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Abstract. This work investigates how context should be taken into ac-
count when performing continuous authentication of a smartphone user
based on touchscreen and accelerometer readings extracted from swipe
gestures. The study is conducted on the publicly available HMOG dataset
consisting of 100 study subjects performing pre-defined reading and nav-
igation tasks while sitting and walking. It is shown that context-specific
models are needed for different smartphone usage and human activity sce-
narios to minimize authentication error. Also, the experimental results
suggests that utilization of phone movement improves swipe gesture-based
verification performance only when the user is moving.

1 Introduction and related work

Traditional ”obtrusive” authentication schemes, like passwords, PIN codes and
biometrics, do not provide mechanisms to determine whether an active mobile
device is being used by the same (or some other) authorized person after the
initial access has been granted. Continuous authentication (CA), also referred to
as active or implicit authentication, aims at verifying that a device is being used
by a legitimate person after login by constantly monitoring the built-in sensor
and device usage data, like (partial) face images, touchscreen gestures, device
motion, power consumption, in the background (transparently to the user) [1].

Touchscreen gesture-based user verification has been a popular approach in
CA [1]. Touch input is directly related to the actual physical interaction with the
mobile device, thus could be probably used for fast intrusion detection. Most of
the existing works have focused on analysing single-finger swipes, i.e. drag and
flick, but also other single and multi-finger gestures, like tap/typing, pinch and
spread, could be used for touch biometrics. Intuitively, unique phone motion
patterns may be observed while user is using touchscreen, thus joint analysis of
touch and consequent motion signals has been proposed for CA [2].

A major limitation with prior works on touch biometrics, and CA in general,
has been that phone usage and human activity contexts have not been properly
taken into account. It can be expected that touchscreen gestures and phone
movement patterns have significant differences depending whether the user is
browsing or reading (phone usage), or is stationary or moving (human activity),
which suggests that CA systems need to be context-aware. Furthermore, phone
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usage context also defines whether authentication should be performed in the
first place. For instance, user verification is not probably needed for casual
browsing, while it is crucial if private or confidential data is being accessed [3].

The preliminary studies [3, 4, 5, 6] have demonstrated that application or
task specific (phone usage context) modelling can indeed boost the performance
of swipe-based CA, while only marginal improvement has been achieved when
human activity context has been considered [6]. So far, human activity context-
based models have shown to be useful only when CA is performed based on
solely phone movement patterns [7] or combined with typing (tap gestures) [8].

In this work, we investigate the role of context when CA is conducted based
on touchscreen and accelerometer readings extracted from swipe gestures. Our
experimental analysis is performed on the publicly available HMOG dataset [8]
consisting of 100 subjects each performing pre-defined reading and navigation
tasks while sitting and walking. We show that both phone usage and human
activity context should be considered in swipe gesture-based CA. In addition, our
findings suggest that swipe-based CA should rely solely on touch signals when
the user is stationary, while inclusion of phone movement patterns improve CA
performance only when the user is moving.

(a) Touch feature distribution in read (left)
vs. navigation (right) phone usage scenarios.

(b) Motion feature distribution in two human
activities, sitting (left) vs. walking (right).

Fig. 1: The first two principal components and the corresponding Gaussian
mixture models of touch and phone movement based swipe features computed
over all subjects in the HMOG dataset [8], highlighting the importance context-
aware modelling in different a) phone usage and b) human activity scenarios.

2 Methodology

This study focuses on analysing two different types of context related to: (1)
phone usage (reading a document and navigating) and (2) user’s physical ac-
tivity (using the phone while sitting and walking), and their effect in CA of
a smartphone user. Figure 1 illustrates the distributions of features extracted
from touchscreen gestures in the read and navigation scenarios and the features
extracted from accelerometer signals during swipe gestures while the phone user
is sitting and walking. Based on Figure 1(a) it is obvious that touch gestures
have indeed significant differences across different phone usage contexts as al-
ready shown experimentally in [3, 4, 5, 6]. Similarly, Figure 1(b) depicts that
the distribution of accelerometer data features extracted during swipe gestures
is highly dependent on the phone user’s physical activity. Motivated by this,
the aim of this paper is to show that separate models need be trained for each
phone usage context and for each type of human activity for accurate CA of
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a smartphone user. In the following, we introduce the feature extraction and
anomaly detection methods used in our experimental analysis.

