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Abstract. The success of Support Vector Machine (SVM) gave rise to
the development of a new class of theoretically elegant learning machines
which use a central concept of kernels and the associated reproducing
kernel Hilbert space (r.k.h.s.). Exponential families, a standard tool in
statistics, can be used to unify many existing machine learning algorithms
based on kernels (such as SVM) and to invent novel ones quite effortlessly.
In this paper we will discuss how exponential families, a standard tool
in statistics, can be used with great success in machine learning to unify
many existing algorithms and to invent novel ones quite effortlessly. A
new derivation of the novelty detection algorithm based on the one class
SVM is proposed to illustrates the power of the exponential family model
in a r.k.h.s.

1 Introduction

Machine learning is proving increasingly important tools in many fields such
as text processing, machine vision, speech to name just a few. Among these
new tools, kernel based algorithms have demonstrated their efficiency on many
practical problems. These algorithms performed function estimation, and the
functional framework behind these algorithm is now well known [1]. But still
too little is known about the relation between these learning algorithms and more
classical statistical tools such as likelihood, likelihood ratio, estimation and test
theory. A key model to understand this relation is the generalized or non para-
metric exponential family. This exponential family is a generic way to represent
any probability distribution since any distribution can be well approximated by
an exponential distribution. The idea here is to retrieve learning algorithm by
using the exponential family model with classical statistical principle such as the
maximum penalized likelihood estimator or the generalized likelihood ratio test.

To do so the paper (following [2]) is organized as follows. First section presents
the functional frameworks and reproducing kernel Hilbert space. Then the ex-
ponential family on a r.k.h.s. is introduced and classification as well as density
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estimation and regression kernels based algorithms such as SVM are derived.
In a final section new material is presented establishing the link between the
kernel based one class SVM novelty detection algorithm and classical test the-
ory. It is shown how this novelty detection can be seen a an approximation of a
generalized likelihood ratio thus optimal test.

2 Functional framework

Definition 1 (reproducing kernel Hilbert space (r.k.h.s.)) A Hilbert space
(H,〈., . 〉H) is a r.k.h.s. if it is defined on IRX (pointwise defined functions) and
if the evaluation functional is continuous on H.

For instance IRn, the set Pk of polynomials of order k, as any finite dimensional
set of genuine functions are r.k.h.s.. The set of sequences `2 is also a r.k.h.s..
Usual L2 (with Lebesgue measure) is not because it is not a set of pointwise
functions.

Definition 2 (positive kernel) A function from X × X to IR is a positive
kernel if it is symmetric and if for any finite subset {xi}, i = 1, n of X and any
sequence of scalar {αi}, i = 1, n

n∑

i=1

n∑

j=1

αiαjK(xi, yj) ≥ 0

This definition is equivalent to Aronszajn definition of positive kernel.

Proposition 1 (bijection between r.k.h.s. and Kernel) Corollary of propo-
sition 23 in [3] and theorem 1.1.1 in [4]. There is a bijection between the set of
all possible r.k.h.s. and the set of all positive kernels.

Thus Mercer kernels are a particular case of a more general situation since every
Mercer kernel is positive in the Aronszajn sense (definition 2) while the converse
is false. One a the key property to be used here after is the reproducing ability
in the r.k.h.s.. It is closely related with the fact than in r.k.h.s. functions are
pointwise defined and the evaluation functional is continuous. Thus, because of
this continuity Riesz theorem can be stated as follows

∀f ∈ H∀, x ∈ X , f(x) = 〈f(.), k(x, .)〉H (1)

In the remaining of the paper the reproducing kernel Hilbert space, its dot prod-
uct and its kernel k will be assumed to be given. In this case the so called feature
space is given by the kernel and the dot product considered is the one of the
r.k.h.s..



3 Kernel approaches for the exponential family

3.1 Exponential Families

We begin by reviewing some basic facts of exponential families. Assume there
exists a reproducing kernel Hilbert space H embedded with the dot product
〈., .〉H and with a reproducing kernel k such that kernel k(x, .) is a sufficient
statistics of x. Then in exponential families the density IP(x; θ) is given by

IP(x; θ) = exp (〈θ(.), k(x, .)〉H − g(θ)) , g(θ) = log

∫

X

exp(〈θ(.), k(x, ; )〉H) dx.

Here θ is the natural parameter and g(θ) is the log-partition function, often
also called the moment generating function. When we are concerned with esti-
mating conditional probabilities, the exponential families framework can be can
extended to conditional densities:

IP(y|x; θ) = exp (〈θ(.), k(x, y, .)〉H − g(θ|x))
and g(θ|x) := log

∫
Y

exp(〈θ(.), k(x, y, .)〉H) dy.

g(θ|x) is commonly referred to as the conditional log-partition function. Both
g(θ) and g(θ|x) are convex C∞ functions in θ and they can be used to compute
moments of a distribution:

∂θg(θ) = Ep(x;θ)[k(x)] ∂θg(θ|x) = Ep(x,y;θ)[k(x, y)|x] Mean (2)

∂2
θg(θ) = Varp(x;θ)[k(x)] ∂2

θg(θ|x) = Varp(x,y;θ)[k(x, y)|x] Variance (3)

We will also assume there exists some prior on parameter θ defined by

IP(θ) =
1

Z
exp

(
〈θ(.), θ(.)〉H/2σ2

)

where Z is a normalizing constant. In this case, the posterior density can be
written as IP(θ|x) ∝ IP(x|θ)IP(θ).

