec.org/
https://www.eolss.net/ebooklib/sc_cart.aspx?File=E6-45-50

UNESCO-E
OLS

S

SAMPLE
 C

HAPTERS

COMPUTER SCIENCE AND ENGINEERING - Computer Architecture - Prabhat Mishra

©Encyclopedia of Life Support Systems (EOLSS)

Stallings W. (2009). Computer Organization and Architecture, Pearson Prentice Hall, New Jersey. [This

is a popular textbook that covers various aspects of both computer organization and computer

architecture.]

Tanenbaum A. S. (2006). Structured Computer Organization, Pearson Prentice Hall, New Jersey. [This is

a popular textbook on computer organization.]

Hamacher C., Vranesic Z., Zaky S. (2002). Computer Organization, McGraw-Hill. [This a computer

organization textbook]

Pasricha S., Dutt N. (2008), On-Chip Communication Architectures – System on Chip Interconnect.

Morgan Kaufmann Publishers, San Francisco, California. [This book describes concepts, standards and

design principles of a wide variety of on-chip communication architectures.]

Mishra P., Dutt N. (2008), Processor Description Languages – Applications and Methodologies. Morgan

Kaufmann Publishers, San Francisco, California. [This book describes a wide variety of architecture

description languages and associated specification, exploration and rapid prototyping methodologies.]

Biographical Sketch

Prabhat Mishra is an Associate Professor in the Department of Computer and Information Science and

Engineering (CISE) at the University of Florida where he leads the CISE Embedded Systems Group. His

research interests include design automation of embedded systems, energy-aware computing,

hardware/software verification, and design of trustworthy systems. He received his Ph.D. in computer

science from the University of California, Irvine. Prior to joining University of Florida, he spent several

years in various semiconductor and design automation companies including Intel, Motorola, Synopsys

and Texas Instruments. He has published four books, ten book chapters and more than 100 research

articles in premier journals and conferences. His research has been recognized by several awards

including the National Science Foundation CAREER Award, two best paper awards (VLSI Design 2011

and CODES+ISSS 2003), and 2004 EDAA Outstanding Dissertation Award from the European Design

Automation Association. Prof. Mishra currently serves as an Associate Editor of ACM Transactions on

Design Automation of Electronic Systems, IEEE Design & Test of Computers, and Journal of Electronic

Testing, Guest Editor of IEEE Transactions on Computers, and as a program/organizing committee

member of several ACM and IEEE conferences. He is a senior member of Association for Computing

Machinery (ACM), and a senior member of Institute of Electrical and Electronics Engineers (IEEE).

