
Statistical dependence measure for feature
selection in microarray datasets

Verónica Bolón-Canedo1, Sohan Seth2, Noelia Sánchez-Maroño1,

Amparo Alonso-Betanzos1 and José C. Pŕıncipe2 ∗
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Abstract. Feature selection is the domain of machine learning which

studies data-driven methods to select, among a set of input variables, the

ones that will lead to the most accurate predictive model. In this paper,

a statistical dependence measure is presented for variable selection in the

context of classification. Its performance is tested over DNA microarray

data, a challenging dataset for machine learning researchers due to the

high number of genes and relatively small number of measurements. This

measure is compared against the so called mRMR approach, and is shown

to obtain better or equal performance over the binary datasets.

1 Introduction

A typical classification task is to separate healthy patients from cancer patients
based on their gene expression “profile” (DNA microarray) [1]. DNA microarray
data classification is a challenging problem for machine learning researchers due
to its high number of features (from 6000 to 60 000 genes) and the small number
of samples (often less than 100 patients), and therefore, feature selection (FS)
plays a crucial role in this domain [1]. Among the different FS methods [2],
filters only rely on general characteristics of the data, and not on the learning
machines; therefore, they are faster, and more suitable for large data sets. A
common practice in this approach is to simply select the top-ranked genes where
the ranks are determined by some dependence criteria, and the number of genes
to retain is usually set by human intuition with trial-and-error. A deficiency of
this ranking approach is that the selected features could be dependent among
themselves. Therefore, a maximum relevance minimum redundancy approach
is preferred in practice [3], that also minimizes the dependence among selected
features.

In [4], the authors have followed this approach using a simple measure of
monotone dependence to quantify both relevance and redundancy. This ap-
proach has been shown to perform equally well compared to other widely used
measures of dependence (such as correlation coefficient, mutual information and
Hilbert-Schmidt independence criterion). However, this method has not been
applied in the context of classification. Therefore, in this paper, we extend this
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approach, and test it over 16 microarray datasets in a classification scenario.
We compare its performance with the so called mRMR (minimum Redundancy
Maximum Relevance) approach as proposed in [3], that uses crude binning based
estimator of mutual information to capture relevance and redundancy. In [5] it
has been demonstrated that mRMR is an appropriate tool for gene selection
in microarray datasets, since genes selected by this framework provide a more
balanced coverage of the space and capture broader characteristics of pheno-
types. However, we observe that our approach outperforms mRMR on binary
problems. Finally, we also compare our results over 10 out of the 16 datasets
with those obtained in [6], where several widely-used filters were applied before
the classification stage, including a discretization step.

2 Statistical dependence Measure (Md)

In the mRMR approach [3], the features are selected one at a time i.e. at a
particular iteration an input variable, that is most relevant to the target and
least redundant with respect to the already selected variables, is selected. The
relevance and redundancy are often measured in terms of Mutual Information
(MI) between the variable and the response and MI between the variable and
the already selected variables, respectively. In [4], the authors have proposed
to use a measure of monotone dependence (M) to assess the relevance and the
redundancy, since it is simpler to estimate from data (compared to MI), and it
carries many desired properties of a measure of dependence (e.g. it is bounded,
symmetric, and reaches maximum if and only two random variables share a
monotonic relationship). However, the authors have only explored this concept
in the context of continuous random variables by using,

Mc(Y,X) =
1

n2

n
∑

i=1

n
∑

j=1

∫

(P (Y ≤ yj , X ≤ xi)− P (Y ≤ yj)P (X ≤ xi))
2.

In this paper, we explore this method in a classification scenario where the class
labels are categorical variables, and explore the following measure of dependence,

Md(Y,X) =
1

n2

n
∑

i=1

n
∑

j=1

∫

(P (Y = yj , X ≤ xi)− P (Y = yj)P (X ≤ xi))
2.

