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Abstract. An internet/web based artificial neural network has been developed for

use by practicing clinical oncologists and medical researchers as part of a

programme to aid decision making and eventually, the management and treatment

of individual patients with colorectal cancer.  We have configured and

implemented a Partial Likelihood Artificial Neural Network (PLANN) and trained

it to predict cancer related survival in patients with confirmed colorectal cancer

using a database provided by the Clinical Resource and Audit Group (CRAG) in

Scotland. The reliability of the trained PLANN was evaluated against Kaplan-

Meier (KM) actual survival plots and shows close agreement with them.

1 Introduction

We have applied artificial neural networks (ANNs) and their associated analytical

techniques to healthcare, with special reference to patients suffering from common

solid cancers.  There is increasing complexity in the staging and management of these

cancers, requiring specialist, multidisciplinary knowledge, and management.  We

believe that analytical systems such as these will become more readily available to

clinicians with the emergence of web and grid-secure technology, which has the

potential to link large clinical and scientific data sets of cancer patients from various

sources and institutions.

To date, ANNs of varying complexity and types have been used, mainly in
clinical research rather than routine clinical oncology.  Their usefulness has been
investigated in the diagnosis, spread of the disease and prognosis in breast, ovarian,
gastrointestinal, bronchial, prostatic and ovarian cancers [1-3].  In breast and
colorectal cancers, ANNs have been shown to be significantly more accurate in
predicting survival than in predicting spread from the primary cancer site [4].   To
date, there have been no reported studies on the use of ANNs to formulate
management plans for the treatment of patients with cancers, and this remains a long-
term aim of the current interdisciplinary work by our group of oncologists in Dundee
and physicists in Manchester.  So far, we have trained the ANN by exposing it to sets
of existing data on one type of solid cancer (colorectal), where the clinical outcome of
the patients included in the data base is known over a 5-year follow-up period. This
paper deals with the verification of the prediction of survival by our web-based
system.



2 Patient Database and Methods

2.1 The data

Following the approval of the Clinical Resource and Audit Group (CRAG), the

Scottish Colorectal Cancer Audit Database was used for this analysis. The significant

event of interest in the study was defined as a cancer-related death occurring within 5

years of clinical follow-up beginning from the date of first diagnosis.  Patients who

fell into this category were designated as non-censored, they rest being censored.

Sixteen categorical variables were selected and used for the ANN training.  These are

shown in Table 1. The ‘Age group’ variable had 6 attributes (< 50, 50–59, 60–69,

70–79, 80–89, 90 or older).  In parts, the 16 variable data set was incomplete and so

we kept only those records with known parameters for the most important variables as

judged by the clinicians involved in the study. This led to a sub-set of about 1500

patient records for analysis.  These parameters were age, Duke’s stage, number of

positive nodes, vascular pedicle node identified, chest x-ray, liver US/CT scan,

laparoscopy.  For the rest of the set, any missing values were set to be the mean of the

particular variable.
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Table 1: Variables recorded in the colorectal database

2.2 Modeling survival

Survival modeling was based on a Partial Likelihood Artificial Neural Network

(PLANN) [5, 9], which attempts to solve problems associated with censoring and

classification. The base element of the ANN is used to process the data incorporated

in a Multilayer Perceptron (MLP) with a sigmoid hidden function.  The actual

architecture used is a variant of this, known as ‘cascade multilayer architecture’.  A

single output unit computes the conditional failure probability.  The input layer has



units for time and the covariates plus one bias unit.  One of the advantages of such a

model is the ease of incorporation of time-dependent covariates, since each subject is

represented, for each interval, by one input sector which can change across intervals.

The choice of this network configuration ensured maximal predictive capability.

The probability of dying (hazard) for each patient is computed by having an

additional input to the neural network specifying the time interval required, and

entering each patient into the training set for each time interval until death or the end

of follow-up.  This method has only a small bias due to censoring and it allows usage

of covariates that are dynamically changing with time.  It has been used by Biganzoli

et al [5], Lisboa et al [9] and is reviewed by Ripley and Ripley [10].  It is also known

as the ‘chain-binomial’ model or Partial Logistic Artificial Neural Network

(PLANN).  This ANN has one output – a binary target with possible values 1 or 0 and

estimates a discrete time hazard for the particular time interval.

The survival probability was calculated from the estimated discrete time hazards

by multiplying it by the conditionals for survival over successive time intervals, each

one treated as independent.  This scheme classifies patients within every time period

into either ‘alive’ or ‘dead’ provided that the data in the training set is well balanced

and the distribution of both classes is uniform.  However, the  optimum network

solution has a tendency to ignore the least represented class at a specific time intervals

(e.g., class ‘dead’ at the beginning of the follow-up history and class ‘alive’ at the end

of follow-up).   This results in certain biases in the final classification, which have to

be addressed by weighting the distribution from the model by the log-likelihood [6,

7].

The final estimation of the ANN output is corrected using the Bayes Theorem as

in [8].  This equalisation procedure is crucial for modeling the survival because the

network’s estimates of the hazard in each time interval are multiplied successively to

obtain the survival curve.  Since patients with cancer are seen regularly, monthly in

the first year and then quarterly if they appear to be progressing well, there are 28

time intervals per patient during a 5-year follow-up period, the hazards per time

interval is very low especially in the first year causing small deviations which would

otherwise result in an unacceptable bias in the survival estimates.

