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During the past decade, numerous research has been carried out in in-vehicle 

navigation and positioning. All the approaches are trying to solve two problems: “where 

am I?”, and “where are they?”, i.e., the automatic vehicle positioning, and the 

surrounding vehicle detection and tracking.  

Among a variety of sensor based systems, computer vision-based approaches have 

been one of the most popular and promising techniques, however it suffers from intensity 

variations, narrow fields of view, and low-accuracy depth information. Laser Ranging 

Sensor (LIDAR) is another attractive technology due to its high accuracy in ranging, its 

wide-area view, and low data-processing requirements. However, a major challenge for 

LIDAR-based systems is that their reliability depends on the distance and reflectivity of 

different objects. Moreover, LIDAR often suffers from noise issues, making it difficult to 

distinguish between different kinds of objects. In this dissertation, we address several 

fundamental problems in integrating LIDAR and camera systems for better navigation 

and positioning solutions.  As part of the research, we present a sensor fusion system to 
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solve the “where are they” problem. The calibration of the sensor fusion system as well 

as the vehicle detection and tracking algorithms are proposed to determine the states of 

surrounding vehicles. The “where am I” solution focuses on the integration of LIDAR 

and inertial sensors for advanced vehicle positioning. Moreover, a vehicle tracking 

approach is presented for freeway traffic surveillance system.  

    Sensor fusion techniques have been used for years to combine sensory data from 

disparate sources. In this dissertation, a tightly coupled LIDAR/CV integrated system is 

introduced. LIDAR and camera calibration is the key component of sensor fusion system.      

A unique multi-planar LIDAR and computer vision calibration algorithm has been 

developed, which requires that the camera and LIDAR observe a planar pattern at 

different positions and orientations. Geometric constraints of the different ’views’ of the 

LIDAR and camera images are resolved as the coordinate transformation and rotation 

coefficients.  

      The proposed sensor fusion system is utilized for mobile platform based vehicle 

detection and tracking. The LIDAR sensor estimates possible vehicle positions. Different 

Regions of Interest (ROIs) in the imagery are defined based on the LIDAR object 

hypotheses. An Adaboost object classifier is then utilized to detect the vehicle in ROIs. 

Finally, the vehicle’s position and dimensions are derived from both the LIDAR and 

image data. Experimental results are presented to illustrate that this LIDAR/CV system is 

reliable.  

    In addition, an autonomous positioning solution for urban environment is provided in 

this dissertation. The positioning solution is derived by combining measurements from 
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both LIDAR and inertial sensors, i.e., LIDAR, gyros and accelerometers. The inertial 

sensors provide the angular velocities as well as the accelerations of the vehicle, while 

LIDAR detects the landmark structures (posts and surfaces). In our implementation the 

positioning is performed in known environment, i.e., the map information is assumed to 

be a priori information. Extended Kalman Filter (EKF) is implemented in the positioning 

estimation.  

     This dissertation also presents a vehicle tracking approach used in a traffic 

surveillance system. One of the key challenges with freeway vehicle tracking is dealing 

with high density traffic, where occlusion often leads to foreground splitting and merging 

errors. We propose a real-time multi-vehicle tracking approach, which combines both 

local feature tracking and a global color probability model. In our approach, the corner 

features are tracked to provide position estimates of moving objects. Then a color 

probability is calculated in the occluded area to determine which object each pixel 

belongs to. This approach has been proved to be scalable to both stationary surveillance 

video and moving camera video. 
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Chapter 1 

Introduction 

 

1.1 Motivation 

During the past decade, numerous research work has been carried out in the 

autonomous vehicle area. Autonomous vehicles are one of the key eventual goals of 

Intelligent Transportation Systems (ITS). An autonomous vehicle navigates and drives 

entirely on its own without any human driver or remote control. It is capable of driving in 

traffic, performing complex maneuvers such as merging, parking, and making intelligent 

path planning. It is designed to finish the “dull, dirty or dangerous” tasks that can be 

carried out by machines instead of a human operator [11].  

A variety of new sensing technologies have been developed and enhanced to be used 

for autonomous vehicle navigation. Among all the sensor systems, computer vision-based 

approach is one of the most widely used and promising techniques. Laser Ranging Sensor 

(LIDAR) is another attractive technology due to its high accuracy in ranging, wide-area 

field of view, and low data-processing requirements [1]. The other sensors used in 

navigation include Global Positioning System (GPS), radar, and loop sensors. A brief 

comparison of the available sensor technologies is given in Table 1-1. 

Sensor fusion is implemented in the vehicle navigation system to gather information 
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from the far-field and near-field sensors, and combine them in a meaningful way [12]. 

The output of sensor fusion system should be the vehicle‟s own position and the state of 

the objects around it.  

Table 1-1. Performance Comparison of Existing Sensor Technologies used in ITS [6]. 

Sensor Technology Advantage Disadvantage 

LIDAR  Detect distance and angle with 

high accuracy 

 Low data processing requirement 

 Operational in fog and rain 

 High cost 

 Limited detection range 

 Difficult to classify the object 

Radar  Direct measurement of speed or 

distance 

 Compact Size 

 Low data processing requirement 

 Relatively low precision 

 Limited field of view 

 May have identification problem in 

multi-lane applications 

 Medium cost 

Video Camera  Provide real-time image of traffic 

 Low cost 

 Multiple lanes observed 

 No traffic interruption for 

installation and repair 

 Large field of view 

 High requirement for data processing 

and storage 

 Different algorithms required for day 

and night time 

 Susceptible to atmospheric obscurants 

and weather change 

Infrared Camera  Day and night operation 

 Operational in fog 

 High requirement for data processing  

 Susceptible to weather change  

Inductive Loop 

Detector 

 Low cost per-unit 

 Large experience base 

 Installation and maintenance require 

traffic disruption 

 Easily damaged 

 

1.2 LIDAR, Camera and Inertial Sensors Based Navigation Systems 

The vehicle navigation systems are trying to solve two challenging problems: “where 

am I?” and “where are they?”. The “where am I?” problem is to find the vehicle‟s 
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location using GPS, landmarks with a prior position information, digital maps or the 

other sensing technologies. The “where are they?” problem is to determine the 

surrounding vehicle‟s position, speed and trajectory. The autonomous vehicle is then able 

to design its short term and long term paths based on the answers to these two questions.  

In this dissertation, we propose several multi- sensors based navigation techniques to 

address these two problems. The approaches we present include calibration of the LIDAR 

and computer vision systems, vehicle detection using the sensor fusion technique, vehicle 

automatic localization with a prior landmark position, and the freeway traffic 

surveillance techniques. In the following subsections, we will introduce the problems and 

briefly discuss the approaches we take for each problem. 

1.2.1 LIDAR and Camera Calibration 

Mobile sensing systems consisting of one sensor or a suite of sensors are usually used 

for detecting traffic conditions. These sensors provide real-time measurements and play 

an important role in the development of Driver Assistant Systems (DAS).  

One of the most common sensing techniques used in vehicle navigation and traffic 

surveillance is the use of computer vision. Computer vision can provide a large amount of 

information on the surrounding environment. However, it suffers from intensity 

variations, narrow fields of view, and low-accuracy depth information [2]. On the other 

side, LIDAR measures the distance and relative angle from the sensor to the target by 
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calculating the time-of-flight. The accuracy of its measurements depends on the size and 

reflectivity of the target, so the probability of precise detection decreases with distance 

[1]. Since their characteristics complement each other, it is logical to utilize both 

computer vision and LIDAR for detecting different objects.  

Sensor fusion systems are commonly used to integrate the sensory data from 

disparate sources, so that the output will be more accurate and complete in comparison to 

the output of one sensor. In order to effectively extract and integrate 3D information from 

both computer vision and LIDAR systems, the relative position and orientation between 

these two sensor modalities should be obtained. Sensor calibration is to identify the 

parameters that describe the relative geometric transformation [3][4], which is a key step 

in the sensor fusion systems. However, current calibration methods work only for visible 

beam LIDAR, 3D LIDAR and 2D LIDAR. To date, there does not exist any convenient 

calibration methods for multi-planar „invisible-beam‟ LIDAR and computer vision 

systems.   

As part of this dissertation, a novel calibration approach of a camera with a 

multi-planar LIDAR is proposed, in which the laser beams are invisible to the camera. 