3.2 Kernel logistic regression and Gaussian process

Assume we observe some training data xi, yi, i = 1, n. The binary classification
problem is when yi ∈ {−1, +1}. In this case we can use the conditional exponen-
tial family to model IP(Y = y|x). The estimation of its parameter θ using the
maximum a posteriori (MAP) principle aims at minimizing the following cost
function:

− log IP(θ|data) = −

n∑

i=1

〈θ(.), k(xi , yi, .)〉H + g(θ, xi) + 〈θ(.), θ(.)〉H/2σ2 + C

where C is some constant term. Note that this can be seen also as a penal-
ized likelihood cost function and thus connected to maximum description length
principle.



Since y ∈ {−1, +1} the kernel can be simplified and written as k(xi, yi, x, y) =
k(xi, x)yiy. based on that and using the reproducing property equation 1 (θ(xi) =
〈θ(.), k(xi , .)〉H)) we have:

g(θ, xi) = log
(
expθ(xi) + exp−θ(xi)

)

Then after some algebra the MAP estimator can be found by minimizing:

n∑

i=1

log
(
1 + exp2θ(xi)yi

)
+

1

2σ2
‖θ‖2

H

On this minimization problem, the representer theorem (see [5] for more details)
gives us:

θ(.) =
n∑

i=1

yiαik(xi, .)

The associated optimization problem can be rewritten in terms of α:

min
α∈IRn

n∑

i=1

log


1 + exp


2

n∑

j=1

yjαjk(xi, xj)




+

1

2σ2

n∑

i=1

n∑

j=1

yjyiαiαjk(xi, xj)

It is non linear and can be solved using Newton method. The connection is made
with the kernel logistic regression since we have in our framework:

log
IP(Y = 1|x)

IP(Y = −1|x)
=

n∑

i=1

yiαi,yk(xi, x) + b

and thus the decision of classifying a new data x only depends on the sign of the
kernel term. Note that the multiclass problem can be solve by using the same
kind of derivations assuming that k(xi, yi, x, y) = k(xi, x)δyiy.

3.3 2 class Support vector machines

Instead of the MAP estimate take the robust minimization criteria:

min
θ

n∑

i=1

max

(
0, ρ − log

IP(yi|xi, θ)

IP(−yi|xi, θ)

)
+

1

σ2
‖θ‖2

H

Together with the exponential family model, the minimization of this criterion
leads to the maximum margin classifier. Here again this can be easily generalized
to the multiclass problem.

3.4 1 class Support vector machines

The one class SVM algorithm has been design to estimate some quantile from
sample data. This is closely reated but simpler than estimating the whole den-
sity. It is also more relevant when the target application is novelty detection.



As a matter of fact, any point not belonging to the support of a density can be
seen a novel.

Back with our exponential family model for IP(x), a robust approximation of
maximum a posteriori (MAP) estimator for θ is the one maximizing:

max
θ∈H

n∏

i=1

min

(
IP0(xi|θ)

p0
, 1

)
IP(θ)

with p0 = exp (ρ − g(θ)). After some tedious algebra, this problem can be
rewritten as:

min
α∈IRn

n∑

i=1

max (ρ − 〈θ(.), k(xi , .)〉H, 0) +
1

2σ2
‖θ‖2

H (4)

On this problem again the representer theorem gives us the existence of some
coefficient αi such that:

θ(.) =

n∑

i=1

αik(xi, .)

and thus the estimator has the following form:

ÎP(x) = exp

(
n∑

i=1

αik(xi, .) − b

)

where coefficients α are determined by solving the one class SVM problem (4).
Parameter b represents the value of the log partition function and thus the
normalization factor. It can be hard to compute it but it is possible to do
without it in our applications.

Here again the one class SVM algorithm can be derived using the exponential
family on a r.k.h.s. and a relevant cost function to be minimized.

3.5 Regression

It is possible to see the problem as a generalization of the classification case to
continuous y. But in this case, a generalized version of the representer theorem
shows that parameters α are no longer scalar but functions, leading to intractable
optimization problems. Some additional hypothesis have to be made about the
nature of the unknown distribution. One way to do is to use the conditional
gaussian representation with its natural parameters:

IP(y|x) = exp
(
y θ1(x) + y2 θ2(x) − g(θ1(x), θ2(x))

)

with θ1(x) = m(x)/σ2(x) and$θ2(x) = −1/2σ2(x) where m(x) is the conditional
expectation of y given x and σ2(x) its conditional variance. The associated
kernel can be written as follows:

k(xi, yi, x, y) = k1(xi, x)y + k2(xi, x)y2



where k1 and k2 are two positive kernels. In this case the application of the
represented theorem gives a heteroscedastic gaussian process (with non constant
variance) as the model of the data, associated with a convex optimization prob-
lem.

