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Abstract. We study risk/benefit tradeoff of missing value imputation
in the context of feature selection. We caution against using imputation
methods that may yield false positives: features not associated to the
target becoming dependent as a result of imputation. We also investigate
situations in which imputing missing values may be beneficial to reduce
false negatives. We use causal graphs to characterize when structural bias
arises and introduce a de-biased version of the t-test.

1 Introduction

Sample bias is a well-known form of bias that plagues datasets large and small.
In machine learning, this refers to obtaining (training) data drawn according to
a distribution deviating from the “natural” distribution of the problem at hand.
A variant of this problem is to have datasets with missing data. In this case
“sample bias” corresponds entirely missing samples. We consider in this paper
cases in which values of variables may be sporadically missing.

The difficulty of the missing data problem varies depending on the nature
of the “missingness mechanism” [1, 2, 3]. In large datasets, samples containing
values Missing Completely At Random (MCAR) can be discarded without bias-
ing the data distribution. In this case, the missingness mechanism is unrelated
to any study variable. A slightly more general and frequent case concerns data
Missing At Random (MAR) for which the missingness mechanism depends solely
on variables with complete information. Data that are neither MCAR nor MAR
are referred to Missing Not At Random (MNAR). The literature abounds in algo-
rithms addressing missing data with imputation (replacement of missing values),
partial imputation, partial deletion, full analysis, and interpolation [4, 5, 6].

In this paper, we are interested in studying the potential bias introduced in
feature selection when handling missing data improperly. It is generally
very tempting to impute missing values to utilize standard feature selection
methods. When large amounts of data are missing (e.g. 80%) this becomes
almost “necessary” because full records can seldom be found at all, which renders
multivariate selection methods very difficult to apply. However, we show that,
particularly when large amounts of data are missing, imputation may introduce
bias in data, even in the presumably “nicest” case of MCAR data. To the best
of our knowledge, the modified t-statistic we propose and the use of causal
graph to evidence the notion of structural bias are both new.1

1Source code available in https://github.com/chalearn/missing-causal-relation.git.
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2 Motivation and problem setting

Feature selection may have several purposes [7]: Prediction (increasing or least
deteriorating prediction performance) or discovery (explaining a phenomenon
by identifying features associated with a target variable). While prediction and
discovery are related and often addressed jointly, they differ in their emphasis
on Type I and Type II error. Type I errors (false positives) affect more
discovery tasks: Wrong associations identified as spurious by expert knowledge
may discredit a feature selection method or, if not identified, can lead to harmful
decisions (inefficient or detrimental new policies or treatments). Type II errors
(false negatives) affect more the prediction task. It has been shown that
predictors are very tolerant to large amounts of irrelevant variables, but their
performance deteriorates a lot when key predictive variables are omitted [7].

To make our point more clearly, we consider univariate feature ranking
methods. However, our analysis extends naturally to multivariate feature se-
lection. We call “test statistic” any univariate feature ranking criterion. For
example, the following t-statistic is commonly used for balanced binary classifi-
cation problems with continuous features:
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µ̂i are the sample means, σi the sample standard deviations, σp the pooled within
class standard deviation, and n1 = n2 = n/2 the number of samples per class.

We adopt standard methods of evaluation. The fraction of Type I errors (false
positive rate) is assessed by the p-value of a statistical test (e.g. the t-test for the
t-statistic). Corrections for multiple testing such as the Bonferroni correction,
may be applied on top of our analysis. For non tabulated test statistics, we
use “distractors” to emulate a null distribution (features obtained by randomly
permuting the values of real features). The p-value is then estimated as the
fraction of distractors whose test statistic exceeds the value obtained for the
feature being tested. Type II errors are more difficult to assess in real data (for
which no ground truth of the relevant features is known). We resort to using
the prediction performances of a given predictor to quantify them indirectly.