2.1 Feature extraction

Touchscreen data consists of time stamp, touch pressure and x- and y-coordinates
of a swipe, while accelerometer data contains time stamp, and acceleration sig-
nal in x, y and z directions. In our study, swipe gestures with more than
five touchscreen data points are considered for feature extraction. Altogether,
211 features1 (117 from touchscreen data and 94 from acceleration data) are
extracted from these signals. The features extracted from touch coordinates in-
clude e.g. mean, variation, percentiles, time, length, velocity, direction, gesture
shape related features, start and end point of the swipe in x and y direction
as well as from 2D data. Moreover, mean, variation, percentiles, and shape re-
lated features are computed from the touch pressure signal. The accelerometer
features are calculated from the magnitude signal during swipes and also from
0.5 seconds before and after each swipe, separately. These features include e.g.
mean, minimum, maximum, variation, and percentiles.

2.2 Anomaly detection

We use a simple distance-based one-class ensemble classifier for continuous au-
thentication that is based on the method presented in [9]. The idea is that swipes
locating in the normal region are considered to originate from the genuine user
and swipes outside of this are considered as anomalies, and therefore, originating
from an impostor.

The training begins with person-specific feature ranking based on inter-class
distance of genuine user’s and impostors’ data. The features are first normalized
to interval 0-1 and the training data Strain = {f1, . . . , fn}, where fi is feature
vector i, is divided to two sets: data from genuine user STrainG

= {f1G, . . . , fnG}
and data from impostors STrainI

= {f1I , . . . , fnI}. The aim is to find features fi
that differ the most between these two. This is done by calculating mean of each
feature separately for both sets after removing outliers. Features can then be
ranked by comparing the ratios (‖mean(fiG)−mean(fiI)‖)/mean(fiG). Note
that the data from both classes is required in this phase, while the rest of the
model training is conducted using only the information from the genuine class.

The actual anomaly detection model is trained using expectation maximiza-
tion (EM) clustering. The idea in this distance-based classifier is to cluster
training data from genuine user’s swipe gestures and assume that normal data
lies close to the cluster centroid, while anomalies are further away from the cen-
troid. Model used in this study is an ensemble classifier so several classifiers are
trained. In this stage, only training data from the genuine user, STrainG

, is used
and the 40 highest ranked features in the previous stage are selected to train the
classifiers. Each classifier is trained using two features: the first classifier uses

1The source codes for feature extraction and classification are available at: http://www.

oulu.fi/bisg/node/40364
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highest and second highest ranked features, the second uses second and third
highest ranked features, and so on. The data from each pair is clustered using
EM algorithm, and when a new swipe is classified, its Euclidean distance di to
each cluster centroids is calculated. The classifiers are combined by calculating
the sum D = Σdi from the distances as suggested in [10].

A threshold for D defines whether the new swipe is classified as normal or
an anomaly. This threshold is determined based on training data STrainG

. The
sum of distances to cluster centroids is calculated to each swipe of STrainG

.
Let us mark this vector of sum of distances as DG = {DG1, . . . , DGn}, where
n = ‖STrainG

‖. The threshold is then considered as the ith percentile of DG.
The value of i is optimized separately to each user to find equal error rate (EER).
As shown e.g. in [11], the classification on observation as user’s typical behaviour
or anomaly is not based on one single swipe. Instead, a sequence of 25 sequential
observations, and their distance to cluster centroids C = {D1, . . . , D25}, are
analysed. In order to avoid unnecessary false alarms, the values of C are ordered
and the final classification is based on the mean of four smallest value of C.

3 Experimental setup and analysis

For our study, we considered the HMOG dataset [8] because it is the only pub-
licly available multi-modal dataset for CA that contains data from both touch
gesture and other sensors, including accelerometer, gyroscope and magnetome-
ter. The dataset was collected from 100 subjects who were asked to carry out
three different pre-defined tasks using a Samsung Galaxy S4 smartphone: (1)
read a document, (2) type text, and (3) use map application. Since this study
concentrates on swipe gesture-based user authentication, we discarded the data
related to the typing scenario. Similarly, touch events related to tapping were
not used in the study. Thus, experiments are based on four scenarios: reading a
document while sitting (S1), reading while walking (S2), navigating while sitting
(S3), and navigating while walking (S4). Each task was performed during four
sessions. The swipe gesture data from first two sessions are used for training
and the remaining two are used for testing. Experiments are performed using
three feature sets: touchscreen, accelerometer and combination of both.

