
Geometric Models with Co-occurrence Groups

Joan Bruna1,2 and Stéphane Mallat2
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Abstract. A geometric model of sparse signal representations is intro-
duced for classes of signals. It is computed by optimizing co-occurrence
groups with a maximum likelihood estimate calculated with a Bernoulli
mixture model. Applications to face image compression and MNIST digit
classification illustrate the applicability of this model.

1 Introduction

Finding image representations with a dimensionality reduction while maintain-
ing relevant information for classification, remains a major issue. Effective ap-
proaches have recently been developed based on locally orderless representations
as proposed by Koendering and Van Doom [1]. They observed that high fre-
quency structures are important for recognition but do not need to be precisely
located. This idea has inspired a family of descriptors such as SIFT [2] or HOG
[3], which delocalize the image information over large neighborhoods, by only
recording histogram information. These histograms are usually computed over
wavelet like coefficients, providing a multiscale image representation with several
wavelets having different orientation tunings.

This paper introduces a new geometric image representation obtained by
grouping coefficients that have co-occurrence properties across an image class.
It provides a locally orderless representation where sparse descriptors are delo-
calized over groups which optimize the coefficient co-occurrences, and can be
interpreted as a form of parcellization [4]. Section 2 reviews wavelet image rep-
resentations and the notion of sparse geometry through significant sets. Section
3 introduces our co-occurrence grouping model which is optimized with a max-
imum likelihood approach. Groups are computed from a training sequence in
Section 4, using a Bernoulli mixture approximation. Applications to face image
compression are shown in Section 5 and the application of this representation is
illustrated for MNIST image classifications in Section 6.

2 Geometric Significance Set

Sparse signal representations are obtained by decomposing signals over bases or
frames {φp}p∈ȳ which take advantage of the signal regularity to produce many
zero coefficients. A sparse representation is obtained by keeping the significant
coefficients above a threshold T ,

y = {p ∈ ȳ : |〈f, φp〉| > T }
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The original signal can be reconstructed with a dual family f =
∑

p∈ȳ 〈f, φp〉 φ̃p,
and the resulting sparse approximation is fy =

∑
p∈y 〈f, φp〉 φ̃p.

Wavelet transforms compute signal inner products with several mother wavelets
ψd having a specific direction tuning, and which are dilated by 2j and translated
by 2jn: φp = ψd

j,n. Separable wavelet bases are obtained with 3 mother wavelets
[5], in which case the total number |ȳ| of wavelets is equal to the image size.

Let |y| be the cardinal of the set y. In absence of prior information on y, the

number of bits needed to code y in ȳ is R0 = log2

(|ȳ|
|y|
)
.

One can also verify [5] that the number of bits required to encode the values
of coefficients in y is proportional to |y| and is smaller than R0 so that the coding
budget is indeed dominated by R0 which carries most of the image information.

3 Co-occurrence Groups

In a supervised classification problem, a geometric model defines a prior model
of the probability distribution q(y). There is a huge number 2|ȳ| of subsets y
in ȳ. Estimating the probability q(y) from a limited training set thus requires
using a simplified prior model.

A signal class is represented by a random vector whose realizations are within
the class and whose significance sets y are included in ȳ. A mixture model is
introduced with co-occurrence groups θ(k) of constant size s, which define a
partition of the overall index set ȳ

ȳ = ∪kθ(k) with |θ(k)| = s and θ(k) ∩ θ(k′) = 0/ if k �= k′ .

Co-occurrence groups θ(k) are optimized by enforcing that all coefficients
have a similar behavior in a group and hence that y ∩ θ(k) is either almost
empty or almost equal to θ(k) with a high probability. The mixture model
assumes that the distributions of the components y∩ θ(k) are independent. The
distribution q(y ∩ θ(k)) is assumed to be uniform among all subsets of θ(k) of
cardinal z(k) = |y ∩ θ(k)|. Let qk(z(k)) be its distribution,

q(y|θ) =
∏
k

q(y ∩ θ(k)) =
∏
k

qk(z(k))

(
s

z(k)

)−1

This co-occurrence model is identified with a maximum log-likelihood approach
which computes

argmax
θ

∑
k

(
− log2

(
s

z(k)

)
+ log2 qk(z(k))

)
.

4 Group Estimation with Bernoulli Mixtures

Given a training sequence of images {fl}l≤L that belong to a class, we opti-
mize the group co-occurrence by approximating the maximum likelihood with a
Bernoulli mixture.
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Let yl be the significant set of fl. The log likelihood is calculated with

L(y, θ) =
∑
l

∑
k

(
− log2

(
s

zl(k)

)
+log2 qk(zl(k))

)
with zl(k) = |yl∩θ(k)| . (1)

The maximization of this expression is obtained using the Stirling formula which
approximates the first term by the entropy of a Bernoulli distribution. Let
us write qk,l(0) = zl(k)/s and qk,l(1) = 1 − zl(k)/s, the Bernoulli probability
distribution associated to zl(k)/s. Let us specify the groups θ(k) by the inverse
variables k(p) such that p ∈ θ(k(p)). It results that

∑
k

− log2

(
s

zl(k)

)
≈ zl(k) log2

(
zl(k)

s

)
+ (s− zl(k)) log2

(
1− zl(k)

s

)

=
∑
p∈ȳ

log2 qk(p),l(1yl
(p)) .

The distribution qk is generally unknown and must therefore be estimated.
The estimation is regularized by approximating this distribution with a piece-
wise constant distribution q̂k over a fixed number of quantization bins, that is
small relatively to the number of realizations L. The likelihood (1) is thus ap-
proximated by a likelihood over the Bernoulli mixture, which is optimized over
all parameters:

arg min
θ,zl,q̂k

−
∑
l

(
∑
p∈ȳ

log qk(p),l(1yl
(p)) +

∑
k

log2 q̂k(zl(k))) . (2)

The following algorithm, minimizes (2) by updating separately the Bernoulli
parameters zl(k), the distribution q̂k and the grouping variables k(p).

