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Abstract. This paper introduces Regression WiSARD and ClusRe-
gression WiSARD, two new weightless neural network models that were
applied in the challenging task of predicting the total palm oil produc-
tion of a set of 28 differently located sites under different climate and soil
profiles. Both models were derived from the n-tuple regression weightless
neural model and obtained error (MAE) rates of 0.08737% and 0.08938%,
respectively, which are very competitive with the state-of-art (0.07569),
whilst being four (4) orders of magnitude faster during the training phase.

1 Introduction

Regression is one of the most important machine learning tasks, given the wide
range of practical situations in the real world where it is necessary to predict
values in a given continuum space. Due to its great utility, it is desirable that
simple devices, such as small sensors, could perform regression with online train-
ing. Weightless artificial neural networks (WANNs), due to its lean, RAM-based
architecture, seems to be ideal for this type of task.

This paper presents and explores the use of WANNs in the KDD18 compe-
tition [5], a challenge which goal is to predict the palm oil harvest productivity
of a set of 28 different production fields using data provided by an agribusiness
company. The dataset contains information about palm trees varieties, harvest
dates, atmospheric data during the development of the trees, and soil charac-
teristics of the fields where the trees are located in. The novel WANN models
are based on the n-tuple Regression Network [3], which has been proved success-
ful when compared to other classical regression approaches in non-linear plant
approximation, and Mackey-Glass chaotic time series prediction tasks.

The remainder of this text is organized as follows: Section 2 presents the
two weightless models proposed for regression, as well as the basic concepts be-
hind the models that inspired it: WiSARD [1] and n-tuple Regression Network.
Section 3 discusses the various approaches used in the KDD18 competition, as
well as a comparison with state-of-the-art methods and other relevant results.
Conclusion and future work are presented in Section 4.
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2 Enhancing n-tuple regression

2.1 WiSARD’s and n-tuple regression basics

• WiSARD[1]: a n-tuple classifier composed by class discriminators; each
discriminator is a set of N RAM nodes having n address lines each. All
discriminators share a structure called input retina, from which a pseudo-
random mapping of its N ∗ n bits composes the input address lines of all
of its RAM nodes. In this model, the learning phase consists of writing
”1”s; classification is done via reading all RAM nodes and performing a
summation of the addressed contents;

• ClusWiSARD: an extension of the WiSARD model that uses more than
one discriminator per class and has a policy of creating new discriminators
if the example presented to the network is not sufficiently similar to those
learned by already existing discriminators; this way, ClusWiSARD creates
sub-profiles for learned classes; this model can be used in a supervised,
semi-supervised and unsupervised manner; in a challenge of financial credit
analysis, ClusWiSARD outperformed SVM by two orders of magnitude in
training time, while remaining competitive in accuracy [2];

• n-tuple regression network[3]: modification of the basic n-tuple classifier
architecture, which allows it to operate as a non-parametric kernel re-
gression estimator; it is also capable of approximating probability density
functions (pdfs) and deterministic arbitrary function mappings; for this,
the n-tuple regression network uses a RAM-based structure, where each
memory location stores a counter and a weight, which is updated through
the LMS algorithm [4].

2.2 RegressionWiSARD

RegressionWiSARD (ReW) is an extension of the n-tuple Regression Network,
which adds to its original structure some characteristics of the WiSARD. Here
is a description of its general architecture:

• Each RAM location in the ReW model has two dimensions: a counter, and
a “partial” y, a value formed by the predictions learned by the network,
both updated at each pattern training; initially all values are set to zero;

• ReW accepts binary data with exactly the size of its retina (N ∗n) as input,
what normally require some kind of preprocessing to transform the input
data into binary representation; each pseudo-randomly mapped group of n
bits of the input retina will access the position corresponding to its values
a neuron (RAM node);

• In the training phase, k pairs (xi, yi) are submitted to the ReW net-
work, and each of their corresponding addressed memory positions will
have their two values updated; the counter is incremented and partial ac-
cess is summed with the yi of the example that generated the access;
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Fig. 1: Example of a ReW model behavior in the training phase. A binary input
and a float value y are presented to the model. The pseudo-random mapping is
applied to the binary input and the new pattern is divided into n-tuples, each
one being assigned to one of the regression RAMs. The values related to the
address corresponding to the tuple are updated in the following way: the counter
is incremented by 1, while the summation is incremented by the value of y.

• In the prediction phase the sum of counters (
∑

c) and partial y (
∑

y) of the
positions accessed by a given x are used to calculate the corresponding y;
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• In ReW it is possible to ignore the contribution of an address that does
not satisfy a certain minimum of “0”s in its formation; the same is possible
with “1”s.
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2.3 ClusRegressionWiSARD

Inspired by ClusWiSARD, the ClusRegressionWiSARD (CReW) is a network
formed by several ReWs, each with distinct mappings, but with retinas of the
same size and same address size as well. In the training phase, when a pair (xi,
yi) is submitted to the network, x is presented for each ReW, which behaves as a
class discriminator of the WiSARD in the classification phase, that is, each ReW
will return a score obtained from the number of positions of its memories that
have been accessed and have counter with value greater than zero. All ReWs
with the highest scores are trained with (xi, yi).

