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Abstract. This work presents a weightless neural network model that
learns multiple elementary particle collision phenomena. Having the AT-
LAS Higgs Boson Machine Learning Challenge as the target dataset, a
couple of abstractions were developed in order to achieve a fast and sim-
ple algorithm that would otherwise require much more sophisticated tools.
Experimental results over the Higgs Boson τ -τ decay and the B+ meson
decay shows that the WiSARD n-tuple classifier provide a generic and
lightweight method for studying a broad range of particle decay modes.

1 Introduction

The distinction of high-energy particle collision events between signal and back-
ground is a real-time application in modern physics with an increasing agility
demand. The most common computational models available for this class of
problems may spend plenty of time on the training process [5], which makes it
interesting to explore the speed of Weightless Neural Models[4] in this situation.

Particle physics arise as an important subject, mainly as a path to under-
stand the very beginning of our universe. Also known as High-energy Physics,
this research field is concerned about understanding the behaviour inherent to
the elementary entities that constitute matter and radiation. In this context, sci-
entists from all around the world meet at the European Organisation for Nuclear
Research (CERN ), where most of the experiments take place.

A single glimpse on the data retrieved by CERN ’s detectors provides a hand-
ful of information to deal with. For instance, during the lapse of a second inside
the particle accelerator, about 600 million events take place inside ATLAS ex-
periment, generating approximately 600 TB of raw data, considering that each
event accounts for 1 megabyte[10].

What happens, in fact, is that most of the events observed by the detec-
tors are not interesting to the goals of a specific experiment, thus much of the
information collected must be filtered as soon as possible in order to handle
mostly relevant data for a more tactful analysis. As having huge amounts of
information is, at the same time, the bless and the curse, this work introduces
the application of a weightless neural network model as an agile approach to tell
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signal from background when learning from and classifying multiple inputs read
from CERN ’s experimental machinery.

1.1 WiSARD

WiSARD (Wilkie, Stoneham & Aleksander Recognition Device) is a weight-
less neural network model based on Bledsoe and Browning’s n-tuple classifier
[1]. WiSARD is well-know for it’s fast operation (training and inference) and
straightforward hardware implementation. Weightless neural network models
have been around for six decades now, and its early applications were usually
found within the computer vision context[2]. Despite that, interesting and suc-
cessful applications can now be found in many other areas, such as in finance[12]
and linguistics[13].

The classification process basically consists on writing in RAM units during
the training phase, and then reading their contents to know which group of
memories (discriminator) is the most familiar with the pattern presented, thus
telling which class the input belongs to. For greater detail, each RAM unit is
addressed by a given number of bits, randomly mapped from the binary input
pattern in sight. This mapping is defined before the training phase, and remains
the same while the system is being used either for training or classifying data.

In order to recognise a pattern, the system counts how many RAMs are ac-
tivated, i.e., contain at least a ’one’ written in the accessed address, at each dis-
criminator. The discriminator that holds the greater number of RAMs activated
is considered as the associated class. Like most Machine Learning algorithms,
this one is also prone to the effects of over-training, because after many patterns
presented, it is probable that most of the RAM addresses are likely to have been
written.

In this context, there is a technique called bleaching[4][15], that consists
into raising the RAM activation threshold whenever two classes gather similar
scores, which is basically a tiebreaker. The confidence rate γ should be defined
in order to know when to use the bleaching process, which is disable by default.
Basically, given that the winning class has r1 RAMs activated and the second has
r2, another classification round takes place every time the inequality 1− r2

r1
< γ is

satisfied. What happens this time is that RAM addresses with too few accesses
are not taken into account.

2 Detecting elementary particles

The raw data collected by the detectors is usually turned into a synthetic form
before algorithms start distinguishing its samples. Its attributes may account
for the mass of the particles and also measures on their trajectory. This kind of
study often rely on datasets with a few hundred thousands of events which, in
fact, doesn’t even correspond to a whole second under the collision beam.

There are many datasets available with similar goals that keep being released
by the CERN as more studies are developed. One of these releases contains
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observations from the B+ meson decay at the LHCb experiment[3]. It displays
a very similar set of attributes in comparison with the Higgs Boson contest from
ATLAS.

In both cases, the main struggle with the weightless neural approach comes
from the discrete nature of the algorithm in contrast with the continuous profile
of the observations. At this point, there is a representation problem, which
can be tackled by many different encoding strategies[9]. With this in mind, the
thermometer concept will be briefly introduced: As the name speaks for itself,
this method consists in filling with 1’s a vector initialised with 0’s, in a manner
that is proportional to the input received. For simplicity, we shall consider that
the input lies on the interval [0, 1]. To achieve this condition, one could choose
to build the thermometer input by looking at the sample and normalise the data
by its linear placement between the minimum and maximum records on X.

This, in fact, is not a good idea since the training sample might not be as wide
as the validation one. Also, it is known that most attributes follow (usually non-
symmetric) bell-shaped distributions. With this fact in mind, it would be the
next step to encode the input after evaluating it through some sort of non-linear
function f(x;λ) whose parameters λ are defined based on the characteristics of
the sample.

The most straightforward fashion to achieve this is by choosing f to be a
probability density function (PDF) or a cumulative distribution function (CDF).
It’s important to notice that when looking at a CDF one can say that its non-
decreasing feature is a clear advantage while encoding a given pattern.

