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Abstract. Data commonly changes over time. Algorithms for anomaly
detection must therefore be adapted to overcome the challenges of evolving
data. We present SDOstream, a distance-based outlier detection algorithm for
stream data that uses low-density models, therefore operating in linear time
and avoiding the limitations of sliding windows and instance-based methods.
SDOstream is designed to ensure a good integration in applications, hence
the definition of “outlier” is not predetermined, but can be decided by the
application based on distances to representative point locations. We describe
the algorithm and evaluate algorithm performance with several datasets.

1 Introduction

Dynamic data shows peculiarities that reduce the efficacy of traditional machine
learning. The main challenge is often referred to as concept drift, addressing the
evolution of the structures that underlie data. Such temporal changes progressively
downgrade the validity of machine learning unless it is adaptive.

Some alternatives to implement adaptiveness are re-fitting or updating models.
However, anomaly (or outlier) detection is traditionally faced using instance-based
methods like k-neighborhood (KNN) or LOF [1]. As general purpose options, such
methods have not been overcome yet in terms of accuracy [2]. On the other hand,
their main drawback is the need to consider all previous data for every new data
point, a fact that significantly slows down the analysis. In stream data, this problem
is partially alleviated by using a sliding window (SW), which can be considered
a memory length. Moreover, outlierness is strictly defined based on non-intuitive
parameters, many times being arbitrarily adjusted.

We introduce SDOstream, a simple and elegant outlier detection algorithm for
evolving data streams, which operates in O(n) in the number of processed data points.
SDOstream builds a model for the data and, hence, avoids the need to store all points
in a SW. SWs define a cut-off time, before which data points are not remembered.
In SDOstream, impact of past data points is of exponential shape. Hence, it has
the potential to retain shapes for a much longer time period. Therefore, whereas in
SWs memory length frequently has to be decided based on algorithm limitations, in
SDOstream it is defined only based on the application.

Furthermore, in SDOstream the final definition of outlierness is established based
on space distances and representative point locations, providing an intuitive and
interpretable decision process.
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2 Related Work

Most methods based on SWs share a strict definition of outlierness [3]:

Let S be a set of objects, obj an object of S, k a positive integer, and R a
positive real number. Then, obj is a distance-based outlier (or, simply, an
outlier) if less than k objects in S lie within distance R from obj.

AbstractC [4], Exact- and Approx-STORM [3] and the COD family [5] adopt this
definition, mainly differing in their approaches to reduce processing time, e.g., using
sampling (Approx-STORM) or micro-clusters (MCOD).

Conceptually different from the previous methods, AnyOut [6] uses a ClusTree
model, relying on hierarchical clustering to summarize the data into condensed,
evolving clusters. This strategy might face strong complications when data does
not match obvious cluster schemes. Also using models, methods based on Random
Forests (e.g., [7, 8]) are very powerful due to their speed, robustness, and feature
independence. Several approaches require labeled training data or simply establish
outlierness based on estimations of the data mass. xStream [9] projects data into
subspaces to avoid performance degradation due to high-dimensionality and deploys
half-space chains to obtain a density-based outlierness score.

In this paper, we extend the Sparse Data Observers (SDO) outlier detection
algorithm [10]. SDO builds a low-density model for a dataset by randomly sampling
k∈N points from it, which are termed observers. To avoid using outliers as observers,
the set of observers is cleaned based on a quality metric. An outlier score is obtained
as the median distance to the x∈N closest observers.

Compared to the above methods for streaming data, SDOstream benefits from
a model as AnyOut, but avoids the drawbacks of using clustering. It is not limited
by a SW, so it avoids suffering from short-sightedness (Fig. 1). It operates in linear
time like Random Forests, but, by keeping space locations in the model, its definition
of outlierness preserves data shapes instead of solely the trained model.
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Fig. 1: p is an outlier for the SW, but an inlier for SDOstream.

3 SDOstream

The SDO algorithm can be adapted for streaming operation in a very natural way. We
can adopt the usage of a fixed-size set of data points as observers, representing a model,
consider a fixed-size fraction of observers as idle and compute an outlierness score as me-
dian of distances to the x closest active observers. Streaming operation requires perma-
nent adjustment of the model to new data. Hence, we introduce additional techniques
to update observer quality metrics and observers themselves as new data arrives.
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Table 1: Notation.

f ∈(0,1) Fading parameter.
k ∈N Number of observers.
x ∈N Number of neighbors to consider.
qid ∈(0,1) Fraction of observers to consider idle.