The minimization algorithm begins with a random initialization of groups
θ(k) of same size s. The empirical histograms q̂k are initialized to uniform
distributions. The algorithm iterates the following steps:

• Step 1: Given {θ(k)}k and {q̂k}k compute {zl(k)}l,k which minimizes (2)
by minimizing

− log2 q̂k(zl(k))− zl(k) log2

zl(k)

s
− (s− zl(k)) log2(1−

zl(k)

s
)) . (3)

• Step 2: Update {q̂k}k to minimize (2) as the normalized histogram of the
updated parameters {zl(k)}l over a predefined number of bins.

• Step 3: Update the group indexes {k(p)}p to minimize (2) by minimizing

−
∑
p∈ȳ

log qk(p),l(1yl
(p)) , (4)

for groups of constant size |θ(k)| = s.

This algorithm is guaranteed to converge to a local maxima because each step
further increases the log-likelihood. In fact, it is the equivalent of the K-means
algorithm adapted to the mixture model considered here.
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5 Face Compression

To illustrate the efficiency of this grouping strategy, it is first applied to the
compression of face images that have been approximately registered. A database
of 170 face images were used for training and a different set of 30 face images
were used for testing. Figure 1 shows the optimal co-occurrence groups obtained
over wavelet coefficients by applying the maximum log-likelihood algorithm on
the training set. The encoding cost of the significance map using the optimized
model is equal to minus the log-likelihood of this model. Figure 2 shows the
evolution of the average bit budget needed to encode the significance maps with
the Bernoulli mixture over optimized co-occurrence groups, depending upon the
groups size s. The optimal group size which maximizes the log-likelihood and
hence minimizes the encoding cost over all group sizes is s = 16.

(a) (b)

(c)

Fig. 1: (a): Images of wavelet coefficients |〈f, ψd
j,n〉| for three directions d = 1, 2, 3

at a scale 2j = 22 (b): thresholded coefficients, defining the significance maps
yl. (c): grouping obtained with optimal group size s = 16. The stable geometric
features are clearly visible.
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Fig. 2: Solid : bit rate using fixed square groups of size s as a function of log2 s.
Dashed : bit rate (equal to minus the log likelihood, in bits per pixel) using the
optimal groups of size s as a function of log2 s.
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Fig. 3: Digit example. From left to right : original digit taken from MNIST
database, random digit, significance maps, and grouping obtained by using the
described algorithm.

When s is equal to the image size, there is a single group and the encoding
is thus equivalent to a standard image coding using no prior information on the
class. The bit rate is also compared with a Bernoulli mixture computed with a
partition into square groups θ(k), as a function of s. Figure 2 shows that the
optimized co-occurrence grouping improves the bit rate by 20 % relatively to
the case where there is a single group, and also with respect to the fixed square
groups, which means that the optimal grouping provides a geometric information
which is stable across the image class. The optimal group size s = 16 also gives
an estimation of the image deformations that are due to variations of scaling
and eye positions and to intrinsic variations of faces in the database.

6 Random MNIST Digit Classification

This section shows the classification ability of our geometric representation de-
spite the presence of strong variability in the images. The test is performed
using the standard MNIST database of digits. This database is relatively simple
and without any modification of the image representation an SVM classifier can
reach 1.4% of error with a training set of 60,000 images. This section shows that
our geometric co-occurence model can learn with much less training elements
and for more complex images.

To take into account texture variation phenomena, which are a central diffi-
culty for geometric models, a white noise texture is introduced. A digit image
f [n] is transformed into a random digit f̃ [n] = (f [n] + C)W [n] where W [n] is
a normalized Gaussian white noise. The significance maps of these digits are
simply obtained with a thresholding as shown in Figure 3. It yields a binary im-
age with a low density binary texture on the digit background and high density
texture on the digit support. Visually, the digit is still perfectly recognizable
despite the texture variability. With 4000 training images an SVM with a poly-
nomial kernel yields a very low recognition rate of 21% on a different set of
10000 test images.

Figure 3 shows the optimal co-occurrence groups of size 14 computed with
the minimization algorithm of Section 4. Despite the geometric variability, the
algorithm is able to extract co-occurrence groups that do correspond to the
digit structures and their deformations. To each digit 0 ≤ d ≤ 9, corresponds
an optimized co-occurrence grouping θd. Let L(y, θd) be the likelihood of the
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significance map y of f with the grouping model θd. An SVM classifier is trained
on the feature vector {L(y, θd(k))}0≤d≤9,0≤k≤K , of dimension 10·56 with groups
of size 14. With 4000 training images this classifier yields a recognition rate
of 9% on a different set of 10000 test images. A simple maximum likelihood
classifier (MAP) associates to each test image f the digit class

d̃ = arg max
0≤d≤9

L(f, θd) .

With 4000 training examples, this simple classifier yields a recognition rates of
18% for random digits, which is already better than the SVM applied on the
original pixels.

7 Conclusion

This paper introduces a new approach to define the geometry of a class of im-
ages computed over a sparse representation, using co-occurrence groups. These
co-occurrence groups are computed with a maximum log likelihood estimation
calculated over optimized Bernoulli mixture model. An algorithm is introduced
to optimize the group computation. The application to face image compres-
sion shows the efficiency of this encoding approach, and the ability to compute
co-occurrence groups that provide stable information across the class. A classi-
fication test is performed over textured digits, which shows that the algorithm
can take into account texture geometry and provide much better classification
rates than a standard pixel based image representation.
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