The camera and LIDAR are required to observe a planar pattern at different positions and 

orientations. Geometric constraints of the „views‟ from the LIDAR and camera images 

are resolved as the coordinate transformation coefficients. The proposed approach 
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consists of two stages: solving a closed-form equation, followed by applying a non-linear 

algorithm based on a maximum likelihood criterion. Compared with the classical 

methods which use „beam-visible‟ cameras or 3D LIDAR systems, this approach is easy 

to implement at low cost. The calibration method has been applied to a mobile sensing 

system with two multi-planar LIDAR sensors and a camera. Both simulation and real 

world experiments have been carried out to evaluate the performance of this approach. 

1.2.2 Mobile Platform Based Vehicle Detection  

 In many driver assistance systems, both LIDAR and computer vision sensors are 

commonly used to detect surrounding vehicles. LIDAR provides excellent range 

information to different objects. However, it is difficult to classify these objects from 

range information alone. On the other hand, computer vision imagery allows for better 

recognition, but does not provide high-resolution range information. Therefore, sensor 

fusion techniques have been used for years to combine sensory data from disparate 

sources. 

   In the in-vehicle navigation system, it is necessary that the vehicle knows the location 

of surrounding vehicles. Determining the position and orientation of the surrounding 

vehicles is known as the “where are they?” problem. We proposed a tightly-coupled 

LIDAR and computer vision system to solve this problem. The sensing system is 

mounted on a probe vehicle, as is shown in Fig. 1-1. The pair of LIDAR sensors is 
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mounted on the front bumper of the vehicle, and the camera is behind the front wind 

shield.  

  The LIDAR sensor estimates possible vehicle positions. This information is then 

transformed into the image coordinates. Difference Regions of Interest (ROIs) in the 

imagery are defined based on the LIDAR object hypotheses. An Adaboost object 

classifier is then utilized to classify the vehicle in ROIs. A classifier error correction 

approach is used to choose an optimal position of the detected vehicle. Finally, the 

vehicle‟s position and dimensions are derived from both the LIDAR and image data. 

Experimental results are presented to illustrate that this LIDAR and computer vision 

integration system is reliable. The tightly coupled sensor fusion system can be used in 

applications such as traffic surveillance and roadway navigation tasks. 

 
Figure 1-1. The mobile sensing platform. This probe vehicle carries one camera and two IBEO ALASCA 

XT LIDAR sensors.  



7 

 

1.2.3 LIDAR and Inertial Sensor-Aided Positioning 

In order for a vehicle to be able to navigate safely and successfully in a given 

environment, it is necessary that the vehicle knows its position and orientation. Loss of 

position information may cause wrong path planning, erroneous behavior, and even 

hazardous outcomes. Determining the position and orientation is known as the vehicle 

localization problem, or the “where am I?” problem. The vehicle localization is 

considered to be one of the most fundamental and important problems in the intelligent 

transportation as well as the mobile robotics area [7-9]. A digital map of the environment 

is usually provided to the vehicle, which is equipped with sensors to perceive itself and 

the environment. 

An autonomous positioning solution for urban environment is provided as part of this 

dissertation. The positioning solution is derived by combining measurements from both 

LIDAR and inertial sensors, i.e., LIDAR, gyros, and accelerometers. The inertial sensors 

provide the angular velocities as well as the accelerations of the vehicle, while LIDAR 

detects the landmark structures (posts and surfaces). In our implementation the 

positioning is performed in known environment, i.e., the map information is assumed to 

be a priori information. Extended Kalman Filter (EFK) is used in positioning estimation.  

1.2.4  Freeway Traffic Surveillance Using Both Corner and Color Features 

Traffic data in general was manually collected by human operators prior to 1970, 
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when data were manually collected. The manual collecting method has many drawbacks 

including high cost, low efficiency, and difficulties imposed by staffing limitations [10]. 

Video image used for traffic surveillance was initiated in U.S., Japan, and Europe [5]. 

The vision camera output is usually utilized in ITS applications such as vehicle counting, 

tracking, classification and transportation analysis. 

One of the key capabilities that is critical for many surveillance applications is the 

ability to detect and track vehicles in real-time from a video steam. The vision camera 

based system works fairly well under light traffic conditions. However, current 

approaches do not have very good performance under heavy traffic conditions. The main 

difficulty lies in the fact that the occluded object appearance changes significantly from 

frame to frame.  

As part of this dissertation, we present a vehicle tracking approach used in a traffic 

surveillance system. In order to help solve the occlusion problem, global features such as 

color or local features like corners are commonly used for tracking. However, tracking 

based on global features or local features alone does not work well with a high amount of 

occlusion. We propose a multi-vehicle tracking approach, which combines both local 

feature tracking and a global color probability model. In cases with low occlusion, corner 

feature detection and tracking algorithm is used to estimate vehicle positions and 

trajectories. When there is a high degree of occlusion, corner features are tracked to 



9 

 

provide position estimates of moving objects. Then a color probability is calculated in the 

occluded area to determine which object each pixel belongs to. This approach has been 

proved to be accurate with high efficiency. 

 

1.3 Contributions of the Dissertation 

The primary objective of this dissertation is to develop methodologies and systems 

using LIDAR, computer vision and inertial sensors, in order to determine the position of 

an instrumental vehicle as well as objects around the vehicle. The dissertation has several 

major contributions as listed below: 

 A unique multi-planar LIDAR and computer vision calibration algorithm has 

been developed. The camera and LIDAR are required to observe a planar pattern 

at different positions and orientations. Geometric constraints are solved to obtain 

the translation and rotation between the two sensors. 

 A tightly coupled LIDAR and computer vision integrated system has been 

developed for vehicle detection and tracking. The LIDAR scanning data are 

applied for object detection and classifier correction. Moreover, the output of the 

vision camera is used to provide classification and dimension results.  

 An autonomous positioning solution for urban environment is provided in this 

dissertation. The solution is derived by combining measurements from both 

LIDAR and inertial sensors. The inertial sensors provide the angular velocities 
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as well as the accelerations of the vehicle, while LIDAR detects the landmark 

structures. The positioning is implemented using a EKF. 

 This dissertation also presents a vehicle tracking approach used in a traffic 

surveillance system. In order to solve the occlusion problem in high density 

traffic, both corner features and color features are utilized in the vehicle tracking. 

A probability model is proposed to determine which object each pixel belongs to 

in the occlusion area. 

 

1.4 Organization of the Dissertation 

   The dissertation is organized as follows: Chapter 2 reviews background and related 

work, including the calibration methods for LIDAR and camera, sensor fusion based 

vehicle detection and tracking algorithms, vehicle localization methods, and traffic 

surveillance techniques on freeway. In Chapter 3, we focus on the calibration of LIDAR 

and camera system. First of all the coordinates of LIDAR and camera are introduced, 

followed by the mathematical derivation of the geometric relations between the two 

sensors. Then the equations are solved in two stages: a close-form solution, followed by 

applying a non-linear algorithm based on the maximum likelihood criterion. Chapter 4 

describes the developed sensor fusion based vehicle detection system. Both hardware and 

data processing methods of the sensor fusion system are introduced in this chapter. In 

Chapter 5, a vehicle localization approach using LIDAR and inertial sensors is presented. 
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Some analytical results are also given. Chapter 6 describes a vehicle tracking method for 

the high traffic density conditions. Both feature and color models are presented in this 

chapter, and a probability model is proposed. We conclude the dissertation and describe 

potential future work in Chapter 7. 
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Chapter 2 

Background and Literature Review 

 

The “where am I?” and “where are they?” solutions aim to estimate the state of both 

test vehicle and the surrounding vehicles. The vehicle state information includes position, 

orientation, speed, and acceleration. The problem of state estimation addresses estimating 

quantities from sensors that are not directly observable [13]. In this chapter, we review 

the techniques for vehicle detection and tracking on a moving platform, as well as the 

vehicle positioning approaches. The sensor fusion techniques and the calibration methods 

will also be discussed. Moreover, the vehicle tracking methods in high density traffic will 

also be reviewed in this chapter.  

We start by discussing a variety of LIDAR sensors, including one planar, multi- 

planar, as well as 3D LIDAR. As described in the previous chapter, it is valuable to use 

both computer vision and LIDAR together for various detection and tracking tasks. One 

of the key problems to solve is calibrating the two sensors so they can be used together. 

