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Abstract. This paper considers the problem of function approximation
from scattered data when using muitilayered perceptrons. We present a
new algorithm based on the principle of Inputs Perturbation, improving
the generalization performances of backpropagation. In this algorithm, a
new parameter is introduced in order to allow a control of the complexity
of the fit. This parameter balances the bias versus the variance indepen-
dently of the smoothness of the inputs density estimate. The tuning
capacity of the algorithm is illustrated by experimental evidences.

1. Introduction

In this paper, we consider the training of a multi layered perceptron (MLP) for
solving a regression estimation problem. The sample Z, gathers independent
identically distributed observations drawn from the law of the random variable
Z=(X,Y): 2 =(2',y) eZ=2xYCR*x R, (i=1,...,90).

Solving the regression estimation problem is defined as minimizing a cost
function C over all function f € F, where F is the space defined by the
architecture of the net. The cost C is the expectation of a loss function I:

P =ArgminC(f) , C(f) = Ez [I(Y, f(X))] (1)
feF

In real-life applications, C' is usually not computable as the density pz of 7 is
unknown. An empirical computable cost is then minimized using the sample Z;.
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The classical empirical cost Cemp circumvents the estimation of pz, using
the uniform strong law of large numbers:

¢
Cemp(f) = Z_: 2)) , assuming ll_i_}rglo gcneajgchemp(f) -C(H=0 (2)

e\l»—d

Treating the regression estimation problem with a finite size sample by direct
minimization of (2) usually induces a poor generalization to previously unseen
patterns as the network overfits the data.

Numerous theoretical approaches, based on the Occam Razor Principle,
have been devised to overcome this problem.

Concurrently, some heuristics have been proposed to avoid overfitting, by
implicitly minimizing the complexity of the network. One of them, especially
attractive since without additive computational cost, consists in applying in-
puts perturbation (IP) to the network during training.

The first part of this paper introduces the IP technique and recalls some theo-
retical results to exhibit the need of a new parameter to control the complexity
of the function f*. The introduction of this parameter in the IP algorithm is
then developed and the complexity tuning capacity of this new algorithm is
illustrated on a simulated and a real data set.

2. Inputs perturbation

The principle of the IP algorithm is that the original training sample Z; can
be duplicated n fold by adding some noise 1 to the inputs #'. When n is
large enough, minimizing Cemp on the enlarged sample C’I p becomes virtually
equivalent to minimizing a mathematical expectation:

4
Cp(f) = B | 015, S + ) 3)

It has been shown experimentally that IP could improve dramatically the gener-
alization ability of MLP’s [6]. Theoretically, two frameworks permit to explain
this increase: Regularization theory and kernel density estimation. The scope
of this paper is limited to this last theoretical framework.

The distribution of the noise n is considered in [1], [4], and [6] as a kernel used to
approximate the distribution px of the inputs data . With this approximation
Px, the cost Cyp is equivalent to the true cost C:

. 14 14
Cir(h) = [, 3104 f(a) Ble) do with e =7 Yy (e-a) (@)
i=1 i=1

Where ¢ is the distribution of the noise.
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If the loss [ is quadratic, I(y*, f(=')) = (v — f(2'))?, and if the function space
in which f is chosen is not restricted to MLP’s, the optimal function frp
minimizing Crp is shown to be the Nadaraya-Watson smoother [2, 3]:

>_velx—=)
frp(2) = S— (5)

3 ¢le - =)

Using the IP algorithm with a quadratic loss function is equivalent use the
smoother frp as a target by minimizing:

Cir(f) = [, (f@) = firn(a))" x(s) da (6)

The MLP is used to approximate a smoother which has good convergence
properties for £ — oo or for dense inputs data. Its role is to supply a fit which
is computationally cheaper than frp to evaluate for large sample size £.

The tuning parameters of IP are the shape and the covariance matrix of
the noise density ¢. In the statistic community, the shape of the kernel used
by a smoother is usually considered to be unimportant compared to the choice
of its width, i.e¢ the covariance matrix [2]. Although asymptotic study provides
optimal kernels, for practical problems, the choice of the kernel has not much
influence on the mean squared error (1).

