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Abstract. Performing machine learning on structured data is compli-
cated by the fact that such data does not have vectorial form. Therefore,
multiple approaches have emerged to construct vectorial representations of
structured data, from kernel and distance approaches to recurrent, recur-
sive, and convolutional neural networks. Recent years have seen heightened
attention in this demanding field of research and several new approaches
have emerged, such as metric learning on structured data, graph convo-
lutional neural networks, and recurrent decoder networks for structured
data. In this contribution, we provide an high-level overview of the state-
of-the-art in representation learning and embeddings for structured data
across a wide range of machine learning fields.

Traditional machine learning has mostly focused on the question of how to
solve problems like classification or regression for fixed, manually engineered data
representations [7]. By contrast, representation learning focuses on the challenge
of obtaining a vectorial representation in the first place, such that subsequent
problems become easy to solve [7]. Such an alternative view is particularly
helpful for processing structured data, i.e. sequences, trees, and graphs, where
vectorial representations are not immediately available [8].

A wide range of machine learning fields has attempted to construct such
vectorial representations for structured data. In this contribution, we provide
a high-level overview of these approaches, highlighting shared foundations and
properties. Thus, we hope to provide readers with a rich toolbox to handle
structured data and sufficient context knowledge to select the fitting method for
any given situation.

We begin by introducing key concepts of structured data and vectorial repre-
sentations before we dive into the various approaches which have been proposed
to achieve such representations. This paper concludes with an overview of the
contributions in this special session.
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1 Background

In this section, we introduce terms that are shared among all methods for rep-
resentation learning and embeddings for structured data. We begin by defining
structured data itself. In particular, we define a graph as a triple G = (V,E, ξ),
where V = {v1, . . . , vT } is a finite set of nodes, E ⊆ V × V is a finite set of
edges, and ξ : V → R

k is a mapping which assigns some vectorial label ξ(v) to
each node v ∈ V .

We call a node v a parent of another node u if (v, u) ∈ E. Conversely, we call
u a child of v. We denote the set of all parents of u as Pu, the set of all children
of v as Cv, and we define the neighborhood of u as N (u) := {u} ∪ Pu ∪ Cu.

We call a graph a tree if exactly one node exists which has no parents (which
we call the root) and every other node has exactly one parent. We call all nodes
without children leaves. As a notational shorthand, we also denote trees in a
recursive fashion. In particular, if u ∈ V is the root of a tree and v1, . . . , vC are
its children, then the recursive tree notation is u(x̃1, . . . , x̃C), where x̃i is the
recursive tree notation for the subtree rooted at vi.

We call a graph a sequence if it is a tree with exactly one leaf or if it is the
empty graph ε = (∅, ∅, ξ). As a notational shorthand, we denote a sequence as
v1, . . . , vT where (vt, vt+1) ∈ E.

Now, we turn to embeddings and representations. Let X be some arbitrary
set. Then, we call a mapping φ : X → R

n a n-dimensional embedding of X . For
any x ∈ X we call φ(x) the representation of x.

2 Approaches for Embeddings of Structured Data

Approaches for embeddings of structured data can be distinguished along mul-
tiple axes. For example, we can distinguish according to the kind of structured
data that a method can process - sequences, trees, or full graphs -, whether it
generates an implicit or an explicit representation, whether it generates fixed or
learned representations, whether nodes or entire structures are embedded, and
whether decoding is possible or not.

We begin our list with kernels and distances, which compute pairwise mea-
sures of proximity between structured data based on a pre-defined and fixed
algorithm that implicitly corresponds to a vectorial representation. By contrast,
neural networks learn explicit vectorial representations which are learned from
data. In particular, recurrent neural networks are designed to process sequential
data, recursive neural networks for tree-structured data, and graph convolutional
neural networks for nodes of general graphs. However, there also exist exten-
sions to process nodes of graphs via recurrent neural networks or entire graphs
via recursive neural networks.

