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Abstract. In this paper, a ridgelet kernel regression model is proposed for 
approximation of high dimensional functions. It is based on ridgelet theory, 
kernel and regularization technology from which we can deduce a 
regularized kernel regression form. Taking the objective function solved 
by quadratic programming to define the fitness function, we use genetic 
algorithm to search for the optimal directional vector of ridgelet. The 
results indicate that this method can effectively deal with high dimensional 
data, especially those with certain kinds of spatial inhomogeneities. Some 
illustrative examples are included to demonstrate its superiority.  

1 Introduction 

In Machine Learning(ML), many problems can be reduced to the tasks of multivariate 
function approximation (MVFA). MVFA is an active subject that has attracted lots of 
researching interests in many science and engineering communities[1,2]. Depending on 
the community involved, it goes by different names including nonlinear regression, 
function learning, system identification and others. The numeric methods for MVFA 
have been deeply studied in mathematics and computer science[3,4]. As we all know, 
approximation of a function from sparse samples is ill-posed, so one often assumes 
the function to be smooth to obtain a certain solution. However, in practical cases 
such as industrial control systems, fault detection, system identification and intelligent 
predicting, most systems are very complex MIMO(multi-input and multi-output) 
systems. They are equivalent to non-smooth mapping in high dimension, that is, they 
are MVFAs with spatial inhomogeneities. So the classical mathematical methods 
cannot estimate or approximate them efficiently by sparse samples. 

Reconstructing a function by a superposition of some basis functions is a very 
inspiring idea on which many regressor are based, such as Fourier Transform (FT)[5], 
Wavelet Transform(WT)[6], Neural Network(NN)[7] and Projection Pursuit Regression 
(PPR)[8]. However, FT has a poor performance for singular functions; WT can deal 
with one-dimension singularity, but it can’t extend to higher dimension. NN allows 
for non-smooth mapping in high dimension, but it inevitably has some disadvantages 
such as overfitting, slow convergence and too much reliance on experience. PPR is a 
regression way for smooth functions in a greedy fashion. For PPR converges 
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according to norm, it is of slow convergence. In 1996, E.J.Candes developed a new 
system to represent arbitrary functions by a superposition of specific ridge functions 
in a more stable way, the ridgelet[9]. Ridgelet proves to be good basis in high 
dimension, and it has optimal property for functions with spatial inhomogeneities. To 
adaptively estimate high dimensional functions, ridgelets can be used in PPR or NN 
to construct a regressor. However, they only minimize the experience risk, which 
leads to some drawbacks such as overfitting and bad generalization[10].  

Recently Kernel Machine(KM) has been a standard tool in ML, which has stricter 
mathematical foundation than NN and PPR[11]. Based on ridgelet and KM, a ridgelet 
kernel regression model for MVFA is proposed. The minimum squared error(MSE) 
based on kernels and regularization technology, or the regularized kernel form of 
MSE, is adopted[12]. Employment of ridgelet can accomplish a wider range of MVFA, 
and the regularized items in objective function are used to improve the generalization 
of solutions. To get the directions of ridgelets, genetic algorithm (GA) is used.  

2 Ridgelet Kernel Regression based on Genetic Algorithm  

2.1 Ridgelet Regression 

Given a pair of sample set S={(x, y)}(perhaps polluted by noise) coming from the 
model Y=f(X), a nonparametric regression is to estimate the unknown function f from 
the sparse data set S. Kernel smoothing, nearest-neighbor and spline smoothing are 
often used in regression. However, their performances decrease sharply in high 
dimension due to the ‘curse of dimensionality’, that is, if samples are not dense 
enough, one will get a bad mean squared error. Ridgelet is a new harmonic analysis 
tool, and it proves to be optimal for estimating multivariate regression surfaces 
especially for those exhibiting specific sorts of spatial inhomogeneities, with a speed 
rapid than FT and WT. As an extension of wavelet to higher dimension, ridgelet has 
attracted more and more attention of researches. It is defined as:  
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For function f (x):Rd →Rm, it can be divided into m mappings of Rd→R. Select the 
ridgelet as the basis, then the following approximation equation is obtained:  
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ridgelet.  The ridgelet regressor based on PPR[13] and NN with ridgelet neurons are 
both based on the minimization of experience risk. In 1988, Vapnik developed a new  



