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1. Introduction 

 

Our daily life is immersed in the vast ocean of computing. In some cases, computing is 

obvious – when we use computers (laptop, desktop, workstation or servers) to perform 

personal or official activities. However, in many scenarios computing is hidden inside 

systems, popularly known as embedded systems. The examples of such systems include 

cell phones, cameras and electronic appliances. Embedded systems are also present in 

automobiles, airplanes, satellites, military and biomedical equipments. Embedded 

systems are designed for specific applications and have stringent requirements in terms 

of cost, energy requirements (battery life), real-time constraints, security, reliability, and 

so on. Although, computers and embedded systems have certain differences, they have 

one commonality – both uses efficient design to deliver fast computation. In fact, a $300 

personal computer in 2012 can produce more performance than a 1 million dollar 

supercomputer in 1985. This tremendous growth in performance improvement is 

possible because of significant advances in computer architecture. 

 

This chapter introduces history and basic principles of computer architecture. It 

describes two important aspects of computer architecture: computer organization and 

instruction-set architecture. Next, it describes various ways of improving processor 

performance including pipelining, dynamic scheduling, branch prediction and 

speculation. It also describes how caches are used in memory hierarchy to improve 

memory performance. It describes the role and importance of both input/output devices 
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and reliable storage systems. Finally, it describes the latest technology trend in 

multiprocessor/multicore architectures, and concludes the chapter.   

 

1.1. Brief History 

 

There has been debate on when and how computers or automated computing started, 

whether it is mechanical multiplier in the 16
th

 century, analog calculators in the 17
th

 

century, navigation instruments in the 18
th

 century, or electronic computers in the 19
th

 

century. In the early 1940s, John Atanasoff built a small-scale special-purpose 

computer, called ABC (Atanasoff Berry Computer). Eckert and Mauchly built the 

world‟s first fully operational electronic general-purpose computer, called ENIAC 

(Electronic Numerical Integrator and Calculator). It was used during World War II for 

computing artillery firing tables, but it was not publicly disclosed until 1946 [Hennessy 

and Patterson, 2007]. It is widely acknowledged that the development of Turing 

machine [Alan Turing] played a significant role in the creation of the modern 

computers. 

 

While working in the ENIAC project, John von Neumann wrote a memo proposing a 

stored-program computer called EDVAC (Electronic Discrete Variable Automatic 

Computer), which has served as the basis for the commonly used term von Neumann 

computer. There have been many significant developments that led to the development 

of the first IBM computer, the 701. In those days, many people used to believe that the 

market for computers was very limited (“I think there is a world market for maybe five 

computers.” Thomas Watson, 1943). IBM quickly became the most successful 

computer company. In 1971, the first processor on a chip (Intel 4004) was developed, 

which led to more powerful 8/16/32-bit high performance microprocessors and the rise 

of the RISC processor in the 1980s.  

 

1.2. Trends in Cost, Power and Performance 

  

Cost is not important for high-end servers where companies are willing to pay a heavy 

price for servers that can provide required level of throughput (e.g., number of emails 

scanned per second), scalability and dependability. However, processor/memory cost is 

a major concern for personal computers as well as for many commodity embedded 

systems. A low-end embedded processor costs $1-$10, a low-end processor for personal 

computer costs $50-$100, whereas a processor for server costs $200-$10000. Similarly, 

cost for the memory is determined by the size and performance. When large number of 

items are manufactured, the price goes down over a period of time due to improved 

yield (manufacturing cost goes down).  

 

Although, performance was the most important aspect of designing computer 

architecture until 2000, power and energy (energy = power x time) are the prime 

considerations these days. Energy requirements directly translate to battery life. 

Therefore to improve battery life, it is important to design an architecture that delivers 

the required level of performance while minimizes energy requirements. Even if a 

personal computer or server is connected to wall power, it is still important to reduce 

energy requirements since higher power dissipation causes the system temperature to 

rise, which in turn significantly affects the reliability and lifetime of the system. 
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Performance is a key design consideration. Prior to the mid-1980s, processor 

performance growth was about 25% per year and largely driven by technological 

advances. In 1965, Gordon Moore predicted that the number of transistors that can be 

integrated on a die would double every 18 to 24 months i.e., grow exponentially with 

time. Exponential growth in transistors leads to dramatic performance improvement. 