Note that all of these methods are initially limited to encoding a structured
datum into a vectorial representation and can not decode a vector back into
structured data. Our final section covers recent approaches to perform such
decodings. A quick overview of methods surveyed in this paper is in Table 1.
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sequences trees graphs nodes

kernels

fixed n-grams,
substrings [9]

subtrees [10],
reservoir

activation [11]

shortest paths
[12], Weisfeiler-
Lehmann [13][1]

Laplacian [14],
neighborhood
hashing [15]

learned - Markov
models [16]

- -

meta multiple kernel learning [17, 18], feature space composition [2]

distances

fixed string edits [19],
alignments [20,

21]

tree edits [22] - -

learned string edits [23],
tf-idf [3]

tree edits [24] - -

meta dimensionality reduction [25, 26, 27], multiple metric learning [28, 29]

neural networks

encoding echo
state [30, 31, 32],
recurrent [33, 34,

35][4]

recursive [36, 37,
38]

recursive [39, 40],
hierarchical con-
volutional [41]

recurrent
[42, 43, 44],

constructive [45],
convolu-

tional [46, 47, 48]
decoding sequence to

sequence [49, 50]
(doubly)

recurrent [51, 52,
53], grammar-
based [54, 55]

adjacency
matrix [56], edge
sequence [57, 58]

[5]

-

Table 1: An overview of the approaches surveyed in this paper. Methods are
sorted into columns according to the kind of structured data they process - either
sequences, trees, graphs, or nodes within graphs. Each block in the table marks
a different class of method, either kernels, distances, or neural networks. In ker-
nels and distances, three rows distinguish between fixed representations, learned
representations, and meta-representations built on pre-existing representations.
For neural networks, we distinguish between networks that focus on encoding
and networks which decode. Contributions of this special session are highlighted
via bold print.
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Kernels: We call a mapping k : X ×X → R over some set X a kernel iff an em-
bedding φ : X → R

n exists (for possibly infinite n), such that for all x, y ∈ X it
holds: k(x, y) = φ(x)T · φ(y). Therefore, every kernel on structured data relies -
implicitly or explicitly - on an embedding for structured data. In the past decade,
a diverse range of structure kernels have emerged, but the conceptual basis is
typically the same. A structure kernel defines a class of m (possibly infinite)
characteristic substructures G1, . . . ,Gm and defines the embedding φ as the sum
of the embeddings for all these substructures. More precisely, if h : X → N

m is
a mapping of structured data to histograms over the selected substructures and
f : {G1, . . . ,Gm} → R

n is an embedding for the pre-defined set of substructures,
then the overall embedding φ is given as φ(G) = ∑m

i=1 h(G)i · f(Gi). Examples
of such substructures include string n-grams, substrings, random walks, short-
est paths, or subtrees [9, 10, 12, 13]. Most recently, kernels have also been
constructed based on reservoir activations for nodes [11] or learned substruc-
tures, such as Markov Model hidden states for nodes [16]. The embedding f for
the substructures can be as simple as mapping the ith substructure to the ith
unit vector, i.e. φ just counts the substructures. Multiple works are specifically
devoted to constructing node-specific kernels based on the graph Laplacian or
comparing node neighborhoods [14, 15].

Note that, in most cases, it is infeasible to explicitly compute histograms
over the substructures due to large or infinite m. Therefore, most kernels are
computed directly as k(x, y) =

∑m
i=1

∑m
j=1 h(x)i ·h(y)j · k′(Gi,Gj), e.g. via some

dynamic programming scheme [13]. As such, the embedding remains implicit
and can not be directly exploited for subsequent learning.

Instead of summing up embeddings of base kernels, one can also concate-
nate such embeddings, which is the basis for multiple kernel learning (MKL).
Given a set of base embeddings for graphs f1, . . . , fm, MKL learns factors
α1, . . . , αm ∈ R

+ for these embeddings and defines the overall φ as φ(G) =(√
α1 · f1(G), . . . ,√αm · fm(G)), such that the resulting learned kernel is given

as k(x, y) =
∑m

i=1 αi · fi(x)T · fi(y) [17, 18].

