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Abstract. A plethora of methods have been developed to handle
anomaly detection in various application domains. This work focuses on
locating anomalies inside a categorical data set without assuming any spe-
cific domain knowledge. By exploiting the conditional dependence and
independence relationships among data attributes, not only can data an-
alysts recognize the anomaly, but also locate the potentially anomalous
attributes inside an anomalous instance following its masks. Masks are
geometrically generated based on the factorization of the joint probability
from a Bayesian network automatically learnt from the given data set.

1 Introduction

In the problem of anomaly detection, unusual patterns inside a given data set are
of special interests to data analysts. A comprehensive review of anomaly detec-
tion techniques and applications can be found in [2] in which a typical method,
either supervised or unsupervised, reports an anomalous score for each test in-
stance. However, the discussion of anomaly detection in categorical data sets
is relatively limited, especially in the unsupervised detection where no training
labels are available. The most recent work dealing with categorical data sets
includes [6], [7] and [8]. In [8], the authors introduce a rule-based algorithm
called LERAD in which a minimal set of conditional probabilities are estimated
from the data set and then used to compute the anomaly score for each of the
instances. In [7], the method learns a Bayesian network by using an Optimal
Reinsertion procedure and then uses the learnt Bayesian network to estimate the
conditional probability (anomaly score) of an instance given some disease-related
environmental variables. The authors in [6] propose Conditional and Marginal
Anomaly Tests both of which are defined on the conditional probabilities for a
carefully selected set of variables. Even though successful in their application
domains, all three methods are not easily generalized into applications where
not only labels are unavailable but also the conditional dependencies among
variables are hardly known. Exploiting dependencies among variables provides
invaluable information for anomaly detection.

This work focuses on anomaly detection in an unlabeled categorical data set
without assuming any a priori knowledge of it. In particular, the method pro-
posed in this work performs anomaly location by which each instance receives
a “mask” indicating both its anomaly score and the locations of its potentially
anomalous attributes. The fundamental assumption of this work is that in the
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given categorical data set, anomalies take uncommon attributes appearing with
low frequencies. In order to locate the anomalies and their anomalous attributes,
the suggested approach follows two stages. In the factorization stage, the joint
probability of an instance is factorized into a set of conditional and marginal
probabilities that best represent the conditional independencies among all at-
tributes. This is achieved by learning a Bayesian network with the maximal
Bayesian score from the data set. The second stage generates a mask for each
instance using the factorization learnt in the first stage. This is illustrated from
a geometrical point of view. The rest of this paper is organized as following: in
the theory part, Section 2 illustrates the factorization by performing structural
learning on Bayesian networks. Section 3 explains three steps to produce masks.
In the experiment part, Section 4 applies the methodology to a real world data
set that exemplifies the advantages and limitations of our method.

2 Factorization

Denote with X a categorical data set with N rows (instances) and K columns
(attributes, variables). Denote with Xk(k = 1, . . . , K) the k-th variable repre-
senting the k-th column in X. Denote with xn = {xn1, . . . , xnK}(n = 1, . . . , N)
the n-th instance in X. Given xn, denote its joint probability with P (xn) =
P (xn1, xn2, . . . , xnK). Denote factorization of P (xn) with an operation F(P (xn))
=

∏K
k=1 fk(xn,k). The factorization defines a multiplication of K factors fk(xn,k)

each of which is a function (conditional or marginal probability) of xn,k.
In order to factorize P (xn), given no knowledge of dependencies and in-

dependencies between variables, the intuitive method is to use the probability
chain rule. The problems are that there are K! different factorizations by us-
ing the chain rule and the selection of factors does not take into account the
true dependencies and independencies between groups of attributes. Therefore,
we prefer F(P (xn)) with factors fully exploring the conditional independencies
among variables and meanwhile with the multiplication of factors approximat-
ing P (xn) as closely as possible. In the extreme case, such a factorization can
be achieved by using the assumption that Xk are statistically independent of
each other. That is: F1(P (xn)) =

∏K
k=1 fk(xn,k) =

∏K
k=1 P (xn,k). Thus, we

obtain an alternative way to compute the joint probability P (xn) by using only
K marginals P (xn,k). The limitation of using the independent assumption is
obvious: the statistical independence among variables is not likely to be true.
Thus, it is critical to explore automatically the conditional dependencies and in-
dependencies among variables and encode this information into the factorization.