From 1986 to 2002, the increase in performance growth is about 52% primarily due to 

advanced architectural designs [Hennessy and Patterson, 2007]. Since 2002, focus has 

shifted to reducing power dissipation while maintaining 20% performance growth. Use 

of multiple cores enabled designers to improve performance while maintaining 

power/energy constraints. 

 

1.3. Amdahl’s Law 

 

Amdahl‟s law is an important mechanism to measure performance gain by improving 

certain portions of a computer. The law states that the impact of improving the 

performance of a specific component on overall computer depends on the fraction of the 

time the faster component can be used. In other words, if a component is rarely used, 

even if we improve it significantly, it will not significantly improve the overall 

performance. Amdahl‟s law can be described using the following equation, where I is 

the enhancement (improvement) of a component that is used f  (fraction) percentage of 

time, and Speedup implies the overall speedup (ratio between overall execution time 

before the improvement over the overall execution time after the improvement). 

 

I

f
f

Speedup





)1(

1
 

 

Consider a processor that can perform scientific computation as well as image 

processing. The designers have improved the image processing part by 10 times (i.e., 

10I  ). In the given application, image processing is performed 20% of the time 

( 0.2f  ). Note that the performance of scientific computation is not affected due to 

this enhancement. We can compute the overall speedup = 

  1 / 1 0.2 0.2 /10 1 / .82 1.22    . Although, the image processing part is improved 

10 times, the overall speedup is only 22%. 

 

1.4. The Big Picture 

 

Figure 1 shows a broad overview of computer architecture where a processor is 

connected to memory using a bus. The processor also has a cache for performance 

improvement. In general, many input/output (I/O) devices are connected to bus using 

I/O controllers. In this figure, external secondary storage (hard disk) and computer 

display is connected to processor via bus. 

 

It is important to understand how this computer architecture relates to program 

execution? A compiler translates a high-level description of a program (e.g., written in 

C, Java or C++) into machine representation (binary code). This binary code is stored in 

hard disk or loaded using a USB drive.  
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During execution processor fetches the suitable binary code (instructions and data), 

performs the required computation and stores the results back in memory. At the end of 

computation, these results will be transferred to I/O devices such as stored back in hard 

disk and/or displayed in the computer display. 

 

 
 

Figure 1. An overview of computer architecture 
 

2. Instruction-Set Design 

 

We communicate with others using some natural language such as Bengali, Chinese, 

English, French, German, Spanish, and so on. However, to communicate with processor 

(computer‟s hardware) we need to use computer‟s language, called instructions. The 

vocabulary of commands (instructions) is known as instruction-set. 

 

2.1. Instruction Types 

 

Each processor supports different types of instructions. For example, the MIPS 

processor [Patterson and Hennessy, 2008] supports four major types of instructions: 

arithmetic, logical, data transfer, and decision making. Arithmetic instructions 

correspond to arithmetic computations such as addition, subtraction, multiplication and 

division. Similarly, logical instructions are designed to support logical computations 

such as shift, and, or, nor etc.  

 

The data transfer instructions enable transfer of data between processor and memory 

using operations such as load and store. Finally, the decision making instructions allow 

conditional branches and unconditional jumps. Although different processor supports 

different types of instructions, all of them cover the similar set of computations to 

ensure that any high-level program can be mapped by a compiler using the instructions 

supported by that processor. For example, the ARM [ARM] processor supports different 

instruction types such as data processing and flow control instructions.  

 

2.2. Operations and Operands 

 

Consider a simple MIPS-like arithmetic instruction “add a, b, c”. This instructs the 

processor to add two variables b and c and put their sum in a. This instruction has four 

parts. The first part (“add”) is known as operation and the next three parts are termed as 
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operands. In this case, the first operand (“a”) is a destination operand whereas the last 

two operands (“b” and “c”) are source operands. Source operands provide the input 

values whereas the destination operand stores the result of computation performed by 

the respective operation. 

 

A program, written in high-level language, may use many variables to describe the 

computation. However, in computer hardware the number of operand locations is 

limited – these hardware locations are called registers. For example, MIPS arithmetic 

instructions can choose operands from 32 32-bit registers including $s0–$s7, $t0–$t9, 

$zero, $a0–$a3, $v0–$v1, $gp, $fp, $sp, $ra and $at. Figure 2a shows the general 

instruction format (called assembly) for arithmetic instructions. Figure 2c shows a 

simple addition statement in C language (a popular high level programming language) 

and its corresponding MIPS assembly in Figure 2d.  

