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Abstract. When dealing with machine learning on graphs, one of the
most successfully approaches is the one of kernel methods. Depending if
one is interested in predicting properties of graphs (e.g. graph classifica-
tion) or to predict properties of nodes in a single graph (e.g. graph node
classification), different kernel functions should be adopted. In the last
few years, several kernels for graphs have been defined in literature that
extract local features from the input graphs, obtaining both efficiency and
state-of-the-art predictive performances. Recently, some work has been
done in this direction also regarding graph node kernels, but the majority
of the graph node kernels available in literature consider only global infor-
mation, that can be not optimal for many tasks. In this paper, we propose
a procedure that allows to transform a local graph kernel in a kernel for
nodes in a single, huge graph. We apply a specific instantiation to the task
of disease gene prioritization from the bioinformatics domain, improving
the state of the art in many diseases.

1 Introduction

The abundance of relational datasets has led to the fast increase of large-scale
graph-based inference systems. Examples of such systems are ranging from
Biomedicine [1] to Social networks [2], to Recommendations [3]. The inference
in these cases consists in the prediction of properties associated to the nodes in
the graph. When dealing with graph data, one of the most successful approaches
is the one of kernel methods, whose performances are strongly affected by the
choice of the kernel function. However, the task of designing kernels for graph
nodes that show high performance in a wide range of different domains is not
trivial and it normally faces the trade-off between expressiveness and efficiency.

In the last two decades, many graph node kernels have been proposed and
applied in different systems from various fields. They can be classified in two
classes: diffusion-based and subgraph (or decomposition)-based. The former
is in general fast to compute, while the latter tend to show higher predictive
performance, while being more computationally demanding and more difficult
to define. However, decomposition-based kernels are common when considering
kernels between pairs of graphs (referred to as graph kernels).

In this paper, we propose a procedure to define graph node kernels starting
from decomposition-based graph kernels. We start from the Weisfeiler-Leman
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(WL) graph kernel [4], and we define a corresponding graph node kernel, consid-
ering a richer set of features. The empirical evaluation on several disease gene
prioritization tasks shows that our kernel achieves state-of-the-art performances.

2 Background

In this section, we start providing some basic definitions and notation. We then
revise the state-of-the-art concerning graph node kernels, and finally describe
the WL subtree kernel, which is later used to develop a specific instance of our
proposed graph node kernel framework.

We consider a graph as a triplet G = (V,E, λ(·)), in which V is the set of
nodes (or vertices), E is the edge set, and λ : V −→ L is the node labelling
function that assigns a discrete label in L to each node in the graph. Given a
vertex v, the d-neighbors of as all the nodes with shortest path distance exactly
d from v, i.e. N d

v = {u| |shortest path(v, u)| = d}. A kernel k(·, ·) is a positive
semi-definite function k : X × X → R that corresponds to a dot product in a
Reproducing Kernel Hilbert Space, i.e. k(x, y) = 〈φ(x), φ(y)〉, where φ : X → Rz

is a feature map projecting nonlinearly any x ∈ X into a real-valued vector space
of dimension z � 1. With φi(x) we denote the i-th entry of φ(x). Note that X
can be any space.

In this paper, we consider X to be the space of nodes in a huge graph G,
and we refer to the kernel as a graph node kernel. Existing graph node kernels
can be classified into two categories: diffusion-based kernels and subgraph (or
decomposition) based kernels. Diffusion-based graph node kernels measure the
similarity between two nodes by taking into account global measures, based
on random walks, related to two nodes. The most commonly used diffusion-
based graph node kernel is the Laplacian exponential diffusion kernel (LED)
[5] which is based on the heat diffusion phenomenon. In LED, the similarity
between two nodes is proportional to the number of paths connecting them.
Therefore, the similarities between high degree nodes are normally higher than
the ones between nodes with low degree. This problem is solved in the Markov
Exponential Diffusion kernel (MED) [6], a modification of LED which introduces
a normalization that replaces the Laplacian matrix by the Markov matrix. A
similar graph node kernel is the Markov Diffusion kernel (MD) [7] that defines
the similarity between two nodes by measuring how similar the patterns of their
heat diffusion are, i.e. it expresses how much nodes “influence” each other. The
Regularized Laplacian kernel (RL) [8] counts the number of walks connecting
two nodes on the graph induced by taking the negative Laplacian matrix as the
adjacency matrix. Diffusion-based graph kernels are relatively fast to compute.
However, they are not able to effectively exploit the local connectivity of nodes,
so they do not show a high discriminative capacity.