In the following section, we will describe existing LIDAR and computer vision 

calibration methods, including visible LIDAR beam-based calibration, 3D LIDAR and 

camera calibration, and the 2D single planar LIDAR calibration. We then review the 

application of sensor fusion techniques for vehicle detection and tracking systems on a 
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moving platform. This is followed by a review of vehicle localization methods using GPS, 

inertial sensors, and LIDAR. Current camera-based freeway traffic surveillance systems 

are also discussed in this chapter. The final section recapitulates this chapter.  

 

2.1 LIDAR Sensors 

A LIDAR is a device which uses laser beams to determine the distance and azimuth 

from the sensor to an object. The LIDAR sensor is commonly utilized in vehicle 

navigation for detecting surrounding vehicles, curbs and obstacles. It can also be used in 

a vehicle localization solution, either as a single sensor or be combined with GPS and 

Inertial Navigation System (INS).  

An example of the most popular LIDAR sensors is the SICK LMS 2xx series [52]. A 

SICK LIDAR operates at distance up to 80m with an angular resolution of 0.5
o
 and a 

measurement accuracy of typically 5cm. The distance between the sensor and an object is 

calculated by measuring the time interval between an emitted laser pulse and reception of 

the reflected pulse. The amplitude of the received signal is used to determine the 

reflectivity of the object surface. Moreover, compared to the CCD cameras and RADAR 

systems, the view angle of a typical LIDAR sensor is larger, e.g., 180
o
. Fig. 2-1 (a) 

illustrates the SICK LMS200 LIDAR. 

The HOKUYO UXM-30LN LIDAR is another popular single planar range sensor 

designed for intelligent robots and vehicles [53]. Its detection range is up to 60m, and the 
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horizontal field of view is 190
o
. The distance accuracy is 30mm when the range is less 

than 10m, and 50mm when the range is between 10 to 30m. The angular resolution is 

0.25
o
. This LIDAR sensor is shown in Fig. 2-1 (b). 

As another example, the ALASCA XT LIDAR made by IBEO is a multi-planar 

LIDAR, which splits the laser beam into four vertical layers. The aperture angle is 3.2
o
. 

The distance range is up to 200 meters, and the horizontal field of view is 240
o
 [54]. Fig. 

2-1 (c) shows the IBEO LIDAR sensor.  

Finally, the Velodyne HDL-64E LIDAR is a 3D sensor which is specifically designed 

for autonomous vehicle navigation [55]. With 360
o
 horizontal by 25

o
 vertical field of 

view, 0.09
o
 angular resolution, and 10Hz refresh rate, the Velodyne provides surrounding 

3-D traffic information with high accuracy (<5cm resolution) and efficiency. The 

detection range is 100 meter, and the latency is less than 0.05 milliseconds. Figure 2-1 (d) 

demonstrates the Velodyne and its 3-D range data. 

  
  

  (a) (b)   (c)       (d) 

Figure 2-1. A variety of LIDARs. (a) SICK LMS200 LIDAR, (b) HOKUYO UXM-30LN LIDAR, (c) 

IBEO ALASCA XT LIDAR, and (d) Velodyne HDL-64E LIDAR.  
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Range sensors are originally developed for applications by automatic guided vehicles 

in an indoor environment. Nowadays the performance of range sensors has been 

improved so that LIDAR can be utilized in outdoor environments. An application 

example is the DARPA Urban Challenge 2007, in which the autonomous vehicles were 

capable of driving in traffic and performing complex maneuvers such as acceleration and 

braking, lane changes, and parking maneuvers [11]. IBEO and SICK LIDAR sensors 

were used in many of the finalists for tasks such as object detection and localization. The 

Velodyne sensor was used by the five out of six of the finishing teams. 

 

2.2 LIDAR and Computer Vision Calibration 

Sensor fusion systems are commonly used to combine the sensory data from disparate 

sources, so that the results will be more accurate and complete in comparison to the 

output of a single sensor. This is common for autonomous vehicles.  An example is 

BOSS, the winner of the 2007 DARPA Urban Grand Challenge, which was equipped 

with GPS, long and short-range LIDAR sensors, as well as stereo cameras [14].  

In order to effectively extract and integrate 3D information from both computer 

vision and LIDAR sensors, the relative position and orientation between these two sensor 

modalities need to be obtained. The relative geometric transformation can be solved 

through a calibration process [3, 4]. Several approaches have been defined and utilized 

for LIDAR and computer vision calibration. These techniques can be roughly classified 
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into three categories: visible beam LIDAR-based calibration, Three Dimensional (3D) 

LIDAR-based calibration, and Two Dimensional (2D) LIDAR-based calibration. The 

calibration algorithms will be discussed in the following sections.  

2.2.1 Visible Beam Calibration  

Visible beam calibration is performed by observing the LIDAR beams or reflection 

points using a camera. The calibration system usually consists of an active LIDAR and 

some infrared or near-infrared cameras. The LIDAR system typically projects stripes with 

a known frequency, while these stripes are visible to the camera [15-17]. For example, the 

LIDAR beams used in [16] are captured by a 955 frame per second (fps) high-speed 

camera. The color image of LIDAR beams is generated by letting the vision output go 

through a beam splitter. This system is commonly used to assist surgery. 

The visible beam calibration method requires a high-cost infrared camera, which 

should be sensitive to the spectral emission band of the LIDAR. Therefore, this method is 

not suitable for low-cost sensor fusion systems. 

2.2.2 Three Dimensional LIDAR Based Calibration  

This technique calibrates the computer vision system with a 3D LIDAR sensor. Various 

features are captured by both the camera and the LIDAR. These features are in the form 

of planes, corners, or edges of a specific calibration object. An elaborate setup is required. 

Moreover, dense LIDAR beams in both the vertical and horizontal directions are 
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necessary for the calibration.  

The 3D calibration algorithm presented in [19] uses checkerboard, which is commonly 

utilized in camera calibration. The coefficients of the checkerboard plane are first 

calculated by LIDAR, then the coefficients are again computed by a camera in computer 

vision coordinates. A two stage optimization procedure is implemented to minimize the 

distance between the calculated results and the measurement output.  

When the features are edges or corners, the accuracy of the calibration method depends 

on the accuracy by which features are localized [20]. When the features are planes, the 

LIDAR beams must be sufficiently dense [19]. Therefore, these methods cannot easily be 

applied to single planar or sparse multi-planar LIDAR systems.  

2.2.3 Two-Dimensional Planar-Based Calibration 

This approach works for the calibration of the camera with a 2D LIDAR system. The 

calibration system proposed in [18] consists of a gray-level CCD camera and a LIDAR. 

The orientations of the camera and the LIDAR have been calibrated so their coordinates 

are parallel to each other, i.e., the rotation matrix is known to be an identity matrix. A “V” 

shaped pattern is designed to obtain the translation between these two sensors, as is 

shown in Fig. 2-2. The calibration pattern is composed of two zones: a white zone and a 

black zone. The LIDAR sensor detects the “V” shape, while the camera identifies the line 

that separates the white zone and the black zone. The calibration procedure is 
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implemented in two steps: LIDAR detects the “V” shape and finds the vertex, and camera 

detects the intersection line which cuts the pattern into two parts.  

Another calibration approach is proposed in [21] using checkerboard for calibration. 

This method is based on observing a plane of an object and solving distance constraints 

from the camera and LIDAR systems. The solution is first of all obtained by minimizing 

an algebraic error from the distance constraints, then a nonlinear refinement is used to 

minimize a re-projection error. This approach works only for a single planar LIDAR. 

 

Figure 2-2. The “V” shaped calibration pattern used in 2D LIDAR and computer vision sensor calibration. 

To date, there does not exist any convenient calibration method for multi-planar 

„invisible-beam‟ LIDAR and computer vision systems. 

 

2.3 Sensor Fusion Based Vehicle Detection and Tracking 

  Computer vision is generally used in current mobile platform based object detection 

and tracking systems, either separately or along with LIDAR sensor [57]. Most of the 
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current platforms apply a simple segmentation such as background subtraction or 

temporal difference to detect objects [58]. However, these approaches suffer with the fast 

background changes due to camera motion. A trainable object detection method is 

proposed in [59] based on a wavelet template that defines the shape of an object in terms 

of a subset of the wavelet coefficients of the image. However, the application of vision 

sensors in vehicle navigation is far from sufficient: clustering, illumination, occlusion, 

among many other factors, affect the overall performance. Fusion of camera and active 

sensors such as LIDAR or RADAR is been investigated in the context of on-board 

vehicle detection and classification.      