The width of the kernel may be thought as the inputs range for which the
outputs are correlated. It assigns a scale to locality in the fit. It may be
chosen a priori thanks to our prior knowledge of data, or a posteriori by cross-
validation or any other resampling procedure.

But, once the width is chosen, the complexity of the function frp is fixed.
When the noise amplitude is small compared to the inputs spacing, local means
punctual, and f;p is a bin smoother with as many bins as the number of distinct
inputs. When the noise amplitude is large compared to the inputs range, local
means global, and f;p computes the mean of the outputs. For a given sample,
locality forces the complexity of the smoother.

The modification of the IP algorithm we describe below consists in introducing
a new parameter which allows the control of the complexity of the smooth f
for any choice of the noise amplitude.

3. Complexity controlled inputs perturbation

3.1. Introducing the control parameter

The IP algorithm returns a function f* which minimizes the mean square
error when the density of the inputs is approached by the kernel estimator
px(x) given in (4). The complexity control of the function f* we propose
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here is executed by balancing the measures of fit and smoothness given by a
regularization term. Indeed, the cost Crp expressed in (3) can be decomposed
as follows:

i W — By [f(@' +m)])°

=1

£
By |30 (@ 40— B [f@ 4 0])| (D)

Y

Crp(f) ﬁ‘

By introducing a regularization (positive) parameter A in equation (7), we be-
come able to balance the fit represented by the first term versus the smoothness
constraint given by the second term. The tuning of A allows the adjustment of
the function complexity independently of the size of the neighborhood defining
the locality of the fit. Thus, we become able to compare different functions (of
same complexity) corresponding to different priors (size of neighborhoods).

The corresponding cost is as follows:

i (& — En [f(= +n)])”

i=1

=

Carp(f) =
i
+) E, l:% Z (f(z' +n) - Eq [f(=* +?7)])Zl (8)

This cost can also be decomposed in Cyp and the regularization term Q(f) as
follows:

Carp = Crp+(A-1)Q(f) 9)
. . v
with Q(f) = IE, %Z(f(w'#n)—lEn [f(w‘+n)])2] (10)

Minimizing the regularigation term Q of Ciyp, s rather tricky as it involves an
expectation.

The function f being an MLP, it is parameterized by its weight vector w. At
each step of the optimization procedure, the gradient of £2 with respect to w is
computed. We have thus to use a cheap estimate of IE;, [ f=* + 11)] . We choose
f('), which is the exact value for linear functions.

However f(x®) should not be modified when used as an estimate of
IE, [f(z® +n)]. We therefore consider the following approximation of Q:

with F? = f(z?) fixed (11)

¢
P 1 i i) 2
Qf) = By [z > (f@" +m) = FY)
) i=1
This estimate yields the following approximation of Ciyp in (8):

4
Carp ~ [Ey [% DA fE )+ (1)) Fi— )2, Fi = f(z') fixed (12)

i=1
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N.B: minimizing Cxyp in (12) should not be considered as a relaxation method
somewhere in between minimizing Cemp in (2) and Crp in (3). Indeed, if A = 1,
then Chrp = Crp, but if A = 0, then Cirp is not Cepp as it is a constant, in
this case, f is completely undetermined. The fact that in (12} Cyrp is not
minimized with respect to F* = f(a') is crucial.

The optimal solution firp of (12) is obtained in a similar manner to frp (5):
e .
S = (1= fup(eh)) oz — )

i=1

[
A Zgo(w — )
k=1

This expression of fyrp is convenient as the corresponding smoothing matrix
can easily be exhibited, thus allowing a the calculation of the number of degrees
of freedom df [3]. Assuming that Var[Y'|X] = o2, df is defined by the mean
error and bias on {z*}{_;:

farp(z) = (13)

f4 1< i N2
& = Sy [ZZ( - 1) - 3 2 @y =2 - )| 10

i=1

—

As for IP, training an MLP with (12) is equivalent to use fi;p as a target to
determine f:

Curl) = [, (f@) = fur(@)® Fx(z) dz (15)

With px defined in (4).

As for IP, this minimization is done without the computation of fiyp. If the
sample size £ is small, the computation of the function fy;p should be directly
carried out, but for large samples, the MLP is used as the “compiler” of firp
which becomes computationally expensive to evaluate.