 

The assembly assumes that the variable A, B and C are mapped to registers $s1, $s2 and 

$t0, respectively. Interestingly, the computer hardware does not even understand 

assembly instruction. It only understands binary („0‟ and „1‟) representation of this 

assembly. As a result, each processor describes the binary format for each type of 

instruction. For example, the binary format for arithmetic instruction is shown in Figure 

2b where the first and last field is 6 bits and the remaining fields are 5 bits. Figure 2e 

shows the binary representation of the assembly shown in Figure 2d.  

 

 
 

Figure 2. An example statement and corresponding MIPS assembly and binary 

representation 

 

The assembly as well as binary formats are different for different types of instructions. 

For example, to load (transfer) data from memory location a sample assembly would be: 

lw $s1, 20($s2). The operand “lw” implies that it is loading a word from memory. The 

destination operand is register $s1, and the source memory location (address) is 

“$s2+20”. Note that data transfer instructions uses register locations as well as memory 

locations, whereas arithmetic instructions uses only register locations. The logical 

instructions are similar to arithmetic instructions. For example, and $s1, $s2, $s3 
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performs a bit-by-bit logical and operation of $s2 and $s3 and places the result in $s1. 

There are two types of decision making instructions. The conditional branch instructions 

(such as “beq $s1, $s2, 25”) checks whether a condition is true (whether $s1 is equal to 

$s2 in this case) and if yes it jumps to the branch target. The unconditional branches 

(such as “j 2500”) directly jump to the branch target. 

 

2.3. Representation of Numbers 

 

The computer hardware understands only binary values. Therefore, when any value is 

provided in the assembly, it needs to be translated to binary representation by assembler 

(last stage of compiler). High-level languages differentiate between positive and 

negative numbers by using a negation operator („–‟). However, the computer hardware 

follows different representations for signed and unsigned numbers. Given a 32-bit 

location, it can represent unsigned values between 0 and 2
32

 – 1. However, the signed 

numbers can be represented by sign-magnitude, 1‟s complement or 2‟s complement. 

Typically, signed binary numbers use 2‟s complement representation. In 2‟s 

complement representation, positive numbers are same as it‟s unsigned binary 

counterpart whereas the negative numbers requires 2‟s complement computation. For 

example, in a 4-bit representation, the unsigned binary for 3 is 0010. In signed 4-bit 

representation, +3 is also 0011, where –4 is 1101.  

 

The representation of floating-point numbers follows IEEE 754 floating-point standard 

[IEEE 754]. It allows 32-bit single precision (excess-127) or 64-bit double precision 

(excess-1023) representations. In both forms the binary is divided in three parts. The 

first bit is to indicate the sign („0‟ for positive and „1‟ for negative). The next 8 bits (11 

bits for double precision) represent exponent whereas the last 23 bits (52 bits for double 

precision) are used to represent the mantissa. For example, +2
6
 x 1.01000111001 has a 

positive sign (i.e., „0‟). In excess-127 representation the exponent would be 133 i.e., 

“10000101”. Extra 0s can be added at the right to create 23-bit mantissa of 

“01000111001000000000000”. Therefore, 32-bit representation of the number +2
6
 x 

1.01000111001 is “0 10000101 01000111001000000000000”. 

 

2.4. Computer Arithmetic 

 

Once a processor receives an arithmetic instruction, it needs to read the source registers 

and perform the required computation. For example, if it receives “addi $s1, $s2, -6” it 

needs to perform addition of the content of $s2 with -6. Note that “addi” is an add 

operation same as “add” except that it directly uses the value of one of the source 

operands (known as immediate value). Let us assume that register $s2 has a value of 7. 

Therefore, we need to computer 7 + (-6). Figure 3 shows the addition where the 

numbers are first converted into its 2‟s complement 8-bit representation, and then 

addition is performed in a bit-by-bit fashion from right to left. Adding „0‟ with „1‟ 

produces sum as „1‟ and carry as „0‟, adding „1‟ with „1‟ produces sum as „1‟ and carry 

as „1‟. The carry is passed to the next digit to the left, exactly the way we add decimal 

numbers. The result is +1. In general, the computation needs to keep track of overflow 

when adding two positive or two negative numbers. If the carry output at the last bit 

(leftmost bit) is „1‟, it implies an overflow in case of 2‟complement addition. Certain 

instructions ignore overflow, whereas other instructions uses it as an exception and 
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performs appropriate corrective action. Subtraction is a special case of addition 

since  A – B A –B  . In other words, addition is performed by treating the second 

one as a negative number i.e., computing the 2‟s complement of the second number. 