2.1 Factorization with Bayesian networks

Bayesian networks exploit the conditional independence within a joint distribu-
tion and the use of a Directed Acyclic Graph (DAG) allows a compact repre-
sentation of those independencies. Given a categorical data set X, a Bayesian
network B for a set of variables Xk consists of a network structure g that encodes
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a set of conditional independence assertions about variables Xk and g indicates
a factorization P (X1, . . . , XK) =

∏K
k=1 P (Xk|Pak) where Pak denotes the par-

ents of Xk in g.
According to [1], learning the structure of B is NP-hard. Following the work

in [4], the authors in [3] introduce a score-based Markov chain Monte Carlo
(MCMC) procedure for structural learning. MCMC converges to P (g|X) =
P (X|g)P (g)

P (X) , the posterior distribution of g given X. Ignoring the normalizing
denominator (same for all candidates g), the Bayesian score of g is score(g) =
log[P (X|g)] + log[P (g)]. MCMC is guided by both the generation of the next
candidate graph and the computation of score(g). We use potential scale re-
duction factor (PSRF) discussed in [5] to evaluate the convergence of MCMC.
PSRF monitors the convergence of a directed link between each pair of nodes in
g. MCMC converges if and only if all the links converge.

Table 1: The toy example.
instance X1 X2 X3 P (xn) instance X1 X2 X3 P (xn)

x1 1 2 2 0.125 x5 2 2 3 0.125
x2 1 1 2 0.125 x6 2 3 3 0.125
x3 1 2 3 0.125 x7 3 2 2 0.125
x4 1 1 3 0.125 x8 4 3 1 0.125

For the toy example in Table 1, the structural learning returns two opti-
mal DAGs g∗1 and g∗2 with the same maximal Bayesian score. Two optimal
DAGs suggest two factorizations F2(P (xn)) = P (xn1)P (xn2)P (xn3|xn1) and
F3(P (xn)) = P (xn1|xn3)P (xn2)P (xn3). Comparing the goodness of F1, F2 and
F3 on their closeness to P (xn) indicates F3 is the best factorization.

3 Generating masks to locate anomalous attributes

Given an instance xn, the factorization produces a group of factors fk(xn,k)
each of which represents one attribute xn,k. Therefore, the task of anomaly
location naturally moves on to the factors. We would prefer a clear label for
each xn,k indicating whether it is anomalous or not. The mask fulfills this
requirement. We define a mask for xn as a binary vector mn = {mn,1, . . . ,mn,K}
having the same dimension K as xn. Each xn,k of xnreceives a mask mn,k such
that xn,k is “masked” by mn,k. As a binary vector, mn,k of mn may recieve
either 0 or 1 according to the value of the factor fk(xn,k) from the factorization
F(P (xn)). mn,k = 0 indicates the corresponding attribute xn,k it “masks” in
xn is anomalous while mn,k = 1 indicates xn,k is normal. It is likely that a
given instance is associated with a mask with mn,k = 1 for all k = {1, . . . , K},
indicating a perfectly normal instance. Otherwise, all the attributes of xn taking
the mask 0 indicate the potentially anomalous positions.
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3.1 Mask generation

Step 1: construct a hypercube in the continuous Euclidean space. The
process is summarized by xn → rn → pn. Given xn, it is mapped into rn

by using the factorization from g∗. So for each rn, P (rn) =
∏K

k=1 fk(xn,k) =
∏K

k=1(rn,k). In order to construct a Euclidean space containing all instances, we
use logarithm to transform the product into summation so that rn is mapped
into a point pn in the log-likelihood space of xn. pn has the coordinates of
{loge(rn,1), . . . , loge(rn,K)}. A hypercube is constructed in K dimensional Eu-
clidean space so that there are no points falling outside the hypercube. To fully
specify the hypercube, one needs only two such points pmax and pmin having
the maximal and minimal loge(rn,k) across all n in each direction k. Given pmax

and pmin, the coordinates of all 2K vertexes of the hypercube can be derived
from those two points. Note that we use a relatively loose definition of “hyper-
cube” since its edges in our case are not necessarily equal. The bounding cube
for the toy example is shown in Figure 1.
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Fig. 1: A geometrical perspective of mask generation using the toy example.