In brief, the variable selection algorithm can be described as follows, given a set
of features Xn−1 ⊂ X choose Xn in the following way,

Xn = argmin
Xi∈X/Xn−1



M(Xi, Y )−
λ

|Xn−1|

∑

Xj∈Xn−1

M(Xi, Xj)



 ,

where Y is the target and λ is a free parameter that controls the relative emphasis
given on the relevance and the redundancy. Here, the relevance is evaluated by
the dependence between a variable and the target, whereas the redundancy is
evaluated by the average dependence between the new variable and the already
selected variable.
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3 Experimental results

Our goal is to test the previously described measurement (Md) in the classifi-
cation of microarray datasets. This is a challenging problem since the number
of features is relatively higher (order of 104) than the number of samples (order
of 102). The experiments were carried out on 16 datasets of gene expression
profiles; their properties (number of features, samples and classes) are listed in
Table 1. Some of the datasets come originally with training and test samples that
were drawn from different conditions. However, in this table we have presented
the combined data for the purpose of performing a 10-fold cross-validation.

Table 1: Description for the datasets used (free to download in [7] and [8]).

Dataset # feat Samples # cl Dataset # feat Samples # cl
Leukemia 7129 72 2 Myeloma 12 625 173 2

CNS 7129 60 2 Brain 12 625 21 2
DLBCL 4026 47 2 Gli 22 283 85 2
Colon 2000 62 2 SMK-CAN 19 993 187 2

Prostate 12 600 136 2 GCM 16 063 190 14
Lung 12 533 181 2 Lymphoma 4026 96 9

Ovarian 15 154 253 2 GLA-BRA 49 151 180 4
Breast 24 481 97 2 TOX 5748 171 4

Five well-known supervised classifiers, of different conceptual origin, were
chosen for class prediction over the microarray datasets used in this work. All
the classifiers (C4.5, naive Bayes, IB1, MLP and SVM) were executed using the
Weka tool [9], with default values for their respective parameters. Over the 16
datasets, a 10-fold cross-validation was performed using 10 different numbers of
features (1, 2, 3, 4, 5, 10, 15, 20, 25, 30). Md was tested with 5 different values
for its parameter λ, which leads to a total of 4800 experiments. Therefore, in
this paper, we only present a summary of the experiments. The results obtained
show that Md performs equally well or even better than mRMR over the binary
datasets, while mRMR is better over the multiclass datasets. In Table 2 we can
see a summary of the experiments, where a method wins when obtaining the
best result in terms of error (percentage of incorrectly classified instances) and,
in case of same error, with less number of features. Regarding the classifiers,
MLP obtained the best results in 50% of the datasets.

Table 2: Number of times Md wins, loses or ties compared to mRMR

Md vs mRMR Wins Loses Ties

Binary datasets 9 2 1

Multiclass datasets 0 4 0

For the multiclass datasets, the number of tissue samples per class is small
(e.g. in Lymphoma dataset, 6 out of the 9 classes have less than 10 samples)
and unevenly distributed (e.g. in Lymphoma dataset, from 46 to 2). This fact,
together with the large number of classes (see Table 1), makes the classification
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Fig. 1: Results for the dataset Lymphoma

task more complex than the two-class problem. Md seems to have difficulties
when the number of classes is very large and selects features that would be more
suitable for a two-class problem. Figure 1 shows the two first features selected
by Md and mRMR over Lymphoma dataset (different shapes represent different
classes). Note that Figure 1(b) can be almost linearly separated in two subsets,
one formed by the class represented by red circles and the other one formed by
the remaining classes, whereas this division is not appreciated in Figure 1(a).
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Fig. 2: Results for the dataset Breast with IB1 and SVM classifiers

Regarding the binary case, in Table 2 is shown that Md performs better or
equal to mRMR in 10 out of the 12 datasets tested. However, in the two datasets
where mRMR wins, Md achieves close results (for Ovarian dataset, Md obtains
the same error but using 4 features instead of 3 and for Prostate dataset, there
is a difference in error of 0.11% with the same number of features). When Md

wins, it improves an average of 4.21%, whilest when it loses, its performance
decays in 0.06%. As an illustrative example, Figure 2 presents the results for
Breast dataset for classifiers IB1 and SVM. For this dataset, mRMR performs
worse than Md. Specially remarkable is the difference between Md and mRMR
for the SVM classifier, for any number of features tested. Focusing on the λ

parameter, significant differences among these values were not found, although
for the Breast dataset, high values of λ seem to be the more suitable.