Table 1 reports the average EERs across subjects for context-specific and
general CA models. The context-specific models are trained and tested on the
data from the same scenario but from different sessions. The general model is
trained using data from all scenarios and tested on each individual scenario in
turn. According to the results, the results are significantly better when context-
specific models are used. In fact, with each scenario, the average EER is lower
when the model is trained using the data from same scenario as it is tested
compared to the error rate of the general model. Especially the reading scenarios
benefit from specific models as the average EER drops from 21.3% to 11.7% in
S1 and from 15.8% to 7.0% in S2 when context-specific authentication model is
used instead of the general one.

The results presented in Table 1 suggest that features extracted from accel-
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Table 1: EERs (and standard deviations) for context-specific and general models.

Train Test Touch Motion Fusion
S1: read & sit S1: read & sit 11.7% (13.6) 18.3% (18.8) 14.2% (16.9)
S1-S4: all S1: read & sit 25.5% (19.6) 29.2% (21.7) 21.3% (17.6)
S2: read & walk S2: read & walk 9.1% (12.6) 11.4% (12.2) 7.0% (11.8)
S1-S4: all S2: read & walk 26.6% (18.0) 21.4% (15.5) 15.8% (12.7)
S3: map & sit S3: map & sit 21.5% (12.2) 24.1% (17.8) 23.0% (17.4)
S1-S4: all S3: map & sit 28.4% (14.2) 27.1% (16.7) 22.7% (15.4)
S4: map & walk S4: map & walk 21.7% (11.3) 14.5% (14.5) 13.2% (13.4)
S1-S4: all S4: map & walk 27.4% (12.5) 20.8% (15.7) 16.8% (13.5)

Table 2: EERs (and standard deviations) for cross-scenario tests.

Train Test Touch Motion Fusion
S1: read & sit S2: read & walk 12.2% (13.6) 37.2% (23.3) 25.2% (21.8)
S2: read & walk S1: read & sit 11.5% (13.2) 40.3% (19.7) 26.7% (22.3)
S3: map & sit S4: map & walk 25.1% (12.8) 34.7% (19.6) 32.5% (20.0)
S4: map & walk S3: map & sit 23.7% (12.7) 33.3% (18.8) 31.8% (18.6)
S1: read & sit S3: map & sit 40.8% (17.1) 28.5% (18.8) 28.0% (18.0)
S3: map & sit S1: read & sit 40.7% (23.7) 26.2% (22.8) 24.4% (22.4)
S2: read & walk S4: map & walk 39.1% (15.0) 19.2% (15.0) 24.4% (16.6)
S4: map & walk S2: read & walk 40.8% (23.4) 22.1% (19.7) 20.9% (18.7)

eration signals are advised to be used only if user is physically active. In fact,
it can be seen from Table 1 that the best EER for sitting scenarios are obtained
using only touchscreen features while the best EERs for walking scenarios are
obtained using fusion of touch and motion features. The results depict also that
navigation scenario is more difficult than reading scenario from CA point of view.
The main reason for this is that the navigation scenario contains swipes to dif-
ferent directions while in reading scenario swipes are mainly vertical. In fact,
we conducted an additional experiment with S3 data where horizontal swipes
were removed. The EER for touch features dropped from 21.5% to 17.2%, which
suggests that vertical swipes contain more unique variations among the subjects.

Table 2 demonstrates the importance of considering both phone usage and
physical activity contexts in the training process. The results correspond to the
average EERs when CA models are trained with one phone usage context and
tested with the other while the physical activity remains the same. In addition,
Table 2 presents the average EERs when CA models are trained with one physical
activity and tested with the other while the phone usage context remains the
same. The result comparison between Table 1 and Table 2 shows as well that
CA models should be context-specific. For instance, the phone usage context
has a huge effect on the error rates as the EER for S2 jumps from 7.0% to 20.9%
when training is performed on navigation while walking scenario (S4) instead of
reading while walking (S2). Similarly, the EER for S2 increases from 7.0% to
12.2% when training is performed on reading while sitting scenario (S1) instead
of reading while walking (S2). In general, it can be noted that the phone usage
context has more significant effect on error rates than user’s physical activity.
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4 Conclusions and future work

This study investigated the role of context in swipe gesture-based continuous au-
thentication. It was shown that both phone usage and human activity scenarios
affect how the user is interacting with the device. Therefore, not only different
applications or tasks require their own specific model but different human activ-
ities as well. According to the experiments, only touch features should be used
for swipe-based verification if the user is stationary and combination of features
extracted from touchscreen and accelerometer signals when the user is moving.

We plan to extend our work from laboratory conditions into unconstrained
real-world scenarios where context information is not available. In general, the
phone usage context can be determined based on the currently running fore-
ground application, while we believe that the human activity context can be
estimated using pre-trained models [12] or unsupervised learning methods.
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