   A LIDAR sensor and a monocular camera based detection and classification system is 

proposed in [56]. The detection is implemented in the LIDAR space, and the object 

classification works both in LIDAR space (using a Gaussian Mixture Model classifier) 

and in computer vision system (using an AdaBoost classifier). A Bayesian decision rule is 

proposed to combine the results from both classifiers, and thus a more reliable 

classification is achieved. However, this approach uses the information in LIDAR space 

for vehicle and pedestrian detection, while the computer vision images are disregarded 

during the detection process.     

   Another integration structure is proposed in [60], in which a LIDAR is integrated 

with a far infrared camera for pedestrian detection. LIDAR data processing and infrared 
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image processing are performed separately. A LIDAR-based shape extraction method is 

used to select Regions of Interest (ROIs). The state of the vehicle (position and 

orientation) w.r.t. the camera sensor is also considered to obtain a global coordinate based 

pedestrian detection. This system combines a straight forward with a backward loop 

methodology. Kalman filtering is used as the data fusion algorithm. In this approach, the 

LIDAR sensor is used alone for initialization, i.e., for ROI generation. It is not integrated 

with camera in the following pedestrian classification and tracking processes. 

   A similar technique is presented in [61] for pedestrian detection. It makes use of 

RADAR and steering sensor to generate the pedestrian position hypotheses. The 

examination of the hypotheses is implemented by camera with a pedestrian model. The 

classification is performed using a shape model for either the monocular camera vision or 

the infrared spectrum images. This method achieves a higher detection accuracy 

compared to a sole image processing solution. The disadvantage of this method is that 

one sensor is used in each step: LIDAR for position hypotheses generation, and camera 

for verification. The two sensors are not integrated as a tightly-coupled sensor fusion 

system. 

  The integration of range RADAR, thermopile, and steering angle sensors is proposed 

in [62]. In this system, range RADAR provides distance from the sensor to pedestrians; 

thermopile converts thermal energy into electrical energy, which is used to measure 
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human body temperature; and steering angle is measured by the inertial sensor. Two short 

range RADAR sensors are mounted in the front bumper of the test vehicle for observing 

and tracking multiple targets. Spatial distributed thermopile sensors are used to classify 

the target. RADAR and thermopile are fused using a statistical model. In this case, the 

target detection and classification can be done either at a lower level (ROIs generated by 

RADAR and thermopile) or at a higher level (ROIs generated by all the sensors). One 

contribution of the approach is that instead of using computer vision sensor, in this 

system the thermopile is utilized for pedestrian detection. 

  The review of the SAVE-U project [63] compares RADAR-camera and 

LIDAR-camera sensor fusion systems. It states that the RADAR-camera system becomes 

unreliable at 10-15m when working in real scenes due to reflection from the surrounding 

objects. LIDAR, on the other hand, is capable of detecting the targets while providing 

accurate distance estimates. However, LIDAR is affected by weather conditions, which is 

not the case for RADAR.  

   To summarize, LIDAR and computer sensor fusion has been widely used in vehicle 

and pedestrian detection. The detection is commonly implemented in two steps: 

hypotheses generation, followed by verification. In current systems, a single sensor is 

used for one step: LIDAR sensor is utilized to generate position hypotheses, and 

computer vision sensor is used for verification. Thus, the output of LIDAR sensor and 
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camera are not tightly integrated in object detection.  

 

2.4  Vehicle Localization Techniques 

   In driver assistance applications, reliable vehicle-based lane-level position 

determination techniques are becoming a critical need. The next generation vehicle 

positioning system requires the fusion a variety of sensors, including GPS, inertial 

measurement sensors, encoders, and feature-based sensors such as computer vision, 

RADAR, or LIDAR. The enhanced vehicle positioning capability enables applications 

such as intersection collision avoidance, road departure warning, and automated vehicle 

control [40]. 

   There has been increased interest in the sensor aided localization, primarily spawned 

from recent autonomous vehicle challenges [40]. Simultaneous Localization and 

Mapping (SLAM) is such a technique using camera or LIDAR to build up a map within 

an unknown environment (without a priori knowledge) or to update a map while at the 

same time tracking the current location [39]. In this subsection, we discuss several 

LIDAR based lane-level positioning techniques in which the map information is a priori 

knowledge. The localization approaches can be grouped into several categories w.r.t. the 

sensors: LIDAR-based, LIDAR and INS based, LIDAR, INS and odometer based, 

LIDAR and GPS based, and the LIDAR, GPS and INS based localization techniques. 
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2.4.1 LIDAR-Based Positioning 

Vehicle equipped with a LIDAR sensor can locate its own position w.r.t. the 

landmarks [43, 48, 51]. A very simple navigation framework is proposed in [48], where 

the map is considered as a priori information. An Extended Kalman Filter (EKF) is 

utilized in [51]. Beacons with reflective tapes are used in [43], where the locations of the 

beacons are considered as a priori information. Least-square minimization methods are 

applied to calculate the location.  

A LIDAR based outdoor navigation system is proposed in [49], in which SLAM is 

implemented with beacons and natural features. An inverse covariance filter is used for 

navigation. Outdoor navigation tests using beacons at known locations and SLAM with 

artificial beacons experiments show that most of the errors are within the 95% confidence 

bounds.  

The LIDAR based positioning techniques work well in indoor environment. However, 

the overall performance of the LIDAR sensor in outdoor environment may be affected by 

many factors, such as low target reflection, weather, or small size target such as light 

poles. Positioning errors will be caused if LIDAR fails to capture the features.  

2.4.2 LIDAR and INS Based Positioning 

An autonomous navigation solution for urban environment (indoor and outdoor) is 

proposed in [41, 46], in which a LIDAR sensor and INS are integrated. The line features 
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detected by a 2D LIDAR is used to determine the location. Line matching is carried out 

from inertial sensor data. Inertial error calibration is carried out by LIDAR images. The 

tilt compensation in LIDAR allows for an extension of a 2D case into a partial 3D case by 

removing the assumption that the scan plane of the LIDAR is parallel to the ground [41]. 

Estimation of the relative frame position and heading in Earth-Centered-Earth-Fixed 

(ECEF) frame or the East-North-Up frame allows for the transformation from the sensor 

coordinated to an absolute coordinate. The experiment shows that in the indoor 

applications, the relative position error is 1.1% of the distance travelled, where the total 

distance is 9m. The outdoor test illustrates that the displacement error is 0.8% of the 

distance travelled. In this approach, the INS is used for LIDAR tilt estimation and 

landmark identification, while the positioning algorithm depends on a single LIDAR 

sensor. Therefore, it is not a „tightly-coupled‟ integration system.  

INS and a multiple Airborne Laser Scanner (ALS) are integrated in [44]. A dual laser 

scanner terrain-referenced dead-reckoning algorithm is proposed in this paper to 

determine the location. The position drift error has been tested to be approximately 1 

meter/minute. This approach requires an Airborne LIDAR to provide 3D bird-view of the 

terrain, which is a computationally expensive thus prohibiting current positioning 

algorithm to be applied in vehicle positioning with rapidly changing environment. 
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2.4.3 LIDAR, INS and Odometer Based Positioning 

Inertial sensors, odometer and a LIDAR sensor are utilized in [50] for underground 

vehicle navigation. A guidance system for an autonomous load, haul and dump truck 

(LHD) is designed and presented in this paper. In this sensor fusion system, the output of 

LIDAR is the bearing from the sensor to the target. The sensors are synchronized by a 

time stamp from a master computer which sends out time signals at a rate of 50Hz. The 

data from each sensor are recorded for post-processing and individually time stamped. A 

INS-based dead reckoning system is fused with a SICK LIDAR which provides landmark 

positions. On the other hand, the odometer based dead reckoning is used to record the 

distance. These two systems operate in parallel, improving the robustness by providing 

redundancy. The robustness is also improved by using a variety of sensors, as each sensor 

has unique failure cases. The navigation is implemented by using discrete EKF. The 

position error is less than 0.14m during a 140 seconds test. The experiment results show 

this approach makes the navigation systems for large heavy industrial vehicles much 

more reliable and robust in harsh uneven terrain [50]. 