Decomposition-based graph node kernels consider local subgraphs which are
associated to two nodes when computing their similarities. As an example, the
Conjuctive Disjunctive Node Kernel (CDNK) [9] is a graph node kernel that is
based on NSPDK, a kernel for graphs [10]. First, the input graph is transformed
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into a set of linked connected components in which two types of links, “conjunc-
tive” and “disjunctive”, are introduced and treated in different manners. Nodes
linked by conjunctive links are used jointly to define the notion of context, while
nodes linked by disjunctive edges are instead only used to define features. Sec-
ond, the features of a node u are defined as the subset of NSPDK features that
have the node u as one of the roots. Finally, the kernel computes the number of
identical features between two nodes. CDNK has the problem of depending on a
large number of parameters that can be problematic in the model selection pro-
cess. Moreover, its graph preprocessing step could be computationally expensive.
Intuitively, subgraph-based kernels are able to capture the local relationships in
the graph, that can be beneficial for some tasks. However, the definition of such
kernels is not straightforward. The WL subtree kernel [4] is a kernel defined
between pairs of graphs. Given a graph G the WL algorithm computes, at each
iteration i = 0, . . . , h? (maximum number of iterations), a new labelling function
λi : V → Li defined as: λi(v) = f#(λi−1(v), sort({λi−1(u)|u ∈ N1

v })), where f#
is a hashing function, sort returns a sorted list of labels, λ0 = λ (the original
set of labels for all graphs), Li is the set of all labels generable at iteration i by
all graphs, and Li ∩ Lj = ∅ if i 6= j. Each label generated at the i-th iteration
by f# can be interpreted as a subtree-walk of depth i. Moreover, each λi(v) is

associated to (rooted in) a specific node v. Let Lh?

WL =
⋃h?

i=0 Li. The WL kernel
measures the similarity between two graphs by counting the number of identical
labels (subtree walks) between two graphs at the different WL iterations. We can

define the WL feature mapping φWL(G) as: φWL
j (G) =

∑
v∈V

∑h∗

i=0 δ(λi(v), σj),

where δ is the Kronecker’s delta function, and σj is the j-th element1 of Lh?

WL.
The WL kernel is then defined as kh

?

WL(G,G′) = 〈φWL(G), φWL(G′)〉.

3 Proposed approach

In this section, we detail our proposed procedure. We can define decomposition
features as features that depend on local substructures of the graph. There are
many proposals in literature that define graph kernels based on decomposition
features. Among the others, the NSPDK kernel [10], the ODDST kernel [11, 12],
and the WL kernel [4], described in Section 2. In the original formulations,
decomposition features are exploited to define graph kernels. Our proposal is a
procedure to define a graph node kernel out of them.
We achieve this goal with the following steps: i) we obtain graph node features
(that are rooted decomposition features) from a slight modification of the exist-
ing graph kernels (in this paper, we focus on WL); ii) we define a procedure to
combine such features in order to obtain a discriminative graph node kernel.

Weisfeiler-Lehman node features. We can easily define a WL feature
mapping for each node v in a graph as follows (we drop the WL subscript for

ease of notation): φj(v) =
∑h∗

i=0 δ(λi(v), σj).

1Any predetermined enumeration of the elements of Lh?