Distances: Distance measures on structured data typically quantify distance in
terms of effort that is needed to transform one datum into another by means of
discrete edit operations such as node deletions, insertions, or replacements. This
framework includes measures like the string edit distance, dynamic time warping,
alignment distances, or the tree edit distance [19, 20, 21, 22]. These measures
are all non-negative, self-equal, and symmetric, but do not necessarily conform
to the triangular inequality and are thus not necessarily proper metrics [29]. As
with kernels, distances are related to embeddings but are typically computed
directly via dynamic programming. In particular, it can be shown that for any
self-equal and symmetric function d there exist two embeddings φ+ and φ−, such
that for all x, y ∈ X it holds d(x, y)2 = ‖φ+(x) − φ+(y)‖2 − ‖φ−(x) − φ−(y)‖2
[26]. We can make this embedding explicit by dimensionality reduction methods
such as multi-dimensional scaling or t-SNE [25, 27].

It is worth noting that edit distances can be learned in a supervised fashion
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recurrent network
φ(ε)

ξ(a) f

ξ(b) f

φ(a)

ξ(c) f

φ(a, b)

φ(a, b, c)

recursive network
ξ(a)

fa

ξ(b)

fb
ξ(c)

fc

φ(c(a, b))

φ(a) φ(b)

graph convolutional network

ξ(a) ξ(b) ξ(c)

f1 f1

+

f1

f2

φ1(a)

f2

φ1(b)
+

f2

φ1(c)

φ2(a) φ2(b) φ2(c)

Figure 1: An illustration of the three encoder networks presented in the paper,
namely a recurrent network which encodes the sequence a, b, c via Equation 1
(left), a recursive network that encodes the tree c(a, b) via Equation 2 (center),
and a two-layer graph convolutional neural network that encodes the nodes of the
graph G = ({a, b, c}, {(a, b), (a, c), (b, c)}) via Equation 3 (right). Function ap-
plications/neurons are indicated by circles. The computational flow is indicated
by arrows.

by manipulating the costs of single edits to facilitate classification [23, 24].

Recurrent Neural Networks: A recurrent neural network (RNN) maps sequen-
tial data x̄ = �x1, . . . , �xT ∈ R

k to a representation φ(x̄) ∈ R
n by means of the

recursive equation

φ(�x1, . . . , �xt) = f
(
�xt, φ(�x1, . . . , �xt−1)

)
, (1)

where f is some mapping f : R
k × R

n → R
n and where f(ε) is typically defined

as the zero vector (also refer to Figure 1, left).
In recurrent neural networks, the function f is a neural network layer, e.g.

a classic sigmoid layer of the form f(�xt,�ht−1) = σ
(
U · �xt + W · �ht−1), where

U ∈ R
n×k and W ∈ R

n×n are weight matrices and σ is a sigmoid function
such as the tanh function. A challenge in learning such networks are vanishing
or exploding gradients over time, which can be addressed, for instance, by the
following strategies. First, one can decide to adapt neither either U nor W
but to initialize them in a randomized or deterministic fashion [30, 31], also
in a deep setting [32]. Second, one can replace a standard sigmoid layer with
a gated architecture that can ignore irrelevant parts of the sequence and thus
maintain memory over longer time without being unstable [33, 34, 35]. For
example, gated recurrent units [34] define the recurrent function f(�xt,�ht−1) =

�z(�xt,�ht−1)	 �ht + [�1− �z(�xt,�ht−1)]	 σ
(
U · �xt +W · [�r(�xt,�ht−1)	�ht−1]

)
, where
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	 denotes the element-wise product and where z(�xt,�ht−1) ∈ [0, 1]n as well as
�r(�xt,�ht−1) ∈ [0, 1]n are so-called gates, computed via standard sigmoid layers as
above.

The objective function of recurrent neural networks is typically to map the
input sequence x̄ to an output sequence ȳ = �y1, . . . , �yT ∈ R

l by means of an
output sigmoid layer g : R

n → R
l such that g(�ht) ≈ �yt for all t ∈ {1, . . . , T }.

However, recurrent neural networks can also be trained to auto-encode sequences
or to decode to other sequences [49].