2.4.4 LIDAR and GPS Based Positioning 

GPS and LIDAR are combined in [45, 47] for navigation in outdoor environments. In 

urban areas, if there exists a building wall that blocks the GPS signals, the wall will build 

a line-feature which can be detected by the LIDAR. On the other hand, for open streets 
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the GPS signals are not blocked so it provides reliable position information. Thus the 

GPS and LIDAR can be integrated in either urban or suburban areas.  

The integration of GPS and two laser scanners is performed using an EKF in [45].  

In this paper, the vehicle‟s location is determined without a priori knowledge of the 

landmark information. The position error is less than 15cm in the „forest scenario‟ when 

the GPS has a 35m outage, and less than 10cm in the „urban canyon scenario‟ when GPS 

has a 20m outage. In an experiment conducted in an alley in Chicago, the absolute 

positioning error does not exceed 1.5m over 70m of GPS outage. However, this method 

has poor performance in urban area where the GPS losses satellite signals. 

2.4.5 LIDAR, GPS and INS Based Positioning 

GPS, LIDAR and inertial sensors are used for navigation in urban environments, as 

described in [42]. Compared with the work in [45], in this integration system an INS 

sensor is utilized for improved solution robustness, i.e., for robust feature association 

between the LIDAR scan output and the GPS data. Line features are extracted by LIDAR 

for position determination when the GPS signal is not available. In open areas the GPS is 

used for navigation. When sufficient GPS or LIDAR measurements are not available, the 

INS can be utilized. The algorithm to integrate LIDAR and INS data is the same as in 

[41]. Particularly, the inertial sensor data are applied to identify landmarks in the LIDAR 

output, and to adjust a 2D scan plan for tilting of the LIDAR platform. It also works in 
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the cases when GPS losses satellite signals, or insufficient LIDAR measurements are 

available. The Kalman filter is used in tracking.  

This paper uses some urban data to demonstrate the performance of the integration 

system. Two outdoor tests have been carried out. In the first test, the trajectory is 300m, 

and the standard deviation of East and North residual components are 30cm and 20cm, 

respectively. The second trajectory is 240m, and the error is less than 30cm. 

To summarize, sensor fusion techniques are commonly used in current vehicle 

positioning systems. The sensors utilized in positioning include LIDAR, camera, GPS, 

inertial sensors, and odometer. The performance of LIDAR-based positioning method is 

sufficient for indoor applications. However, in outdoor environment the LIDAR sensor 

should be integrated with the other sensors. Camera is another sensor commonly used for 

navigation. On the other hand, the computation is time consuming since in a large 

environment there are thousands of features for computer vision sensor to capture. GPS is 

an efficient sensor to provide an accurate estimation of the position. However, in urban 

areas it may has poor performance with few satellite connections. The integration of 

LIDAR and inertial sensors is a reliable solution for outdoor navigation.  

 

2.5 Vehicle Tracking and Its Application in Freeway Traffic Surveillance 

Systems 

Traffic management systems observe the road environment and assist the 
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transportation administration department in obtaining real-time traffic information. One 

important capability that is critical for many surveillance applications is the ability to 

detect and track vehicles from a video stream. This topic has been addressed in video 

based monitoring systems [22]. The vehicle trajectory data are collected over a length of 

roadway and time, rather than at a single point and a fixed time. The information from 

vehicle trajectories is utilized in traffic analysis, driver behavior learning, incident 

detection, path planning, and emission estimation [23].  

The computer vision-based vehicle tracking techniques can be grouped into four main 

categories: tracking using discrete features, tracking with contours, region-based tracking, 

and combined tracking.  

2.5.1 Tracking Using Discrete Features 

The first category is the tracker using only discrete features, i.e., points, collections of 

edges, and lines. A feature is defined as a local representation of the target. Feature based 

tracking is commonly implemented by detecting and tracking individual features, and 

then grouping the features in one foreground blob [25].  

Image features are commonly referred to as “interest points”, i.e., the points whose 

surrounding regions change in a two-dimensional manner [24]. The feature points are 

selected by checking the intensity change using a local autocorrelation function. 

Kanade-Lucas-Tomasi (KLT) tracking is used which proposes a density matrix that 
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captures the local intensity structure [26]. Once the feature point has been selected, the 

tracking is implemented by solving the image displacement equation.   

   Tracking using features that describe a larger region have recently been a very 

popular technique. Color histograms or color distribution models are commonly used as 

regional descriptors. Color histograms present the probability of each color occurs within 

an image region. One application is the mean-shift tracking algorithm, which uses a color 

probability model since the color histogram does not vary much to target rotation of scale 

variation [27].  

   Pixels can also be grouped into higher level structures, such as grouping edge pixels 

into a line, or comparing a set of corner features against the estimated vehicle positions. A 

commonly used method is to compare the features with a 3D model. The edges are first 

grouped to line-based features, which are parameterized using the position and 

orientation. Then the Mahalanobis distance is calculate to compare a line feature with a 

particular projected model [28, 29].  

   Discrete features are reliable for vehicle tracking with free flow traffic. When the 

vehicles are not far away to each other, the features will be visible and can be tracked 

during several consecutive frames. However, in high density traffic situation when the 

features are partially occluded, tracking will be problematic.  
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2.5.2 Tracking Using Contours 

A curve that presents the outline of the vehicle is used in contour tracking. Unlike the 

other tracking methods that represent the vehicle as a rectangle or an ellipse, the contour 

tracking ideally provide very precise localization of the target and its boundary.  

A commonly used contour-based tracker is the „snakes‟ tracking, which identifies the 

contour that minimize the shape energy. The energy represents the goodness of a contour. 

Two assumptions are made in this tracking approach. One is that the contour does not 

contain protruding or valleys. Furthermore, it is assumed that the length of contour 

doesn‟t change significantly from frame-to-frame [30].  

The parameterization process in the snake method is too cumbersome for most tracking 

systems. Therefore, a regional information based contour tracker is proposed to improve 

the performance [31]. The so-called „depth-adapting algorithm‟ proposes a new energy 

definition. If the local contour perturbation leads to a positive energy change, the contour 

will continue to move inward or outward. Another „adaptive fusion‟ algorithm is also 

proposed in [31], which is an extension of the depth-adapting algorithm to include more 

global information.   

Most of the video sequences used in contour-based tracking dealt with fairly clear, 

high-contrast edges in minimal cluster, which makes the contour extraction much easier. 

Therefore, the contour cannot be used in vehicle tracking with high density traffic. 
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2.5.3 Region-Based Tracking 

Region-based Tracking method tracks an area that represents the target. This tracking 

approach can be classified into several categories: blob tracker, kernel and histogram 

tracker, and the pixel-wise template tracker.  

The blob tracking methods are commonly implemented in the following steps [32]:  

 Extract the background from the video, which is a stationary image. The 

foreground is detected by subtracting the background from the image.   

 Detect the changes in foreground from frame to frame. The changes are considered 

to be the moving objects. 

 Associate the currently detected objects with targets detected from previous 

frames.  

Blob tracker is easy to implement with high efficiency. However, the accuracy relies 

on having an effective background subtraction [33].  

Kernel histogram methods use some combination of a weighted kernel and a histogram 

to track the target frame-to-frame. The most prominent kernel histogram tracking method 

is the mean shift tracking [27]. The basic component of a mean shift tracking method is 

the color histogram, which counts the number of pixels with each color and gives the 

color probabilities. Then the histograms are matched using the Bhattacharyya coefficient 

[79]. Finally, the best candidate match in the current frame is considered to be the 
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location of the target.     

  Pixel-wise template tracking uses some feature descriptors at each pixel for vehicle 

tracking. The most commonly used feature is the intensity. A template matching tracker 

performs in the following steps [34, 35]: 

 Initialize the template of the target in the first frame.  

 Predict where the target will appear in the next frame. It is implemented by a 

Kalman filter or particle filter.  

 Match the template to the image regions which center on the estimated position 

with a surrounding neighborhood search region. The commonly employed 

matching methods include standard Sum of Squared Differences (SSD), or the 

cross-correlation.   

 The location that provides the highest matching probability is considered to be the 

current target.  

 Region-based tracking is very effective for vehicle tracking when the targets are far 

away from one another. This approach begins to break down when the vehicles are close 

to each other, i.e., when the occlusion happens. 