Ω Set of observers.
N ⊂Ω Set of x closest observers.
Na ⊂Ω Set of x closest active observers.

Pω ∈R+ Observations by ω.
Hω ∈R+ Observer ω’s age.
Pω =Pω/(1−fHω) Average observations by ω.

iLAO ∈Z Index number of observer added most recently.

Parameters. The most important parameter of SDOstream is f ∈ (0,1), the
fading parameter. f controls how quickly the model is able to adjust to newly observed
data clusters and, on the other hand, how stable the model is with respect to noise in
the processed data. It is beneficial to write f as f=exp(−T−1) with a time parameter
T ∈R+, which in its function can be best understood as similar to the window size
of SW approaches. Furthermore, k∈N denotes the model size, i.e. the number of
observers to use in stationary operation. Intuitively, k should be increased for highly
diverse data. Finally, qid∈(0,1) denotes the fraction of observers to ignore for outlier
scoring (called idle observers) and x∈N is the number of nearest observers to consider.
The reader is referred to [10] for a discussion of how to choose these parameters.

Observer idle-active split. In SDO, observations Pω ∈N for an observer ω,
i.e. the number of data points for which ω is contained in the nearest-observers set,
constitutes a quality metric, which is used as basis for determining the set of active
observers. To adjust Pω to newly seen data, while being able to scale to arbitrary
time scales, we deploy an exponential moving averaging approach. In particular, we
keep track of an exponential moving average Pω∈R+ of observations by ω. Hence, for
each processed data point, we set Pω←fPω+1 if it belongs to the nearest-observers
set of the current data point, and Pω←fPω if it does not. We use Pω to distinguish
between active and idle observers, i.e., the qid-fraction of observers with the lowest
Pω values are declared idle.

Replacing observers. To retain an up-to-date model, it is necessary to regularly
replace outdated observers by new data points. It appears reasonable to select
observers for removal based on the minimization of a quality metric like Pω. However,
new observers have a lower Pω than established observers. While this is intended
for the idle-active split, selecting observers for removal based on Pω is ill-fated, as it
would lead to new observers being replaced constantly. Instead, an average observer
quality Pω∈R+ is required, which sets Pω in relation to the maximum value it can
assume. Assume that data points arrive with a constant inter-arrival time (IAT)
of δ ∈R+. Then, after a time H ∈R+, i.e. after bHδ c data points, the maximum

Pω can have assumed is 1+fδ+...+fb
H
δ cδ= 1−f(bH

δ
c+1)δ

1−fδ ≈ 1−fH
1−fδ . Hence, Pω/

1−fH
1−fδ
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can be used as a metric for selecting the observer to replace. Since we are only
interested in comparing observers, the constant factor 1−δ can be omitted, obtaining
Pω =Pω/(1−fH). Clearly, real-world IATs are not constant. However, it can be
shown that the provided Pω remains valid also for non-constant IATs, given that
the average IAT does not change at a time scale of model adjustment time.

Putting the blocks together. Algorithm 1 depicts SDOstream. Inputs consist
of a data point vi∈Rm and the corresponding time stamp ti∈R. In line 1, the x
closest observers are determined from both sets of active and idle observers. Hence,
the set of observers Ω is queried together with Pω to determine the current idle-active
split and find the sets N and Na, containing the x closest observers and x closest
active observers, respectively.

In lines 2-3 observer quality Pω and age Hω of all observers are adjusted and,
subsequently, the model itself. For this purpose, in line 4, the probability of sampling

a data point to be used as observer, is proportional to
∑
ω∈NPω∑
ω∈ΩPω

to support an even

Pω and, hence, a representative model. Furthermore, note that during initial start-up
using all available data points as observers might lead to a very poor model due
to temporal dependence in the data stream, e.g. if the k first seen data points all
belong to the same cluster. Hence, also during start-up, observers are added with
a finite rate, which is gradually decreased to quickly approach the desired model size
on the one hand, and sample over a large enough time period on the other hand. In
stationary operation data points are then sampled with a rate of k/T=−klnf, i.e.
within a time T=−1/lnf all observers are replaced one time on average.

Finally, in line 11, outlier scoring takes place and, similar to SDO, is performed
by computing the median distance to the x closest active observers.