Step 2: assign masks to vertexes of the hypercube. After the hyper-
cube is constructed, we assign a unique mask to each vertex of it. The point
pmax, the vertex closest to the origin in the space, is assigned a perfect mask
mn = {mn,1 = 1, . . . ,mn,K = 1}. The point pmin, farthest to the origin, is
assigned the worst mask mn = {mn,1 = 0, . . . , mn,K = 0}. Following the same
pattern of generating the coordinates of the vertexes, each of the other vertexes
receives a unique mask, as shown in Figure 1. Since the whole procedure is
unsupervised, it is reasonable to consider the extreme instances defined on the
vertexes and use them as prototypes to perform step 3.
Step 3: assign masks to instances. Given a point pn representing an in-
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stance xn, pn finds its nearest vertex by comparing the distances between each
vertex of the hypercube and itself. Ultimately, the point gets exactly the same
mask as its nearest vertex. pn in the toy example are associated with its corre-
sponding vertexes by the bold solid line (shortest distance) in Figure 1. This step
resembles nearest neighbor classification such that all vertexes are in the neigh-
borhood of pn and the classification label pn receives from its nearest neighbor is
a mask. There are situations where a point gets more than one nearest neighbor
among vertexes, leading to multiple masks.

4 Experiment

The Breast Cancer Wisconsin data set is originally used in the supervised clas-
sification of the cancer diagnosis results into benign and malign. We treat it,
however, from an unsupervised perspective. The data set consists of 699 in-
stances (samples) and 11 attributes including a patient ID and a class label. 16
instances with missing values are not used in this work. In order to fit into the
assumption that benign instances dominate the categorical data set, we recon-
struct three data set: full data set X1 having 444 samples for benign and 239
for malign, X2 having 444 samples for benign and 160 for malign, and X3 hav-
ing 444 samples for benign and 81 for malign. Note that there are duplicated
instances in all three data sets. Each unique sample receives a mask and we
conclude that samples receiving the perfect mask are benign, otherwise, they
are malign with 0s indicating the anomalous attributes.

The classification results are summarized in the confusion matrices in Table
2, 3 and 4 in which α+ and β+ denote real and predicted malign, α− and β−

denote real and predicted benign. The results demonstrate both the merits and

Table 2: X1

α+ α−

β+ 207 126
β− 29 87

Table 3: X2

α+ α−

β+ 152 124
β− 5 89

Table 4: X3

α+ α−

β+ 81 137
β− 0 76

drawbacks of our method. It performs well in detecting maligns with the ac-
curacy of 85.17%, 96.82% and 100% individually as the proportion of maligns
drops from 35.0% for X1 to 26.5% for X2 to 15.4% for X3. The decreasing
error rate with the increasing dominance of normal instances consolidates the
applicability of the method. Most attractively, the mask provides each resulted
malign sample with anomalous attributes potentially leading to cancer. How-
ever, the method suffers high false alarm rate for benign instances. One way
to mollify this is to relax the classification criterion on the number of “0” each
instance receives from its mask. It is clear from Figure 2 that more maligns tend
to have more “0” than benigns. If, for instance, 2 is chosen as the new classi-
fication criterion, the accuracy becomes 58.5% for malign and 80.3% for benign.
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Fig. 2: Comparison of two classes on the number of anomalous attributes.

5 Conclusion

When dealing with anomaly detection in categorical data sets, most methods,
including ours, are based on threshold setting in conditional, marginal and joint
probabilities. Instead of manually defining those probabilities, our method ex-
presses them by using a joint probability factorization according to a Bayesian
network automatically learnt from data. Mask generation shows one of many
possible approaches to set up a threshold on probabilities to differentiate normal
attributes from anomalous ones.

Our method does not need any a priori knowledge on the relationships among
categorical attributes. It might be an interesting direction in the future to en-
hance the method if a priori knowledge is available. In addition, the bounding
hypercube may be generalized into other geometric shapes such as a convex hull
that allows more flexibility in detecting anomalous attributes.
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