In general, Φk is given directly by the choice of the function fk, e.g. if we

choose fk = e−
(x−µ)2

2σ2 , the normal distribution PDF, we should have the sample
mean and variance as usual and thus, λk = (µ, σ2). If we had chosen the CDF of
the normal distribution instead, we would still have the same Φk and the same
λk.

As the presented procedure suggests, choosing fk to correctly describe the
behaviour of the event variables is not as important as finding well-suited ap-
proximations whose complexity is lower and computation is faster. To exemplify
this statement, consider the Crystal Ball Distribution[8]. This function is very
important since it is used very often to represent many different lossy processes
within High-Energy Physics. It is, in fact, complicated to express and compute
its values, and speed is one of our main concerns. Thankfully, Das (2016), built
a simpler approximation: The GaussExp[11]. Approximations like these are of
great help. We can go further and use a few other very simple distributions like
Maxwell-Boltzmann.

3 Experimental results

3.1 AMS score

The main measurement of model efficiency used during the ATLAS contest was
called AMS[7], given by:
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Setup:

For each attribute k, let λk ∈ Λ be the associated statistical parameters. Choose
fk(x;λk) such that fk : X ⊆ R × Λ → [0, 1] and mk ∈ N, the number of
thermometer bits to represent the attribute k. Choose also the corresponding
Φk, in order to initialize each λk ← Φk(X).

Training:

input ~x, ω evaluate ~z← ~f(~x;~λ) evaluate T← T~m(~z)

WiSARD[ω] ← T

Classifying & Validation:

input ~x, ω evaluate ~z← ~f(~x;~λ) evaluate T← T~m(~z)

WiSARD(T) == ω ?

Fig. 1: The Experiment Pipeline

AMS2 = 2

(
(s+ b+ br) log

(
1 +

s

b+ br

)
− s

)
where s and b stand for true signal and false signal respectively. br = 10 is
a regularisation constant. This was the most relevant score for validation and
comparison purposes within the Higgs Boson Challenge context.

3.2 Results analysis and discussion

After defining the whole model operation and its metrics, the respective exper-
iments were made and it’s results are as shown on table 1. Accuracy and, of
course, the AMS were taken into consideration, as long as the time elapsed in
the process.

One will notice that its performance is not actually comparable to the winners
of the Kaggle Challenge. Although, further development and tuning of the model
may lead to a great advantage due to its much faster computer time. It is
expected, from this approach, to play a significant role in sweeping through the
multiple particle decay scenarios instead of diving deeper into a specific one or
just a few.
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Table 1: Higgs Boson τ -τ decay
Model WiSARD WiSARD WiSARD NN Ensemble[6]
RAM address bits [60 bits] [42 bits] [60 bits] -
Function Gaussian Many† Linear -
Accuracy 0.82 0.81 0.67 -
AMS 2.75 2.77 1.21 3.78
Time Elapsed 97.46s 47.68s 63.62s 3h20m?

↪→ Training 36.02s 22.83s 31.72s 3h
↪→ Classifying 61.44s 24.85s 31.90s 20m

† - Every attribute had its own function, in contrast with the Gaussian and
Linear approaches.
? - Time as measured by [6], in a machine with similar characteristics to the
one used in this experiment.

Following this observation, the experiment was made in a similar fashion with
the B+ meson decay [3], for a self-comparison purpose. The emerging hypothesis
was that the very same method could be useful for other related problems,
since the ”blurred”, non-selective approach behaved much like its ”sharpened”
counterpart. Indeed, when the same technique was applied to another decay
process, the behaviour seen before appeared once again, as presented on table 2.

Table 2: B+ meson decay
Model WiSARD WiSARD WiSARD
RAM address bits [60 bits] [42 bits] [60 bits]
Function Gaussian Many Linear
Accuracy 0.84 0.89 0.62
Time Elapsed 62.46s 31.79s 42.19s
↪→ Training 22.14s 15.22s 21.03s
↪→ Classifying 40.32s 16.57s 21.16s

This encourages us to think in a generalised approach, as refining the ”blurred”
forthcoming can lead to a solid sweeping method, to be designed for looking at
the event’s diversity resourcefully. Instead of being trained to recognise a single
kind of phenomena, weightless systems are able to be trained multiple times
effortlessly, temporarily specialising themselves as wanted, before looking at the
next goal.

4 Conclusion

This paper presented WiSARD as a lightweight online learning system for big
classification tasks. In the case under study, the Weightless approach did not
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perform as good as its weighted counterpart. However, as expected for Weight-
less Systems, WiSARD implementations got their job done much faster than
the NN Ensemble. Since most of the data generated at particle detectors can-
not be held long after gathering, it’s fundamental to learn from it very quickly.
An interesting follow up probably lies at a combined system with WiSARD and
NN. The Weightless Neural Network could be used as a primary approach, even
allowing a considerable rate of false positive events, and then the NN could work
with greater precision at already filtered data. That said, further investigation
is expected to better understand how to enhance WiSARD’s performance with
other techniques and also define its role in a major process, considering applica-
tions in other fields.
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Lima, Felipe M. G. França, Jonice Oliveira Evaluating Binary Encoding Techniques for
WiSARD, 5th Brazilian Conference on Intelligent Systems (BRACIS), 2016.
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