WL can be used.
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Feature Enhancement Procedure. Our proposed feature enhancement
procedure takes inspiration from the NSPDK kernel: we generate a new feature
space composed of pairs of the original WL features, i.e. Lh?

WL×Lh?

WL. However,
we restrict our features to pairs where the generating nodes are no more distant
than a predefined maximum distance d?.

Thus, given nodes u and v, we can define the DEEP graph node kernel as:

DEEP d∗

WL,h∗(u, v) = φ(u)>φ(v)

 ∑
0≤d≤d∗

∑
s∈Nd

u

∑
t∈Nd

v

φ(s)>φ(t)

 , (1)

where we recall N d
v is the set of nodes at shortest-path distance d from v. Note

that, since the dot product is linear, it is possible to pre-compute
∑

s∈Nd
v
φ(s)

for each node v in the graph and for each d. The feature space of this kernel,
fixed a node v, is composed by pairs of WL features from dimension 0 up to h?,
rooted in the vertices v and s ∈ N d

v . The resulting kernel combines the features
of the base kernel, allowing for the modeling of complex relationships. Eq. 1 is
positive demi-definite kernel since it is an instance of convolution kernels [13].

4 Experimental setup

We evaluate our proposed node kernel in the context of disease gene prioritiza-
tion. Given a genetic graph, a set of genes known to be associated to a disease
and a set of candidate genes, first a graph node kernel is adopted to compute
a gram-matrix which encodes similarities between any couple of genes. Then
this gram-matrix is fed into a kernel machine to build a model. Finally, the ob-
tained model is used to rank the candidate genes. For the considered datasets,
the nodes represent genes (7, 311 genes in total). We considered two separate
networks derived from the BioGPS and the Pathways datasets. BioGPS is a
gene co-expression network including 79 tissues, measured with the Affymetrix
U133A array. A link is formed between two genes when their pairwise Pearson
correlation coefficient (PCC) is larger than 0.5. The total number of links for
this dataset is 911, 294. Pathways is a dataset retrieved from KEGG, Reactome,
PharmGKB and the Pathway Interaction databases. Two genes are linked, if
their corresponding proteins co-participate in any pathway. The number of edges
for this graph is 2, 254, 822. To label the nodes in the graphs, we adopt the node
labeling method proposed in [9]. Each gene is represented by a binary vector
where each element shows whether a Gene Ontology [14] term is associated with
the gene or not. The gene representations are then clustered (hyper-parameter
L) and genes belonging to the same cluster are labeled with their cluster identi-
fier. We followed the experimental procedure in [9] and [6], in which 12 diseases
[15] with at least 30 confirmed genes are used. For each disease, a dataset includ-
ing a positive set P and a negative set N is constructed such that (|N | = 1

2 |P|).
The set P contains all confirmed disease genes, while the set N contains ran-
dom genes associated at least to one disease and not related to the considered
disease. Leave-one-out cross validation is adopted to evaluate the performance
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of each method. We compute a decision score qi for each test gene gi follow-
ing [6]. We collect the decision scores for every gene in the dataset to form a
global ranking on which we compute the area under the ROC curve (AUC). The
hyper-parameters of the proposed method were tuned using a 10-fold CV on the
dataset 0 in the following ranges: i∗ ∈ {1, 2, 3}, d∗ ∈ {1, 2, 3}, the SVM C
parameter in {10−5, 10−4, 10−3, 10−2, 10−1, 1, 10, 102}, and the number of
clusters L in {10, 15, 20, 25}. For the hyper-parameters of the other kernels
please refer to [9].