In the prediction phase, when an input x is submitted to the CReW, it will
be sorted by each ReW and the highest score will predict its corresponding y.
If there is a tie between the ReWs, the tie-break policy known as bleaching,
native to WiSARD, will be used. In it a threshold initialized with value zero
is incremented with each tie and a new classification occurs, being considered
for the punctuation of each discriminator only the positions of memory whose
counter is superior to the bleaching. If there is an absolute tie, that is, the
value of the bleaching is greater than the cardinality of the training set used, a
previously chosen ReW default is elected.

3 Experimental Results

3.1 Experimental setup

The data available to the competitors was divided into tree types of files: first,
the training and testing files, containing 5243 and 4110 observations, respec-
tively. Both files contains as features i) the id of the observation; ii) the id of the
field the observation was planted; iii) the age of the palm tree; iv) the type of
the palm tree; v) the year of harvest and vi) the month of harvest. The training
file also has information regarding the target y, which is the total amount of
palm oil produced by the tree. Second, a file containing information regarding
the soil properties of the field in which the palm tree is planted. Finally, 28
files containing data regarding historical weather measured in each field from
January 2002 to December 2007.

The initial modeling removes the id and the field id and adds additional
information from the other files. First, a time window named tw is defined in
order to search weather information in a specific period of time going backwards
from the month prior to the harvest of the tree. Second, all 66 features related to
the soil data are added. The new observation is then composed by 2+66+8×tw
features.

In a second round of experiments, variations of the initial modeling were
performed. One of them ignores the soil data by creating a total of 28 ReWs,
each one responsible for predicting the production of trees planted in a specific
field. Other variations aims to overcome the problem of the type feature: there
are values in the testing file that are not present in the training file. These
variations included the removal of the feature and the usage of one-hot encoding
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of all possible values
Since the features must be binarized, a thermometer encoding is applied. Due

to the short space of time, it was not possible to perform experiments aiming
for the best thermometer value for each feature. As a result, the same value was
applied to all features. However, a small set of different values were used for an
empirical evaluation. In addition, since a binary word of size w can me divided
into different sizes of n tuples, all possible n values that are less than 32 were
tested.

3.2 Analysis of the experiments

The best of RAM-based solutions reached the sixth position of 51 teams. In this
section we will present the best accuracy for the solutions using ReW, CReW
and ensemble of both (Table 1) and a comparison of accuracy and speed of the
models proposed here and of those that had better performance in the challenge
(Table 2). The experimental environment used here is a Intel Core i5 1,8 GHz
with 8 GB DRR.

Method Parameters Mean Absolute Error

Ensemble

200 CReWs, therm = 10,
tw = 20, n = [11, 17],
min0 = min1 = [0, 5], limit = [3, 9],
geometric mean

0.08468

Ensemble

55 CReWs + 55 ReWs,
therm = 10, tw = 20,
n = [11, 17], min0 = min 1 =
[0, 3], limit = [3, 9],
geometric mean

0.08514

Ensemble

200 comittees of 28 CReWs each
(1 CReW per field), therm = 10,
tw = 20, n = 14, limit = 6,
simple mean

0.08537

Ensemble
30 ReWs + 30 CReWs, therm = 15,
tw = 24, n = [15,30], min0 = min1 =
[3, 7], median

0.8690

ReW
therm = 17, tw = 11, n = 17,
simple mean

0.08737

CReW
therm = 10, tw = 20, n = 32, min0 =
0, min1 = 1, limit = 200

0.08938

Table 1: The best results of RAM-based approach in KDD18 Challenge (the
parameters of the networks and ensembles listed here are fruits of an exhaustive
search in the space of the hyperparameters); therm = number of bits used in
thermometer, tw = size of time window, min0/min1 = minimum of 0s/1s re-
quired in memory position, n = number of bits per RAM, limit = maximum of
ReWs per CReW
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Model MAE Training time Prediction time
XGBoost 0.07569 4.12962484 0.08239889145
GradientBoost 0.08287 3864.08913588 0.00241994858
n-Tuple Regression 0.09211 0.0037262439727 0.000348329544
RegressionWiSARD 0.08737 0.00035619736 0.00017619133
ClusRegressionWiSARD 0.08938 0.00040984154 0.00021290781

Table 2: State-of-the-art and other relevant results; MAE = mean absolute error,
the time is given in seconds.

Some considerations: when the n of a net increases, it becomes naturally
more sparse, so this confidence in your answers decresease; both ReW and CReW
always have low standard deviation; the output of an ensemble is obtained by the
average output of all its members, using the same modalities used internally in
the ReWs. It can be seen from the results of Table 2 that both proposed models
had a minimal difference of the state of the art, surpassing its speed in many
orders of magnitude. Experiments with ensembles with randomly generated
networks showed a slight improvement in the performance of the models (as
seen in Table 1), despite the natural drop in speed.

4 Conclusion

This work presented two new weightless neural networks for regression tasks
based on the n-tuple Regression Network model, both competitive in terms of
state-of-the-art accuracy and other results relevant to the prediction problem
of productivity of palm oil of the KDD18 competition. In terms of speed in
the learning and prediction phases, the two models proved to be superior to all
other solutions and due to their simplicity, these networks are ideal candidates
for situations that require online learning and low computational costs.

Using Regression WiSARD and ClusRegression WiSARD in other regres-
sion datasets and adding new policies to update the partial y, the possibility
of different addressing sizes for the CReW discriminators, with a new decision
policy adapted to different amounts of neurons and traditional ensemble strate-
gies, such as AdaBoost, to the committee of regression RAM-based networks are
immediate future works that can be cited.
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