2.5.4 Combined Tracking 

Nowadays a lot of research has been carried out to combine various vehicle tracking 

techniques. The combined trackers commonly use a probability model with multiple 
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target representations.  

A tracking model is proposed in [36] to combine a variety of features with a 

probabilistic framework using particle filter. The features include curves and texture 

regions. The states in the particle filter consist of the target position in 2D, and its six 

affine motion parameters. The experiment results in [36] illustrate that when a single 

feature fails in the tracking, the proposed multi-feature tracking still succeeds. 

Another tracking method uses three feature modalities: homogeneous regions, 

textured regions, and snakes [37]. Likelihood functions have been defined for each of the 

trackers, respectively. The homogeneous regions-based likelihood function determines 

the optimal location, size and orientation of the target. Then a 

Sum-of-Squared-Differences-based matching score is used to define the probability 

model of the texture tracker. The third tracking modality uses intensity-based snake 

tracker. The likelihood function is defined based on the differences between the predicted 

contour points and the closest measurement results. In [37] a joint likelihood filter is 

proposed which combines the three likelihood functions. Results are shown that the 

combination of the trackers outperforms the single-modality tracking methods.  

However, another work in [38] proposed that the blindly fusing of the results from 

different sensors or sources is sub-optimal. The combination is generally implemented in 

a particle filter, which treats each modality evenly and generates an overall likelihood 
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function. It is proposed in [38] that separate target trackers should be generated using 

each of the modalities. The different trackers are combined based on the confidence of 

the obtained tracks.  

In summary, in this section we have considered vehicle trackers that make use of 

discrete features, contours, and regions, as well as the trackers that combines the 

probability of each feature. However, none of the reviewed approaches works with 

significant occlusions. In Chapter 6, we will propose a tracker that integrates feature 

tracking and color histogram probability model to solve the occlusion problem. 

 

2.6 Recapitulation 

To summarize, this chapter has presented a number of techniques that are commonly 

used to estimate the surrounding vehicle‟s state, or to predict the test vehicle‟s position. 

We began with a discussion of LIDAR sensors. Subsequently, the calibration of computer 

vision and LIDAR sensor has been reviewed. Additionally, the topics of sensor 

fusion-based vehicle detection approaches were discussed. Vehicle positioning techniques 

were also presented in this chapter. Finally, we discussed the vehicle tracking methods 

using stationary computer vision sensor. In the next chapter we will present our solutions 

to the “where am I?” and “where are they?” problems in more details.   
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Chapter 3 

A Novel Multi-Planar LIDAR and Computer Vision Calibra-

tion Procedure Using 2D Patterns  

 

In this chapter, we describe a novel calibration approach for a LIDAR and computer 

vision sensor fusion system. This system consists of a camera with a multi-planar LIDAR, 

where the laser beams are invisible to the camera. This calibration method also works for 

computer vision and 3D LIDAR systems.  

Although several calibration methods have been developed to obtain the geometric re-

lationship between two sensors, few of them have provided a complete sensitivity analy-

sis of the calibration procedure (see background in Chapter 2). As part of the calibration 

method proposed in this dissertation, we also address the effect of LIDAR noise level as 

well as the total number of poses on the calibration accuracy. 

  This chapter is organized as follows: Section 3.1 gives the setup using planar planes 

and defines the calibration constraint. Section 3.2 describes in detail how to solve this 

constraint in two steps. Both a closed-form solution and a non-linear minimization solu-

tion based on maximum likelihood criterion are introduced. Experimental results with 
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different poses are provided in Section 3.3. Finally, a brief summary is given in Section 

3.4. 

 

3.1 Sensor Alignment 

The setup for a multi-planar LIDAR and camera calibration is described here. 

3.1.1 Sensor Configuration 

In the calibration system, an instrumented vehicle is equipped with two IBEO ALAS-

CA XT LIDAR sensors which are mounted on the front bumper. The LIDAR sensor 

scans with four separate planes. The distance range is up to 200 meters, the horizontal 

field of view angle of a single LIDAR is 240
o
, and the total vertical field of view for the 

four planes is 3.2
o
. The camera is mounted on the vehicle behind the front windshield, as 

is shown in Fig. 1-1. 

In order to use the measurements from different kinds of sensors at various positions 

on the vehicle, the measurements should be transformed from their own coordinate into 

some common coordinate system. In this section, we focus on obtaining the spatial rela-

tionship between video and LIDAR sensors. The geometric sensor model is shown in Fig. 

3-1. 
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Figure 3-1. Geometric model with the camera and the LIDAR. 

3.1.2 Vision, LIDAR and World Coordinate Systems 

There are several coordinate systems in the overall system: the camera coordinates, the 

LIDAR coordinates, and the world coordinate systems. 

A camera can be represented by the standard pinhole model. One 3D point in the cam-

era coordinate denoted by  is projected to a pixel  in the 

image coordinate. The pinhole model is given as [64]: 

 

(3-1) 

 

where  is an arbitrary scale factor.  is the camera intrinsic matrix defined by the 

coordinates of the principal point , scale factors  and  in image  and  
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axes, and skewness of the two image axes .   are called extrinsic parameters. 

The  orthonormal rotation matrix  represents the orientation of the world coor-

dinates to the camera coordinate system. The translation matrix  is a 3-vector 

representing the origin of the world coordinates in the camera's frame of reference. In the 

real world, the lens of the camera may also have image distortion coefficients, which in-

clude radial and tangential distortions and are usually stored in a 5-vector [65]. In our ex-

periment, the lens is assumed to have no significant distortion, or the distortion has al-

ready been eliminated. 

   The LIDAR sensor provides distance and direction of each scan point in LIDAR 

coordinates. Distances and directions can be converted into a 3D point denoted by  

 [54]. The origin of the LIDAR coordinates is the equipment itself. , 

 and  axes are defined as forward, leftward and upward from the equipment, respec-

tively. The camera and LIDAR reference systems are shown in Fig. 3-2. 

 
 

(a)                                      (b) 

Figure 3-2. Two coordinate systems. (a) The camera coordinates and screen coordinate systems, and (b) the 

LIDAR coordinate system. 
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  In addition to the camera and LIDAR reference systems, another coordinate system is 

used in calibration procedure: the world frame of reference. In the calibration process, a 

checkerboard is placed in front of the sensors. The first grid on the upper-left corner of 

this board is defined to be the origin of the world coordinates [65]. 

  Suppose we have a fixed point  in space, which is denoted as  in 

the camera coordinates, and  in the LIDAR coordinates. The transfor-

mation from LIDAR coordinate to camera coordinate is given as: 

 (3-2) 

where  are the rotation and translation parameters which relate LIDAR coordi-

nate system to the camera coordinate system. 

  The purpose of our calibration work is to solve Eqn. (3-2) and obtain coefficients 

, so that any given point in the LIDAR reference system can be transformed to 

the camera coordinates. 

3.1.3 Basic Geometric Interpretation 

A checkerboard visible to both sensors is used for calibration. In the following sec-

tions, the planar surface defined by the checkerboard is called the checkerboard plane. 

Without loss of generality, we assume the checkerboard plane is on  in the world 
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coordinates. Let  denotes the -th column of the rotation matrix . Then  is the 

surface normal vector of the calibration plane in the camera coordinate system [65]. 

Note the origin of the world coordinate is the upper-left corner of the checkerboard, 

and the origin of the camera coordinate is the camera itself. The translation vector  

represents relative position of the checkerboard's upper-left corner in the camera's refer-

ence systems. Since both  and  are points on the checkerboard plane denoted in 

camera coordinates, a vector  is defined as . Note that  is a vector on the 

checkerboard plane, and  is orthogonal to this plane, we have: 

 (3-3) 

where  denotes the inner product. The geometric interpretation for Eqn. (3-3) is illu-

strated in Fig. 3-3. 

   By substituting Eqn. (3-2) into Eqn. (3-3), we have: 

 (3-4) 

Since point  in LIDAR coordinates is , from Eqn. (3-4): 

 

 

(3-5) 

 



41 
 

 

Figure 3-3. Geometric interpretation of the camera coordinates, the LIDAR coordinates, and checkerboard 

plane. 

For each LIDAR point on the checkerboard plane, Eqn. (3-5) explains the geometric 

relationships and constraints on . This is the basic constraints for the calibration 

from the LIDAR to the vision coordinate system. 