4 Application to novelty detection

Let Xi, i = 1, 2t be a sequence of random variables distributed according to
some distribution IPi. We are interested in finding whether or not a change
has occurred at time t. To begin with a simple framework we will assume the
sequence to be stationary from 1 to t and from t+1 to 2t, i.e. there exists some
distributions IP0 and IP1 such that Pi = P0, i ∈ [1, t] and Pi = P1, i ∈ [t + 1, 2t].
The question we are addressing can be seen as determining if IP0 = IP1 (no
change has occurred) or else IP0 6= IP1 (some change have occurred). This can
be restated as the following statistical test:

{
H0 : IP0 = IP1

H1 : IP0 6= IP1

In this case the likelihood ratio is the following:

Λl(x1, ..., x2t) =

∏t

i=1 IP0(xi)
∏2t

i=t+1 IP1(xi)∏2t

i=1 IP0(xi)
=

2t∏

i=t+1

IP1(xi)

IP0(xi)

since both densities are unknown the generalized likelihood ratio (GLR) has to
be used:

Λ(x1, ..., x2t) =
2t∏

i=t+1

ÎP1(xi)

ÎP0(xi)

where ÎP0 and ÎP1 are the maximum likelihood estimates of the densities.

Because we want our detection method to be universal, we want it to work
for any possible density. Thus some approximations have to be done to clarify
our framework. First we will assume both densities IP0 and IP1 belong to the
generalized exponential family thus there exists a reproducing kernel Hilbert
space H embedded with the dot product 〈., .〉H and with a reproducing kernel k
such that:

IP0(x) = exp〈θ0(.), k(x, .)〉H − g(θ0) and IP1(x) = exp〈θ1(.), k(x, .)〉H − g(θ1)

where g(θ) is the so called log-partition function. Second hypothesis, the func-
tional parameter θ0 and θ1 of these densities will be estimated on the data of
respectively first and second half of the sample by using the one class SVM al-
gorithm. By doing so we are following our initial assumption that before time
t we know the distribution is constant and equal to some IP0. The one class
SVM algorithm provides us with a good estimator of this density. The situation
of ÎP1(x) is more simple. It is clearly a robust approximation of the maximum



likelihood estimator. Using one class SVM algorithm and the exponential family
model both estimate can be written as:

ÎP0(x) = exp

(
t∑

i=1

α
(0)
i k(x, xi) − g(θ0)

)
, ÎP1(x) = exp

(
2t∑

i=t+1

α
(1)
i k(x, xi) − g(θ1)

)

where α
(0)
i is determined by solving the one class SVM problem on the first half

of the data (x1 to xt). while α
(1)
i is given by solving the one class SVM problem

on the second half of the data (xt+1 to x2t). Using these three hypothesis, the
generalized likelihood ratio test is approximated as follows:

Λ(x1, ..., x2t) > s ⇔
2t∏

j=t+1

exp
∑2t

i=t+1 α
(1)
i k(xj , xi) − g(θ1)

exp
∑t

i=1 α
(0)
i k(xj , xi) − g(θ0)

> s

⇔
2t∑

j=t+1

(
t∑

i=1

α
(0)
i k(xj , xi) −

2t∑

i=t+1

α
(1)
i k(xj , xi)

)
< s′

where s′ is a threshold to be fixed to have a given risk of the first kind a such
that:

IP0




2t∑

j=t+1

(
t∑

i=1

α
(0)
i k(xj , xi) −

2t∑

i=t+1

α
(1)
i k(xj , xi)

)
< s′


 = a

It turns out what variation of
∑2t

i=t+1 α
(1)
i k(xj , xi) are very small in comparison

to the one of
∑t

i=1 α
(0)
i k(xj , xi). Thus ÎP1(x) can be assumed to be constant,

simplifying computations. In this case the test can be performed by only con-
sidering:

2t∑

j=t+1

(
t∑

i=1

α
(0)
i k(xj , xi)

)
< s

This is exactly the novelty detection algorithm as proposed in [6]. Thus we show
how to derive it as a statistical test approximating a generalized likelihood ratio
test, optimal under some condition in the Neyman Pearson framework.

5 Conclusion

In this paper we illustrates how powerful is the link made between kernel al-
gorithms, reproducing kernel Hilbert space and the exponential family. A lot
of learning algorithms can be revisited using this framework. We discuss here
the logistic kernel regression, the SVM, the gaussian process for regression and
the novelty detection using the one class SVM. This framework is applicable to
many different cases and other derivations are possible: exponential family in
a r.k.h.s. can be used to recover sequence annotation (via Conditional Random
Fields) or boosting to name just a few. The exponential family framework is



powerful because it allows to connect, with almost no lost of generality, learning
algorithm with usual statistical tools such as posterior densities and likelihood
ratio. These links between statistics and learning were detailed in the case of
novelty detection restated as a quasi optimal statical test based on a robust ap-
proximation of the generalized likelihood. Further works on this field regard the
application of sequential analysis tools such as the CUSUM algorithm for real
time novelty detection minimizing the expectation of the detection delay.
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