3 Imputation bias: an illustrative example

We selected a didactic example, carved out of the MNIST digit recognition prob-
lem [8], to illustrate “imputation bias” (Figure 1): a binary classification problem
in which half the features are random distractors (permutations of real features).
Features are ranked with the S2N filter (analogous to the t-statistic) and, for
predictive modeling, ridge regression is performed with the top ranking features.
We vary the fraction of missing values, selected completely at random. Two im-
putation methods are compared: Median and SVD. The SVD method, praised
by many authors [9, 10, 11], capitalizes on correlations of lines and columns in
the data matrix, while the median method treats features independently.
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Fig. 1: SVD biases feature discovery. Feature selection for a binary classification

problem (see text). Left: Predictive power. SVD performs suspiciously “too well” at low

number of selected features: better results are obtained with MORE missing data! Right:

Discovery power. For large fractions of missing values, SVD curves drop more quickly than

those of median imputations. (Precision = fraction of “true features” retrieved of all features.

Recall = fraction of “true features” retrieved of “all true features”, a.k.a. True Positive Rate.)

The learning curves (Area under ROC curve as a function of number of fea-
tures) show the superiority of SVD over median imputation (good prediction
power). However, imputing with SVD before feature selection results in more
false positives, see precision-recall curves (poor discovery power). Our interpre-
tation is that SVD constructs falsely relevant features, which may be even more
relevant than real features, by substituting missing values with combinations of
ALL features. This is consistent with the results of the left figure.

4 Statistical bias

A first problem encountered with a naive usage of imputation can be traced to
well-known statistical biases [12]. Applying Formula 1 to imputed data may
yield false positive discoveries by under-estimating variance in data. The formula
assumes independently and identically distributed samples, but imputed values
break independence assumptions. A simple correction in the case of median im-
putation would be to divide the class variances by the number of observed values
noi, not the total number of values, since imputed values carry no novel informa-
tion. The analysis of bias introduced by SVD imputation is more complicated.
To simplify, assume that we perform (single) imputation of the missing values
of a feature of interest S by linear regression of a fully observed helper variable
H (correlated both to S and the target T ). Using the imputed values in the cal-
culation of σ1 and σ2 may under-estimate the variance for two reasons. Firstly,
assuming the linear model S = aH + noise is “correct”, using single imputa-
tion corresponds to replacing missing values by their expected value S = aH,
hence ignoring the noise term (which can be estimated by the RMSE residual
of the fit σr). Secondly, the regression coefficient is evaluated only from a finite
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(small) amount of observed data, hence subject to some uncertainty. In a simple
(approximate) formula, we correct for both types of biases:

tmodified =
µ̂1 − µ̂2√

2/n
√

σ2
p + fmσ

2
r︸ ︷︷ ︸

regression residual

(1 + α/no)︸ ︷︷ ︸
regression coeff. uncertainty

(2)

Compared to Equation 1, σp is the pooled within class standard deviation (esti-
mated on all samples after imputation), fm is the fraction of missing values, σr
is the RMSE residual of the fit, no the number of observed (non missing) values,
and α a positive coefficient. See our supplemental material for details.2

5 Structural bias

A second problem encountered with a naive usage of imputation stems from
wrong assumptions about the underlying data generating process. Simple struc-
tural causal model allow us to illustrate this point. Unlike other authors (e.g.
[3]) we use causal models to analyze imputation mechanisms, NOT missingness
mechanisms (assumed to be MCAR for simplicity). We state the problem as:
• S is a feature of interest; some of its values are missing.
• H is a feature correlated to S and T ; H and T are fully observed.
• Σ is feature S after imputation of missing values using H (helper).
• Does Σ⊥T ⇒ S⊥T and Σ∠T ⇒ S∠T? (⊥ .

= independent; ∠
.
= dependent).

We conduct first a listwise deletion (LWD) test of independence between S and
T ignoring records with missing values. We then challenge the LWD test result
by re-testing after imputation by regression with H. Two cases, depending on
the outcome of the LWD test (Table 1), are exemplified in Figure 2 and Figure 3.
We highlight our “nightmare case” in which the imputation mechanism reverses
the causal arrow, which might lead to a false positive dependency S∠T .