Floating-point addition is performed in a similar manner except that first decimal points 

are aligned (exponents are adjusted) followed by addition and normalization of result 

and rounding, if necessary.  

 

 
 

Figure 3. Addition using 2‟s complement arithmetic 

 

Other arithmetic operations are also performed in a similar fashion using binary values. 

For example, Figure 4a shows multiplication of two 4-bit binary numbers (8 x 3 = 24). 

The 8-bit result is produced by padding „0‟s on the leftmost side. Similarly, Figure 4b 

shows how 8 is divided by 3 to produce 2 as quotient and 2 as remainder.  

 

 
  

Figure 4. Multiplication and division of binary numbers 

 

3. Processor Design 

 

As mentioned earlier, the memory holds the program (sequence of instructions) and 

these instructions are executed by the processor. Figure 5 shows a simplified overview 

of the five major activities in the processor when executing an arithmetic instruction. 

The program counter (PC) contains the address of the instruction that needs to be 

fetched from the memory. Next, the instruction (32-bit binary) is decoded to understand 

its different parts, operations and operands. The source operands of the instruction are 

read from registers. Next, the intended computation (execution) is performed. Finally, 
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the result is stored back in the destination register. When load (store) instruction is 

executed, the data is read from (written back to) memory. 

 

 
 

Figure 5. Five major activities during instruction execution – i) fetch an instruction from 

memory pointed by PC, ii) decode to figure out the operation and operands, iii) read 

thesource operands, iv) perform the required computation, and v) write back the result. 

 

3.1. Design of Datapath and Control 

 

To build the processor hardware, the designers need to build two types of components 

(units): datapath units and control units. The datapath units are designed to operate on 

data or hold data. Instruction/data memories, registers and Arithmetic Logic Unit (ALU) 

are examples of datapath units. The control units, also known as controllers, are 

responsible for generating required control signals. Based on the current instruction the 

controller needs to activate the intended computation in the ALU. Assume that an ALU 

supports 16 types of arithmetic and logical operations. Therefore, the ALU controller 

needs to generate 4-bit (2
4
 = 16) control to activate the required operation. For example, 

„0000‟ is generated for „addition‟, „0001‟ for subtraction etc. We also need a control 

signal to identify whether a register is being read or written (e.g., „0‟ means read and „1‟ 

means write). If there are 32 registers, the register address will be 5-bits (2
5
 = 32) to 

indicate which specific register needs to be read or written. For example, „00000‟ 

implies the first register ($s0), „00001‟ implies next register ($s1), and so on. Table 1 

shows a sample set of data and control signals for an example instruction during 

instruction fetch, decode, operand read, ALU operation, and writing result. Assume that 

$s2 and $s3 have values 3 and 4, respectively, represented in four bit representation. 

The “Function” field represents the values of the last six bits of the 32-bit binary that 

represents the opcode for the MIPS arithmetic instruction. Note that x‟s indicates that 

the values are either not known or not required at that stage. For example, during 

register write only three sets of signals are important: register read/write signal should 

be 1 (to indicate write), register address bus should be loaded with register address for 

$s1 (i.e., 00001), and the result should be ready. In this example, operation and operand 

addresses become available after instruction decode, the source operand values becomes 

ready after operand ready and result is available after the execution. Similarly, control 

signals are required to activate read and write from memory. 
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Function 

(opcode) 

Data Values Control Signals 

Source 1 Source 2 Destination ALU 

operation 

Register 

Read/Write 

Address Value Address Value Address Value 

Inst. Fetch xxxxxx xxxxx xxxx xxxxx xxxx xxxxx xxxx xxxx x 

Inst. Decode 100000 00010 xxxx 00011 xxxx 00001 xxxx xxxx x 

Operand Read 100000 00010 0011 00011 0100 00001 xxxx xxxx 0 

Execution 100000 00010 0011 00011 0100 00001 0111 0000 x 

Write Result 100000 000010 0011 00011 0100 00001 0111 xxxx 1 

„x‟ indicates unknown/undefined/don‟t care values 

 

Table 1. Sample data and control signals for an example instruction “add $s1, $s2, $s3” 

 

- 

- 

- 
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