An interesting result is observed with the Brain dataset. For the C4.5 classi-
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fier, Md is able to select a single feature that is enough to get 0% classification
error, where the best classification result obtained by mRMR is about 30%. This
is due to the fact that Md always selects the #364 feature on the top of the
ranking, while mRMR does not. This feature is crucial since it allows linear sep-
aration of the two classes when the boundary between the classes is at around
0.0001. However, this attribute of the feature is completely ignored by mRMR
since it discretizes the feature in 3 states before using it in the algorithm. It can
be easily understood from the contingency table 3 (left), where the rows are the
two classes (C1 and C2) and the columns are the 3 states of the discretization
(S1, S2 and S3). In the first table the realizations are discretized as suggested
by [3] whereas in the second table the discretization involves the line through
0.0001. It is obvious that the second table has much more mutual information
than the first, that the common scheme of mRMR overlooks.

S1 S2 S3

C1 0 11 3

C2 0 7 0

S1 S2 S3

C1 0 11 3

C2 7 0 0

Table 3: Contingency tables for mRMR (left) and Md (right)

4 Comparison with previous results

In a previous work [6], a combination of discretization and filter algorithms
was proposed for the crucial task of accurate gene selection in class prediction
problems over 10 DNA microarray datasets. Two discretizers (EMD, PKID) and
two filters (INTERACT, Consistency-based) were used, and their performance
was checked using three supervised classifiers (C4.5, NB, IB1). The datasets
used were the 10 first ones in Table 1. For the sake of comparison, the datasets
with only training set (marked with ∗) were randomly divided using the common
rule 2/3 for training and 1/3 for testing.

Table 4: Comparison with previous results [6]

Dataset Method Test E # g Dataset Method Test E # g

Colon∗
EMD+Cons+NB 15.00 3

Prostate
PKID+INT+IB1 26.47 2

Md+IB1 10.00 2 Md+C4.5 2.94 1

DLBCL∗ EMD+INT+NB 6.67 36
Ovarian∗ EMD+Cons+NB 0.00 3

Md+MLP 0.00 33 Md+IB1 0.00 2

CNS∗
PKID+INT+NB 25.00 4

Breast∗
PKID+INT+C4.5 21.05 3

Md+C4.5 25.00 3 Md+MLP 15.79 3

Leukemia
PKID+Cons+C4.5 5.88 2

Lymph.∗
EMD+INT+NB 18.75 160

Md+NB 0.00 21 Md+IB1 18.75 33

Lung
PKID+INT+IB1 0.00 40

GCM
EMD+Cons+NB 45.65 9

Md+NB 1.34 37 Md+C4.5 52.17 26

In Table 4 a comparison with the results obtained in this work over the same
datasets and conditions are shown. Md improves the test error in 5 of the
datasets (especially remarkable in Prostate, with an improvement of 23%) . In 3
of them (CNS, Ovarian and Lymphoma) it achieves the same error but using less
number of features, which is also considered as an improvement in performance.
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Regarding the two remaining datasets, in Lung the error is slightly higher with
Md but using less features, while GCM is a complex multiclass dataset and we
have seen that Md does not perform adequately for this kind of datasets.

5 Conclusions

In this work, the adequacy of a measure of monotone dependence (Md) was
tested in the classification domain, specifically on microarray data, which is a
challenging problem for machine learning researchers where a feature selection
step is a fundamental necessity. To check the capacity of this method to deal
with this problem, it was compared to mRMR, a well-known and widely-used
FS method, in terms of five different classifiers.

The results showed that for the binary datasets, Md selects better features,
and outperforms mRMR in most of the data sets tested (10 out of 12). Moreover,
it is remarkable that Md does not require a previous discretization of the data,
so it can capture the importance of some features in cases where mRMR cannot.

For the multiclass datasets, the performance of Md decays. It has to be
noted that the multiclass problem is much more complex than the binary one
and the design of Md is more focused on the binary problem, which is the most
common classification problem in the literature. However, as future work, it will
be interesting to extend the method in order to handle this situation.

Finally, Md was also compared to previous results over several microarray
datasets using a suite of well-known FS methods, leading to an improvement in
80% of them, both in number of features and in percentage of error (up to 23%).
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