Table 1: Challenging the results of listwise deletion (LWD test). Dou-
ble arrows mean imputation. Directed arrows mean a causal relationship and
bidirected arrows the presence of a latent common cause. Undirected edges mean
any dependency (causal direction irrelevant). Stars are ”wild cards” coding for
”arrow or not arrow” e.g. A← ∗B means A↔ B or A← B.

LWD Dependencies Model graph Imput. graph

S∠T
Null model (S⊥T ,S∠H,H⊥T ) T S ∗ − ∗H T Σ⇐ H
Alt. model (S∠T ,S∠H,H⊥T ) T∗ → S ← ∗H T∗ → Σ⇐ H

S⊥T
Null model (S⊥T ,S∠H,H∠T ) S∗ → H ← ∗T Σ⇐ H ← ∗T
Alt. model (S∠T ,S∠H,H∠T ) S −H Σ⇐ H

T T

2Statistical properties of a univariate feature relevance estimator in the presence of missing
data, K. Bennett, I. Guyon and B. Seijo-Pardo available in http://www.lidiagroup.org/

index.php/en/materials-en.html.
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Fig. 2: Imputation yields FALSE NEGATIVE. We use the t-test to reveal dependencies

between S (source) and T (target) (p-value ≤ 0.01). H (helper) is an “auxiliary” variable. In

histograms and scatter plots of S and H, binary variable T = ±1 is color coded (red/blue)

and missing values are represented in yellow. Left: 100 points randomly drawn following the

data generating model T ∼ Bern (p = 1/2) ;H ∼ N (0, 1);S = T + H + noise. The p-value

reveal that T and S are significantly DEPENDENT. Middle: S has 80% of values

Missing Completely At Random (MCAR). H and T are fully known. The p-value indicates

that T and S remain significantly dependent based on the remaining 20% of complete

data. Right: We impute missing values by regressing S on H. Imputation results in a loss

of blue/red separation in the histogram of S. According to the p-value, the dependency

between S and T is no longer detectable. Imputation using H, carrying no information

about T , contributed noise w.r.t. detecting the dependency between S and T .

Fig. 3: Imputation yields FALSE POSITIVE. Same problem setting as in the previous

figure, with a different data generating model for which S and T are INDEPENDENT.

Left: We draw 100 points with the model T ∼ Bern (p = 1/2) ;S ∼ N (0, 1);H = T +S+noise.

No significant dependency between S and T is found according to the p-value of the T-test.

Middle: S has 80% of values Missing Completely At Random (MCAR). H and T are fully

known. No change. Right: We impute missing values by regressing S on H. The imputation

model H ⇒ S reverses the causal arrow S → H. After imputation there is a blue/red

separation in the histogram of S, which did not exist in the original data: S and T become

DEPENDENT (strikethrough p-value). Our proposed correction to the t statistic (non

strikethrough text) brings the p-value below the chosen significance level (0.01).
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6 Conclusion

Imputing missing values before performing feature selection is tempting, partic-
ularly when there is a large fraction of missing values (above 80%). Yet this
is precisely when it is important to be cautious. Replacing missing values may
introduce bias in data, with adverse effects on type I errors (false positives) and
type II errors (false negatives). This occurs even for the “nicest” types of miss-
ingness mechanisms: MCAR. The types of bias introduced are of two nature:
statistical and structural. Statistical bias results in improper estimation of
variance and/or co-variance between variables and can be corrected either ana-
lytically of by multiple imputation. We proposed for univariate feature selection
of continuous features and a binary target variable a modified t-statistic, which
takes into account the uncertainty of linear regression imputation analytically.
It captures both the uncertainty due to the limited accuracy of the regression
coefficients (estimated from a small data sample) and the residual of the fit.
Structural bias is more insidious. It stems from the reversal of causal arrows
by the imputation mechanism and can result in an increasing rate of false posi-
tives. For problems of prediction, this may not be a problem. But for problems
of discovery, when a large fraction of variable values are missing, it is not ad-
visable to use imputation methods such as regression or SVD, if one wants to
avoid increasing the false discovery rate. Future work includes devising novel
feature selection methods robust to missing data, without requiring imputation
of missing values.
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