 

3.2 Calibration Solutions 

This subsection provides the method to efficiently obtain the calibration coefficients 

. We start with an analytical solution, followed by a nonlinear optimization tech-

nique based on the maximum likelihood criterion. 
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3.2.1 Closed-form Solution 

Initially, the camera's intrinsic parameters are calibrated using a standard Camera Ca-

libration Toolbox [65]. For each pose of the checkerboard, there's one set of camera ex-

trinsic parameters . Each  is determined also using the toolbox, after which 

 and  in Eqn. (3-5) are obtained. 

For simplicity, let's define , , and 

 be the element on the -th row, -th column in matrix . Suppose for one pose of 

the checkerboard, there are  LIDAR points on the checkerboard plane, denoted as 

, , , . The 

geometric interpretation becomes a  problem, where  is a  matrix, 

and  is a 12-vector to be solved.  and  are given in Eqn. (3-6). 

 

        

(3-6) 

By getting the LIDAR points , we can estimate  using the least 

square method. In order to avoid the solution , normalization constraints are pro-

posed. Faugeras and Toscani [66] suggested the constraint , which 
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is singularity free. This restriction is proposed from the coincidence that  

is the third row of the rotation matrix . Thus solving the equation  is trans-

formed into minimizing the norm of , i.e., minimizing  with the restriction 

. 

 can be minimized using a Lagrange method [67]. Let , 

and  be a vector containing the remaining 9 elements in . The Lagrange equation is 

written as: 

 (3-7) 

where  contains the -th to -th columns of , and  contains the remaining 9 

columns corresponding to . 

The closed-form linear solution is: 

 
(3-8) 

It's well known that  is the eigenvector of the symmetric positive definite matrix 

 associated with the smallest eigenvalue.  is ob-

tained after . Once  and  are known, the rotation and translation matrix  

 is available. 
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Because of data noise, the rotation matrix  may not in general satisfy 

. One solution is to obtain , which is the best approximation of given 

. This  has the smallest Frobenius norm of the difference , subject to 

 [64]. 

3.2.2 Maximum Likelihood Estimation 

The closed-form solution is obtained by minimizing an algebraic distance , 

which is not physically meaningful. In this subsection, we refine this problem through 

maximum likelihood function using multi-pose checkerboard planes, which is more mea-

ningful. 

In this camera calibration approach, differences of image points and the corresponding 

projection of the ground truth point in an image are minimized [64]. This method is also 

valid for visible-beam LIDAR calibration [21]. In our test, the Euclidean distances from 

camera to the checkerboard are checked. Note that Eqn. (3-4) can be written as: 

 (3-9) 

where both  and  are points on the calibration plane surface, and  is the 

normal vector to this surface. Therefore, both the left and right sides of Eqn. (3-9) are the 

distance between the checkerboard plane and the origin of the camera reference system. 
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   Suppose we have  poses of the calibration plane. For the -th pose, there is a set of 

 denoted as . We assume the LIDAR points are corrupted by Gaussian dis-

tributed noise. Then the maximum likelihood function can be defined by minimizing the 

sum of the difference between  and  for all the LIDAR points. Sup-

pose for the -th plane, there are  LIDAR points. Then the solution satisfies: 

 (3-10) 

where  is the coordinate of  in camera reference system, according to 

Eqn. (3-2). 

   By using the Rodriguez formula [66], the rotation matrix  is transformed into a 

vector, which is parallel to the rotation axis and whose magnitude is equal to the rotation 

angle. Thus  forms a vector. Eqn. (3-10) is solved using the Levenberg-

Marquardt algorithm (LMA) [68, 69], which provides numerical solutions to the problem 

of minimizing nonlinear functions. LMA requires an initial guess for the parameters to be 

estimated. In our algorithm,  in the closed form is used as this initial state. For 

each pose, a set of  is obtained. The weighted average is used as an initial guess, 

where the scalar weight is normalized as a relative contribution of each checkerboard 
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pose. Then LMA gives a robust solution even if the initial state starts far off the final so-

lution. 

3.2.3 Summary of Calibration Procedure 

The calibration procedure proposed in this approach can be summarized as: 

1) Place the checkerboard in view of the camera and LIDAR systems. Make sure 

that the plane is within the detection zone of both sensors. The different poses of check-

erboard cannot be parallel to each other, otherwise the parallel poses do not provide 

enough constraints on . 

2) Take a few measurements (images) of the checkerboard under different orienta-

tions. For each orientation, read the LIDAR points on this plane from the output. 

3) Estimate the coefficients using the closed-form solution given in Section 3.2.1. 

4) Refine all the coefficients using the maximum likelihood estimation in Section 

3.2.2. 

 

3.3 Experimental Results 

The proposed vision-LIDAR calibration algorithm has been tested on both a computer 

simulation platform and with real world data. 
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3.3.1 Computer Simulations 

The camera is assumed to have been calibrated. It is simulated to have the following 

property: , , and the skewness coefficient . The principal point 

is (320, 240), and the image resolution is . The calibration checkerboard con-

sists of  grids. The size of each square grid is . The position and 

orientation of the LIDAR relative to the camera have also been defined. The LIDAR's 

position in camera coordinates is  centimeters, and the rotation ma-

trix  is parameterized by a 3-vector rotation vector . 

The LIDAR points are calculated based on the location of the camera and relative po-

sition and orientation of the checkerboard. Gaussian noise is added to the points. 

A. Performance w.r.t. the noise level  

The checkerboard plane is placed in front of the camera and LIDAR. Three poses are 

used here. All of them have . The three rotation matrix are de-

fined by the rotation vectors as , , 

, respectively. Gaussian noise with zero mean and  standard 

deviation (from 1 to 10cm) is added to the LIDAR points. The estimation results are then 

compared with the ground truth. For each noise level, we carried out 100 independent 
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random trials. The averaged calibration error is shown in Fig. 3-4, where the calculation 

results are denoted as  and , respectively. As we can see from this figure, the cali-

bration error increases with noise level. For cm (which is larger than the normal 

standard deviation for most LIDAR sensors), the error of norm of  is less than 0.01. 

With three checkerboard poses, the relative translation error is less than  when 

cm. 

 

Figure 3-4. Rotation and translation error w.r.t. the noise level. 

B. Performance w.r.t. the number of checkerboard positions 

The checkerboard is originally setup parallel to the image plane. Then it is rotated by 

, where the rotation axis is randomly selected in a uniform sphere. The number of 

checkerboards used for calibration varies from 4 to 20. Gaussian noise with zero mean 

and standard deviation cm is added to the LIDAR points. For each number of posi-
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tion, 100 trials of independent rotation axis are implemented. The averaged result is illu-

strated in Fig. 3-5. This figure shows that when the number of checkerboard positions 

increases, the calibration error decreases. 

 

Figure 3-5. Rotation and translation error w.r.t. number of checkerboard positions.   

C. Performance w.r.t. the number of checkerboard positions 

  The checkerboard plane is initially set as parallel to the image plane. It is then rotated 

around a randomly chosen axis with angle . The rotation axis is randomly selected from 

a uniform sphere. The rotation angle  varies from  to , and 10 checkerboards 

are used for each . Gaussian noise with zero mean and standard deviation cm is 

added to the LIDAR points. For each rotation angle, 100 trials are repeated and the aver-

age error is calculated. The simulation result is shown in Fig. 3-6. The calibration error 
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decreases when the rotation angle increases. When the rotation angle is too small, the ca-

libration planes are almost parallel to each other, which causes a large error. When the 

rotation angle is too large, the calibration plane is almost perpendicular to the image 

plane, which makes the LIDAR measurement less precise. 

 

Figure 3-6. Rotation and translation error w.r.t. the orientation of the checkerboard plane. 

3.3.2 Real Data Calibration 

The calibration method is checked using an IBEO ALASCA XT LIDAR system and a 

Sony CCD digital camera with a 6mm lens. The image resolution is . The 

checkerboard plane consists of a pattern of  squares, so there are totally 256 gr-

ids on the plane. The size of each grid is  (1 inch  1 inch). 
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20 images of the plane were taken with different orientations, and the LIDAR points 

are recorded simultaneously. Two examples of the calibration results are shown in Fig. 3-

7, where the LIDAR points are mapped to image reference system using estimated  

and . Although the ground truth of  and  are not known, Fig. 3-7 shows that the 

estimation results are pretty reasonable.  