The process of choosing the optimal set of variables was based on (a) the

opinion of clinicians and (b) a 5-fold cross-validation procedure [15].  As a result a

total of 1558 records of patients referred between 1993 and 1998 with a follow-up of

60 months were chosen.  The PLANN was trained using the combination of simple

regularization and the ‘early stopping’ technique [15].  The same cross-validation

technique was used to choose the number of hidden nodes (= 23).

Another important issue is the confidence assessment of the predicted survival

curves.  There are two common approaches used for the assignment of confidence

intervals for feed-forward neural networks, namely ‘delta’ and Bayesian statistics [18,

19].  Another useful approach is the bootstrap estimation of maximum likelihood

frame-work, which is easier to implement in terms of both stability of the algorithm

and speed of convergence.  The bootstrap method appears to provide more accurate

confidence intervals then the delta method [16, 18] in addition bootstrapping

improves stability.  The bootstrapping methodology was implemented by training 200

separate samples of ANNs on a randomly sampled subsets from the whole set of



records for each ANN and averaging the resulting survival curves in every point of

the follow-up.

Finally, the model was calibrated against real survival by the Kaplan-Meier

(KM) method [17] by producing comparative survival KM Curves.

3 Results

3.1 Prediction of colorectal cancer-related survival

The modeling was assessed by considering four test groups of patients with known

follow-up outcome and at different risk level of death from cancer:

A. Duke stage A, node negative, no evident metastatic disease and considered to

have had a definitively curative operation

B. Duke stage B, node negative, no evident metastatic disease and considered to

have had a potentially curative operation

C. Dukes stage C but without evident metastatic disease, considered to have

complete resection (no residual tumour) but a potentially non-curative

operation

D. Duke stage D or extensive nodal disease or hepatic/ peritoneal disease,

considered to have had definitely non-curative interventions or no surgical

intervention

Obviously the hazard increases moving down the groups A to D.

Each of four groups was divided into two age groups: younger and older than

80, giving 8 groups in total.   The graphical presentations of this comparison between

predicted (PLANN) and actual survival (KM) are shown in Figure 1, which shows the

survival KM histograms for the lowest two risk groups (Groups A and B) in patients

with resected Duke’s A colorectal cancer, with a known outcome in two age groups:

>80 years (grey histograms, lower) and <80 years (black histograms, upper). The

corresponding ANN predictions for the probability of survival are shown as grey and

black curves with standard error bars (using the Greenwood formula [18]).  The

corresponding results for groups C and D (not shown) show a monotonic reduced

survival.  The predictions are in very good agreement with actual survival in all the

four cohorts and in each age group.  The noticeable error for the group of ‘old’

patients in Group A can be explained by the paucity of cases recorded.

Fig. 1: Predicted survival curves for groups A and B compared with Kaplan-Meier



3.2 Safe computer access to the system

We have also designed a secure web based interface between the ANN and clinicians

with kernel software, including higher sophisticated grid technology for data

collection from remote data bases, training or re-training the PLANN using

distributed computer resources and finally, provision of web access interface for

bona-fide users. The clinicians will eventually be able to compare the curves for

different management profiles.  The web part of the system has been written in Perl

cgi scripts and uses GRIDSITE server technology.

4 Discussion and conclusions

The PLANN model that has been implemented works well in most cases –  as shown

by the good agreement with the actual survival of the patient cohort used in the study.

In addition, we can account for instances where the output predictions obtained were

not in perfect agreement with actual survival of the patients.   The root cause of these

problems is the inconsistency and incompleteness of the data used to train the

PLANN, resulting in unduly large variance.  Regrettably this problem is inherent to

all existing clinical databases collected centrally over many years within the NHS

system.  If ANNs are to be used more extensively in the future as is being predicted

by the emergence of the GRID technology and associated middleware, this problem

has to be resolved and the quality of data collection entry and management improved

significantly beyond the existing level. The present situation undoubtedly inhibits

progress in ANN modeling and development and possibly explains why these and

other mathematical models are not widely used in practice by clinicians [12]. They

have a reputation for unreliability and are regarded with suspicion the clinicians. This

situation can be reversed by further study and improved data recording.

The present stage in the PLANN project can be regarded as a base platform for a

system that could reliably stage, prognosticate and eventually produce an algorithm

for the management of individual patients with cancer.  We have produced a reliable

and practical (easy to use) web interface that is already being used by clinicians.  As

the system is refined, it should be able to meet the requirements for the other

objective – the optimal management of cancer patients commensurate with the stage

of their disease.   We believe that ANNs may also be developed and used for a variety

of chronic disorders, e.g., cardiovascular disease, diabetes etc. with the benefit of

standardisation that such systems bring to the treatment and management of patients.

We think that the clinical research potential of ANNs has been largely

overlooked.   It is not inconceivable that these systems as they become more advanced

and hybrid (to include fuzzy logic) may eventually be developed to a stage that would

enable clinical researchers to deploy them in ‘hypothetical virtual human

experiments’ with various parameters applied to particular cases to predict better

results of treatment or compare therapeutic options.   This is probably some time off

the present, but before then ANNs should be used in the analysis of on-going and

completed randomised clinical trials as an additional means of data analysis to the

current multivariate linear regression analyses systems.
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