learning machine-SVM on the concept of VC dimension, which solves all the 
theoretic problems of NN[14]. Its strength lies on its minimum of structure risk 
experience and a consequent protruding optimization. Its good generalization and 
avoidance of local minimum in learning is unachievable for NN and PPR. SVM helps 
to build up a family of KM based methods in ML. KM is a powerful technology 
extending the standard linear methods to nonlinear cases. A foundational idea behind 
KM is that the kernel function can be interpreted as an inner product in the feature 
space under certain conditions. This idea, commonly known as the "kernel trick", has 
been used extensively in generating nonlinear versions of conventional linear 
supervised and unsupervised learning algorithms, such as SVM, kernel fisher decision 
(KFD) etc. To get better ridgelet regressor, in the following we discussed a kernel-
based regressor with ridgelet being the kernel function. 

2.2 Ridgelet kernel regression model 

Consider training set S={(x1, y1),…, (xP, yP)} with 
number P, where xi is d-dimension and yi is one-
dimension(i=1,..,P). An unknown mapping with 
noise n can be described by Y=f (X)+n, and our goal 
is to reconstruct f from S. Denoting X=[x1,., xP] and 
Y=[y1,.,yP], ridgelet rψ  is a nonlinear mapping about 
the input samples. After X going through the 
directional vector of l ridgelets, we get R=[r1,.., 
rP]T =[rij] with ij j ir u x= ⋅  (i=1,..,P; j=1,..,l). Then the 
ridgelet regression of Rd→R becomes an Rl→R 
wavelet mapping. Considering the latter mapping, 
for the linear regressor in feather space, we 
construct such a linear function with weight w and 
thresholdβ:    ˆ ( ) ( )f r w rψ ψ ψ β= ⋅ +                  (4) 

According to the reproducing kernel Hilbert space, the solution to this optimization 
problem must be in the space formed by the samples, i.e.,w is a linear superposition of 

all the samples: 
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Denote the kernel function K(ri,rj)=Ψ(ri)Ψ(rj), and it should satisfy strict allowance 
condition. Then the estimate function in the feather space is obtained:    
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The ridgelet kernel regression model is shown in Fig.1.Ψ(r)=cos(1.75r)exp(-r2/2) 
proves to be served as a good kernel function [15]. Then we get:  
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2.3 MSE based regularized kernel form 
Vapnik showed that the key to get an effective solution is to control the complexity of 
the solution. In the context of statistical learning this leads to new techniques known  

Fig.1 Ridgelet kernel regression 
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as regularization networks or regularized kernel methods. We consider the regularized 
kernel methods, and define a generalized estimator for the approximation:   
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where V is the loss function; H is the Hilbert space of the hypotheses; λ is the 
regularization parameter. Various kinds of penalty terms can act as loss function, and 
squared loss function known as the rule of minimum square error (MSE) is most often 
used. The second term in (8) is a regularized term employed to get a specified 
solution and better generalization, and they are different in various function spaces. 
Then the solution is found by minimizing function consisting of the loss function and 

regularized term in KM. We adopt such form: 21 1ˆmin   || ( ) || ( . )
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Let ( )k k ke y w rψ β= − ⋅ − and convert the inequality restriction in the standard 
regression to the equality restriction; take the quadratic programming to represent the 

MSE based regularized kernel form:
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The corresponding Lagrange function is 
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whereμis Lagrange factor. The optimal solution of this problem is:  
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2.4 Optimization of directional vector based on GA 

From above we see that as long as the directional vector is determined, the above 
method can be used to get a certain solution. To obtain the direction of ridgelet, here 
genetic algorithm (GA) is employed. GA is a good optimization tool which has the 
global searching capacity, as well as inner parallelism and self-learning[16]. Firstly 
define the reciprocal of regularized object function as the fitness function. Since the 
directional vector of ridgelet u=[u1,.., ud] and ||u||2=1, the directional vector in u can 
be described using (d-1) angles 1 1 1 1 2 1 2,.., : cos , sin cos ,d u uθ θ θ θ θ− = = .., 1 2sin sindu θ θ=  