3.1 Time and Space Complexity

If n denotes the number of processed samples, we show that SDOstream has space
and time complexity O(k) and O(nlogk), respectively. Indeed, considering solely de-
pendence on n, space and time complexity areO(1) andO(n), as SDOstream operates
with a fixed-size model. This benefit allows scaling to data streams of arbitrary size.

Algorithm 1 SDOstream: Processing a data point (vi,ti).

1: Find x closest observer sets N and Na
2: Set Hω←Hω+(ti−ti−1) and Pω←fti−ti−1Pω ∀ω∈Ω
3: Set Pω←Pω+1 ∀ω∈N
4: if Ω empty or r≤−ln(f)k

2

x

∑
ω∈NPω∑
ω∈ΩPω

ti−tiLAO

i−iLAO
with r∈R [0,1] then

5: if |Ω|=k then
6: Remove arg minω∈ΩPω from Ω
7: end if
8: Add vi to Ω
9: Set iLAO←i,Pvi←1 and Hvi←0

10: end if
11: return medianω∈Na(‖ω−vi‖) as outlier score
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Furthermore, Algorithm 1 suggests O(nk) run time when considering also model
size k. However, Algorithm 1 mainly aims at simplicity of presentation and for highly
dynamic, diverse streams, sub-linear run time with respect to k might be desired.

To obtain run time in O(nlogk), observers can be stored in a data structure for
efficient nearest neighbor search like an M-Tree [11], for which the authors observed
logarithmic dependence of tree size. Tree-based structures can be used for keeping ob-
servers ordered with respect to Pω. Hence, both nearest observer search and idle-active
split are possible in O(logk). Discovery of the observer with lowest Pω takes O(k) and
is required every T

kδ th sample on average. Hence, SDOstream takes O(nlogk+ kδ
T nk)

amortized time. In the primary case of high-rate settings, i.e., δ/T→0, total space
and time complexity thus are O(k) and O(nlogk), respectively.

4 Performance Evaluation

We used real and artificial data to study SDOstream, using L2 distance and deploy-
ing genetic algorithms for tuning hyperparameters for all studied algorithms. To
investigate the temporal behavior for transient events like suddenly emerging clusters,
we crafted a synthetic dataset with 100,000 data points, 6 clusters and 2% outliers
using MDCGen [12]. We removed data points for two clusters, so that the clusters
appear after the 50,000th data point. On the right side, Fig. 2 shows the ensemble
ROC-AUC and the average sampling rate computed over 10,000 runs of SDOstream
with T=10,000 and appropriately randomly permuted datasets.

As shown, the clusters are first classified as outliers, but after 1,000 ( T10) to 2,000

(2T
10 ) data points, performance steeply increases, returning to stationary performance

after about 4,000 (4T
10 ) data points. As a side effect of the factor

∑
ω∈NPω∑
ω∈ΩPω

, the

sampling rate is affected by the event to a very small extent.
On the left side of Fig. 2 we provide a comparison of performance results for

the KDDCup’99 dataset, which contains 4.9 million data samples of streaming data.
The window size is used as time parameter for xStream and SW-KNN, and T is
used for SDOstream. To evade influence of the convergence phase, we only used
the second half of returned outlierness scores for computing the ROC-AUC for both
hyperparameter search and performance evaluation. As depicted, SDOstream exhibits
very good performance in streaming scenarios, retains low processing time and shows
to be stable over a wide range of different T .
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Fig. 2: Performances for the KDDCup’99 dataset (left) and behavior for emerging
new clusters at t=50,000 with synthetic data (right).
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Table 2: ROC-AUC scores for static datasets.
SDOstream SW-KNN xStream SDO KNN LOF iForest

Annthyroid 0.627 0.594 0.522 0.610 0.644 0.674 0.807
Cardiotocogr. 0.815 0.808 0.810 0.818 0.784 0.810 0.804
PageBlocks 0.904 0.903 0.923 0.910 0.904 0.943 0.921

Since only few datasets are established containing streaming data, and to provide
a better comparison with popular algorithms, Table 2 compares SDOstream also
against non-streaming algorithms using static datasets from [2], again evaluating
stationary performance by considering the second half of returned scores. Here,
SDOstream shows performances comparable to established outlier detection methods.

Concluding, SDOstream proved to be a fast, versatile outlier detection algorithm,
demonstrating its strengths particularly when facing substantial data volumes by
creating a representative model of the data. While providing an intuitive outlierness
definition, it is flexible and allows memory length to be set solely based on the
application’s requirements.
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