Note that RNNs can also be applied to embed nodes in a graph by consid-
ering the embedding φ(v) of a node v ∈ V as part of a state vector in a RNN
[42, 43, 44]. More precisely, let φt(v) denote the embedding of node v at time
t. Then, we can construct the node embedding at time t + 1 via the equa-
tion φt+1(v) =

∑
u∈N (v) f̂

(
ξ(v), φt(v), ξ(u), φt(u)

)
or, similarly, via the equa-

tion φt+1(v) = f̂
(
ξ(v), φt(v),

∑
u∈N (v) ξ(u),

∑
u∈N (v) φ

t(u)
)

for some mapping

f̂ : R
k ×R

n ×R
k ×R

n → R
n. In both cases, this collapses to a recurrent neural

network according to Equation 1 if we consider the concatenation of all node
labels ξ(v) as the input for each time step t and the concatenation of all embed-
dings φt(v) as state vector at time t. The training of this network is typically
guided by some supervised objective as in regular RNNs [42, 43, 44].

As [42] have shown, letting this network run is guaranteed to converge to a
fix point if f̂ is a contractive map. In other words, one can let the network run
for a sufficiently large time and then use the resulting embedding at that time
as an approximation of the fix point and thus as an embedding of the nodes [44].

Recursive Neural Networks: Recursive neural networks are an extension of re-
current neural networks for tree structured data. Given a tree v(x̃1, . . . , x̃C), a
recursive neural network is defined by the recursive equation

φ
(
v(x̃1, . . . , x̃C)

)
= fv

(
ξ(v), φ(x̃1), . . . , φ(x̃C)

)
, (2)

where fv is typically a sigmoid layer (also refer to Figure 1, center) [36, 37, 38].
In other words, the encoding starts with the leaves of the tree and then processes
the tree bottom-up until an embedding for the entire tree is obtained at the root.
Extensions of recursive neural networks to the treatment of directed postional
acyclic graphs (DPAGs) have been introduced in [39, 40].

Note that the construction of fv by be challenging of the children have no
clear positional order or if the number of children is not consistent among nodes.
Such problems can be addressed by using order-invariant operators like sum
or product to aggregate child embeddings, to fill missing children with special
tokens like zero vectors, to normalize the trees to binary structure, or to learn
specific functions for different kinds of nodes with different number of children.

Graph Convolutional Neural Networks: Graph Convolutional Neural Networks
(GCNs) generate embeddings of nodes in graphs similarly to RNNs but via a
layered feedforward architecture. In particular, let φ(v)l denote the embedding
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of node v in layer l of the network, where φ(v)0 = ξ(v). Then, the embedding
in layer l + 1 is obtained via the equation

φ(v)l+1 = f l+1
(
φ(v)l,

∑
u∈P(v)

α(u, v) · φ(u)l), (3)

where f l is a sigmoid layer and α(u, v) is some connectivity factor depending on
the graph structure (also refer to Figure 1, right) [46]. Note that this equation
differs from the RNN equation of [42, 43, 44] in that we use different param-
eters for each layer. Also note that the embedding in the lth layer integrates
information from nodes up to distance l in the graph.

The idea to treat the mutual dependencies (graph cycles) through different
neural network layers and to extend the nodes embedding by composition of the
information of previous layers was originally introduced (and formally proved) in
the context of constructive approaches [45]. Therein, the concept/terminology of
visiting (the nodes) of the graphs corresponds to the terminology of convolution
over (the nodes) of the graphs used in GCN. Indeed, the main differences between
the model in [45] (NN4G) and GCN are related to the use of an incremental
construction of the deep NN for NN4G instead of the end-to-end training of
GCN (with advantage for NN4G in terms of divide et impera automatic design
and layer by layer learning). A recent model proposal using the costruction of
NN4G in the context of generative models is in [59].

As with RNNs, GCNs are trained in a supervised fashion where the last
layer of a GCN is considered as the output of the network. Further, we can
train GCNs semi-supervised by augmenting the supervised loss with a term that
forces neighboring nodes to have similar encodings [46]. While vanilla GCNs
are limited to graphs for which the structure is known a priori, multiple authors
have recently extended GCNs to unknown structure, either by normalizing the
neighborhood or by using attention mechanisms [47, 48].

Importantly, the embeddings of GCNs can also be aggregated to achieve an
embedding for the entire graph by iteratively clustering nodes to coarser struc-
tures and aggregating the embeddings inside structures by a pooling network
[41].