1...sin dθ − .Code the chromosome using l(d-1) angles. The algorithm is described as:  
Step 1: Init the iteration times t=0 and a population P with M chromosomes: Generate 
a set of angles randomly to form P={θ1,…θM} where θi=[θ1

i,….,θl(d-1)
i] (i=1,..,M); 

Step 2: Derive the directional vectors U=[u1,…uM] (ui∈Rd ) from the population P; 
Step 3: The directional vectors in U are corresponding to M ridgelet functions. Using 
them and the quadratic programming algorithm depicted in 2.3 to approximate the 
input samples. Compute the fitness, that is, the reciprocal of objective function 1/E;  
Step 4: Roulette selection is performed to form new population;  
Step 5: Judge the stop condition. When t is bigger than the given maximum iteration 
times T or the error is small than ε, stop, else go on;   



Step 6: Repeat such operation M times on the population: Select two individuals 
randomly and perform crossover with probability pc;  
Step 7: Perform the mutation on each chromosome with probability pm:θj

i(t+1)=θj
i(t) 

+η×rand, where i=1,., M, j=1,…,l(d-1) and rand means a random number in [0,1];η
is a constant in [0,180] which determine the mutation degree; 
Step   8: Get the new population P(t+1), t＝t+1, go to Step 2. 

3 Simulation Experiments 
Experiment 1: Radar Target Recognition  
Radar target recognition is a challenging subject in radar signal processing. We 
applied our method to radar target recognition of three-class planes(B52,J-6,J-7) using 
one-dimensional image(or radar range profile). Our data are obtained in a microwave 
darkroom with imaging angle from 0 to 179 degree and we get totally 1084 images of 
64 dimension. In this experiment three models are considered-Gaussian kernel LS-
SVM(GSVM),Wavelet kernel LS-SVM(WSVM) and our method. Kernel function in 
(7) is used in the latter two models. The models are under the same condition and in 
our method M=5,η＝10, T＝100, l=6,λ=0.5,a=1,ε=10-8,pc=0.7, pm=0.1. We get the 
recognition results in table 1, from which we can see that our method has both high 
recognition rates and least training time than GSVM and WSVM.  

samples GSVM(%) WSVM(%) our method(%) PLANE 
train test train test  train test train test 

B-52 
J-6 
J-7 

Time(s) 

60 
60 
90 

 

322 
311 
451 

100 
100 
100 
4.5 

98 
88 
80 
2.3 

100 
100 
100 
2.8 

98 
90 
83 
2.4 

100 
100 
100 
1.1 

97 
92 
91 
2.8 

Table 1: Recognition results of three planes 

Experiment 2: Function approximation  
RMSE error GSVM WSVM our method expression 

f1 
 

f2 
 

f3 
 

f4 
 

f5 
 

train 
test 
train 
test 
train 
test 
train 
test 
train 
test 

0.00097011
1.5928 

1.5520e-005
1.9338 

1.6862e-010
  0.2154 

4.9328e-005
  0.4074 

1.552e-005 
1.9338 

2.2764e-010
  1.4641 

6.9517e-012
1.9223 

7.879e-015 
0.1954 

1.0865e-011
0.3759 

6.9517e-012
1.9223 

4.247e-019 
1.1583 

6.5869e-020
1.9040 

2.7152e-020
0.1459 

5.5366e-020
0.3271 

6.7489e-020
1.9046 
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Table 2: Approximation result of three methods  

Just as described above, our method can deal with not only high dimensional data, 
but also data with spatial inhomogeneities. Consider approximations of some 
singular functions f1- f5. In the experiment, the numbers of training and testing 



samples are 36 and 121. To estimate the approximation, the root mean squared error 
(RMSE) is employed. The approximation results are shown in table 2. 

4 Conclusion  

Ridgelet is a new geometrical multi-scale analysis tool developed recently, which 
provides good basis for high dimensional space. Starting from the problem of MVFA, 
we proposed a ridgelet kernel regression model which can represent a wider range of 
high dimensional functions more efficiently in a stable way. The regularized items are 
employed in the object function to improve the generalization of our method. The 
objective function solved by quadratic programming is used to define the fitness 
function, and GA is taken for optimizing the directions of ridgelets. Theoretical 
analysis proves its accurate regression for high dimensional data, especially those 
with spatial inhomogeneities singularities. Experiment results on pattern recognition 
and function approximation also prove its efficiency.    
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