We summarize below the sketch of the algorithm.

3.2. Algorithm

The algorithm for the complexity controlled inputs perturbation is simply using
the backpropagation {BP) algorithm. At each iteration of an on-line BP, the
following operations are carried out:

draw 77 from the noise distributiomn ¢

compute the outputs f(z') and f(z'+ )

compute error = (A f(z'+ n)+(1-X) f(=')— ¢

compute gradient = 2X (8f(z' + n)/0w) (A f(z' + n)+(1-1X) f(z') —y)
modify weights w = w — p gradient
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This algorithm can be seen as a Monte Carlo method for minimizing (15).
Note that, as for IP, it could be applied to any parameterized function f whose
parameters are determined by an iterative optimization algorithm. Compared
to IP, this algorithm is more expensive since two output computations are
required to compute the gradient. Nevertheless, the additional computing cost
1s small since evaluations of f are rapid.

4. Simulations

In this section, we illustrate the complexity tuning capacity of the algorithm
on a simple simulated data set and on the motorcycle data set given in [2]. The
noise 7 is Gaussian of zero mean and standard deviation o. For all smoothers,
the parameters ¢ and A are set in order to get a constant df (14).

Figure 1 shows the simulated data set example. It was created to zoom in the
different types of possible solutions fiarp.

15
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Figure 1: Simulated data set. Various smoother with 2 degrees of freedom:
light solid line: ¢ ~ 0.4, A = 10%; dashed line: ¢ ~ 3, A = 103, thick solid line:
o ~5, A=1; dashdot line: ¢ ~ 7, A = 10~!; dotted line: ¢ ~ 30, A = 10~3.

When ¢ is small compare to the inputs spacing, the fit is a (local) bin
smoother, with as many bins as df (here two). The bins limit is located at the
midway of the most distant input data.

When ¢ is large compared to the input range, the fit is a (global) polynomial
of degree (df — 1), here a regression line.

All situations between local and global fit are possible when o varies, thanks
to the tuning of A, df remains constant.

Figure 2 displays some solutions of the fit of the motorcycle real data set. This
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Figure 2: Motorcycle data set. Various smoother with 10 degrees of freedom:
left-upper corner: o =~ 0.25, A = 10%; right-upper corner: ¢ ~ 0.8, A = 10; left
lower corner: o >~ 3, A = 1071; right-lower corner: o ~ 21, A = 10~1°.

set 1s interesting for smoothing as the data are irregularly placed and that the
dispersion of the output is varying along the abscissa. The two extreme cases
(bin smoother and global polynomial fit) are represented.

For the bin smoother, the number of data points in each bin varies from one
to more than thirty points. The delimiter of the bins being the largest gaps in
the inputs data.

The computation of the residual of the four fits is a fair way of comparing
the candidate solutions as they all verify df ~ 10. The best result is obtained
for 0 = 3 and A = 0.1, where the resulting curve is very close to a spline fit.
The locality set by o corresponds to the data.

5. Conclusion

The introduction of a new parameter in the IP algorithm allows a more flexible
smoothing. The scale of locality (ranging from punctual to global), is set by
the width of the noise distribution. The new parameter balances then the fit
versus the smoothness of the regressor to control the complexity of the solution.
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Thus, it sets the number of degree of freedom of the smoother returned by the
algorithm. Moreover, the form of the optimal smoother permits to calculate
this number of degrees of freedom.

The computation :of the residuals obtained from different fits with same
number of degrees of freedom is then used to select the best prior (scale of
locality) according to data.

However, the evaluation of the optimal smoother becomes computationally
expensive for large samples. In this case, an MLP trained with the proposed
algorithm will converge towards the optimal smoother. It can be considered as
the smoother’s “compiled” version.

The Nadaraya-Watson smoother performs poorly in high dimensional inputs
spaces. In those spaces, neighborhood containing little data become large [2],
so that the smoother becomes close to a global averaging. The control of the
complexity carried out by our algorithm enables to build a smoother which
behaves well for irregularly spaced data. We suppose then that it behaves
correctly in high dimensional spaces. This conjecture should be checked on
high dimensional benchmarks.
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