Decoder Networks: Decoding vectorial representations back into structured da-
ta poses a significant challenge as decoding trees or full graphs is provably harder
compared to encoding them [37]. Therefore, present decoding approaches focus
on decoding sequential data via recurrent neural networks.

Most prominently, sequence-to-sequence (seq2seq) learning first encodes a
sequence as a vector via a recurrent neural and then applies a second recurrent
neural network which decodes the sequence step by step until it returns a special
end-of-sentence token [49].

Given the success of this scheme for hard machine learning tasks such as ma-
chine translation or caption generation [49, 50], researchers have also attempted
to apply it to trees or graphs by encoding these structures as sequences. In par-
ticular, we can re-write graphs as a sequences of nodes and edges if we impose
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a order on the graph’s nodes, e.g. via breadth-first-search [57, 58]. After this
re-representation, we can train a recurrent neural network to generate one edge
at a time and thus reconstruct the entire graph until an end-of-sentence token
is generated [57, 58].

Alternatively, we can exploit grammatical knowledge about the domain. If
our data can be described by a context-free grammar (as in the case of chemical
molecules or computer programs), generating a structured datum reduces to
a sequence of grammar rule applications. Therefore, we can train a recurrent
neural network which outputs the current sequence of grammar rules to decode
a given datum, which will then also be guaranteed to be syntactically correct
[51, 52, 54]. Indeed, grammatical structures can even be used to impose semantic
constraints, such as chemical bond properties [55].

3 Special Session Contributions

The contributions in this special session cover a wide range of approaches for
representation learning and embeddings for structured data, namely two kernel
approaches [1, 2], one distance approach [3], one sequence encoding approach via
recurrent neural networks [4], one graph decoding approach via recurrent neural
networks [5], and an extension of non-negative matrix factorization to uncover
structure in high-dimensional vectorial data [6] (also refer to Table 1).

In more detail, [1] presents a variation of the Weisfeiler-Lehman graph kernel
[13] which combines the concept of optimal assignments with multiple kernel
learning [18]. In particular, they define the kernel between two graphs G and
G′ as k(G,G′) = maxM⊆B(G,G′)

∑
(u,v)∈M k′(u, v) where B(G,G′) is the set of all

possible bijections between the nodes of G and G′ and where k′ is a weighted
Weisfeiler-Lehman base kernel over nodes. Recall that the Weisfeiler-Lehman
kernel counts subtree patterns in the neighborhood of a node. The kernel varia-
tion employed by [1] applies weights to these subtree patterns and then optimizes
these weights via multiple kernel learning.

[2] propose a scheme which generates a more expressive feature space from
a base node kernel by means of a sum of outer products. In particular, the
encoding is defined as φ(G) = ∑

v∈V f(v) ·∑D
i=1

∑
u∈N i(v) f(u)

T , where f is the
embedding of the base node kernel and N i(v) is the i-hop neighborhood of node
v. They also consider a version of this kernel where features are selected based
on their discriminative value in a linear classifier.

[3] perform metric learning to weigh text features obtained via tf-idf and
latent semantic analysis and obtain an explicit, low-dimensional embedding via
t-SNE [27].

[4] encode a snapshot of a driving scene incorporating a variable number of
vehicles via the semantic pointer architecture [60] and encode a sequence of such
snapshots via long short-term memory networks [33, 35] in order to predict the
future movement of a single vehicle.

With the the aim is to provide an adpative approach to graph generation
from arbitrary distributions, [5] first represent graphs as sequences of edges,
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where the edges are ordered according to their starting node, and auto-encode
graphs as vectors by means of a sequence-to-sequence [49] network consisting of
two gated recurrent units [34], where the former encodes an edge sequence as a
vector and the second decodes the edge sequence from the code vector.

Finally, [6] proposes a variation of hierarchical alternating least squares
(HALS) to infer non-negative polynomial signals which best explain a given data
set of sequences in the sense that the Euclidean distance between the observed
sequences and the sequences produced by a linear combination of non-negative
polynomials on the same interval is as small as possible.

Overall, the contributions in this special session push the boundaries of em-
beddings for structured data forward across a wide range of approaches. This
reflects the more intense recent interest in such embeddings in the research com-
munity overall and gives hope for further progress in the future.
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