5 Results and discussion

DG 1 2 3 4 5 6 7 8 9 10 11 AUC Rank

BioGPS

DK 51.9/6 81.7/2 64.3/5 65.3/5 64.0/6 74.6/3 73.0/4 74.4/5 71.5/2 54.0/4 58.2/5 66.6 4.27

MD 57.4/5 78.5/3 59.6/6 58.2/6 64.1/5 70.2/6 66.7/6 76.8/1 65.6/6 50.3/6 51.3/6 63.5 5.09

ME 58.8/4 75.2/4 71.6/2 67.8/4 66.5/3 71.0/5 75.4/3 76.2/3 67.7/4 56.1/3 59.3/4 67.8 3.55

RL 59.2/3 75.0/5 71.8/1 67.8/3 66.2/4 71.2/4 75.6/2 76.4/2 69.9/3 51.1/5 59.3/3 67.6 3.18

CD 65.1/2 88.3/1 66.5/4 71.9/2 75.9/1 79.3/2 68.8/5 74.7/4 66.8/5 77.6/1 71.8/2 73.3 2.64

DE 74.4/1 71.2/6 69.5/3 81.9/1 67.4/2 79.4/1 79.1/1 65.5/6 72.0/1 71.9/2 82.5/1 74.1 2.27

Pathways

DK 74.7/6 55.1/6 55.0/6 54.3/6 52.9/6 83.4/6 84.6/6 53.7/6 52.5/6 68.8/4 53.7/6 62.6 5.8

MD 76.4/4 64.9/5 62.7/5 65.2/5 55.7/5 92.7/4 88.3/4 65.6/5 64.9/3 65.4/6 69.2/5 70.1 4.6

ME 78.7/3 76.6/3 64.1/4 73.7/2 62.7/3 96.5/2 89.4/2 72.0/4 64.2/5 74.4/3 74.6/3 75.2 3.1

RL 78.8/2 76.6/2 65.6/3 73.7/3 62.7/4 96.5/1 89.5/1 72.3/3 64.2/4 74.4/2 74.1/4 75.3 2.6

CD 80.2/1 81.1/1 67.1/2 66.1/4 68.3/2 93.0/3 88.5/3 72.5/2 81.3/1 66.9/5 76.9/2 76.6 2.36

DE 76.4/4 75.3/4 70.1/1 77.9/1 75.2/1 84.5/5 86.4/5 73.4/1 72.2/2 77.8/1 86.3/1 77.8 2.36

Table 1: AUC/Rank of the considered kernels on 11 gene-disease associations
using networks induced by the BioGPS and the Pathway databases. Best results
are underlined. ME = MED, CD = CDNK, DE = DEEP (our proposal), DG =
Disease gene association, AUC= average AUC, Rank=average Rank.

Table 1 reports the performance in AUC and rank of the different graph
node kernels on the two considered networks. The table shows that, in gen-
eral, subgraph-based kernels (CDNK and DEEP) perform better with respect to
diffusion-based ones (DK, MD, MED and RL). In particular, CDNK and DEEP
kernels show an average improvement in AUC of 5.5% and 6.3% with respect
to the best diffusion-based kernel on the BioGPS dataset, respectively. As for
the Pathways dataset, the improvement is AUC is 1.3% and 2.5%, respectively.
The proposed DEEP kernel performs slightly better than CDNK with respect to
the mean AUC in both datasets (improvement of 0.8% and 1.2%, respectively).
In both datasets, our proposed DEEP kernel is ranked at the first place in 6
out of 11 diseases, with the second best performing kernel being CDNK with 3
first places. Moreover, our proposed DEEP kernel is the one with lower average
rank in both the datasets. Looking at the single diseases, in some cases, such as
disease 4 and 11 on BioGPS and disease 11 on Pathways, DEEP shows an AUC
around 10% higher than the best competing method. In general, our proposed
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DEEP node kernel shows good predictive performance, performing better than
all the other considered kernels in the majority of our experiments.

6 Conclusions and future work

In this paper, we have proposed a procedure for defining graph node kernels
starting from decomposition-based graph kernels. An instantiation of such pro-
cedure have been evaluated on the task of disease gene prioritization, showing
state-of-the-art predictive performance. In future, we plan to apply such pro-
cedure to other graph kernels, and to define an approximated version of the
procedure with improved efficiency.
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