 

Figure 3-7. Two checkerboard positions. The LIDAR points are indicated by blue dots. The calibration 

method proposed in this chapter is used to estimate  and . 

3.3.3 Application in Automated Navigation 

The calibration method has been integrated into our mobile sensing system. This mo-

bile sensing system is designed to detect and track surrounding vehicles, which is the first 

and fundamental step for any of the automatic traffic surveillance systems. However, ob-

ject detection is a big challenge for the moving platform. Both the foreground and the 
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background are rapidly changing, which makes it difficult to extract the foreground re-

gions from the background. In our research, the sensor fusion technique is used to com-

pensate for the spatial motion of the moving platform. Fig. 3-8 gives two images from the 

vehicle detection video. 

 

Figure 3-8. Two sensor fusion image frames. The red rectangle is an enlarged image of the detected area. 

In Fig. 3-8(a), there are totally four vehicles detected by the LIDAR, where the far-

thest vehicle is 55 meters away from our mobile sensing system. It's hard to obtain the 

vehicle's distance and orientation from an image only. The LIDAR points provide a relia-

ble estimation of this vehicle's position. In Fig. 3-8(b), one car parallel to the probe ve-

hicle is detected by the LIDAR. Meanwhile, it is partially visible in the image, together 

with its shadow. Although this vehicle is hardly recognizable in the image, with a wide 

angle of view, the LIDAR data provide enough information to reconstruct the location of 

the vehicle. 
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Our experiment results illustrate that the calibration algorithm provides good results. 

For the automatic navigation application, the LIDAR provides reliable distance informa-

tion. The sensor fusion system combining LIDAR and computer vision information 

sources presents distance and orientation information. This system is helpful for vehicle 

detection and tracking applications.  

 

3.4 Summary 

In this chapter, we developed a novel calibration algorithm to obtain the geometry 

transformation between a multi-plane LIDAR system and the camera vision system. This 

calibration method requires the LIDAR and camera to observe a checkerboard simulta-

neously. A few checkerboard poses are observed and recorded. The calibration approach 

has two stages: closed-form solution followed by a maximum likelihood criterion based 

optimization. Both simulation and real world experiments have been carried out. The ex-

periment results show that the calibration approach is reliable. This approach will be used 

in the vehicle detection and tracking. 
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Chapter 4 

Tightly-Coupled LIDAR and Computer Vision Integration for 

Vehicle Detection 

 

Computer vision sensors are generally used in current mobile platform based object 

detection and tracking systems. However, the application of vision sensors is far from 

sufficient: clustering, illumination, occlusion, among many other factors, affect the over-

all performance. In contract, a LIDAR sensor provides range and azimuth measurements 

from the sensor to the targets. However, the accuracy of its measurements depends on the 

reflectivity of the targets and the weather. The fusion of camera and active sensors such 

as LIDAR is being investigated in the context of on-board vehicle detection and tracking. 

In this chapter, we propose a tightly coupled LIDAR/CV system, in which the LI-

DAR scanning points are used for hypothesizing regions of interest and for providing er-

ror correction to the classifier, while the vision image provides object classification in-

formation. LIDAR object points are first transformed into image space. ROIs are generat-

ed using the LIDAR feature detection method. An Adaboost classifier based on computer 

vision systems [74] is then used to detect vehicles in the image space. Dimensions and 
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distance information of the detected vehicles are calculated in body-frame coordinates. 

This approach provides a more complete and accurate map of surrounding vehicles in 

comparison to the single sensors used separately. One of the key features of this tech-

nique is that it uses LIDAR data to correct the Adaboost classification pattern. Moreover, 

the Adaboost algorithm is utilized both for vehicle detection and for vehicle distance and 

dimension extraction. Then the classification results provide compensatory information to 

the LIDAR measurements. 

   This chapter is organized as follows: in Section 4.1 a brief introduction of the vehicle 

detection system is given, followed by a description of the LIDAR system. Section 4.2 

describes the vision based system. The vehicle detection algorithm is introduced in Sec-

tion 4.3. A vehicle tracking approach using particle filter is proposed in Section 4.4. Ex-

perimental results of vehicle detection are provided in Section 4.5, followed by conclu-

sions and future work in Section 4.6. 

 

4.1 Overview of the Vehicle Detection System 

  Vehicle detection is the first and fundamental step for any Driver Assistant System 

(DAS) or automatic driving applications. With sensors mounted on a moving platform, 
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the detected data change rapidly, making it difficult to extract objects of interest. In our 

approach, we compensate for spatial motion of the moving platform.  

4.1.1 Multi-Module Architecture 

   The input of our vehicle detection system consists of two LIDAR sensors and a single 

camera, as is shown in Fig. 1-1. The specifications of the LIDAR sensor and the camera 

have been presented in Chapter 3. The areas covered by the two LIDAR sensors overlap 

with each other. The camera is placed inside of the vehicle, i.e., behind the rear-view mir-

ror. The field of view of this camera is fully covered by the LIDAR ranging space. 

   Fig. 4-1 presents the flow chart of the proposed vehicle detection system. It consists 

of four subsystems: a LIDAR-based subsystem, a coordinate transformation subsystem, a 

vision-based subsystem, and a vehicle detection subsystem. The LIDAR-based subsystem 

as well as the coordinate transformation subsystem is introduced in this section. The of-

fline vision training subsystem and the coordinate transformation subsystem will be in-

troduced in the next section. 
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Figure 4-1. Flow chart of the mobile sensing system. 

4.1.2 LIDAR-Based Subsystem 

The LIDAR Data Acquisition Module uses the IBEO External Control Unit (ECU) to 

communicate, collect and combine data from the two LIDAR sensors. 

The Prefiltering and Clustering Module aims to transform the scan data from dis-

tances and azimuths to positions, and cluster the incoming data into segments using a 

Point-Distance-Based Methodology (PDBM) [21]. If there exists any segment consisting 

of less than three points, and the distance of this segment is greater than the given thre-

shold, these points are considered as noise. Then the segment will be disregarded. 

The Feature Extraction Module extracts the primary features in the cluster. The main 

feature information in one segment is its geometrical representation, such as lines and 
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circles. One of the advantages of these geometrical features is that they occupy far less 

space than storing all the scanned points. 

A vehicle may have any possible orientation. The contour of a vehicle is constructed 

by four sides: front, back, left-side and right-side. The LIDAR sensor can capture one 

side, or two neighboring sides, as is shown in Fig. 4-2. 

 

Figure 4-2. The orientation of the vehicle significantly changes its appearance in the scan data frame. The 

rectangles show the position of the LIDAR. 

When the object is close to the probe vehicle, the extracted feature provides enough 

information for object classification. However, if the target is far away, it may be 

represented by only one or two scanning points. For those objects with only a few LI-

DAR points, it's difficult to get reliable size, location, or orientation information from the 

scan data alone. Note that the computer vision image also contains size and orientation 

information, which can be extracted by the object classification technique. Therefore, the 

LIDAR scan data and Adaboost output are complimentary to each other. 
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The ROI Generation Module calculates the position of ROI bounding boxes in LI-

DAR coordinates. It is worth mentioning that the ROI is not defined by the LIDAR points 

alone, since the scan points on one target may not be able to represent its full dimension. 

In our algorithm, the width and length of ROI are defined by both LIDAR data points and 

the maximum dimension of a potential vehicle. 

Each ROI is defined as a rectangular area in the image. The bottom of the rectangle is 

the flat ground. The top of the rectangle is set to be the maximum height of a car. The left 

and right edges are obtained from the furthest left and right scanning points in a cluster, 

as well as the typical width of a car. 

4.1.3 Coordinate Transformation Subsystem 

The LIDAR to Image Coordinate Transformation Module transforms each of the LI-

DAR points into the image frame. The relative position and orientation between the sen-

sors should be obtained for the transformation. We propose a unique multi-planar LIDAR 

and computer vision calibration algorithm in Chapter 3, which calculates the geometry 

transformation matrix between the 'multiple invisible beams' of the LIDAR sensors and 

the camera. This calibration approach is applied in the sensor fusion systems. 
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During the road test, each LIDAR scan point  is transformed into camera coordi-

nate as .  is then transformed into point  in the image plane. Fig. 4-3 illustrates 

the LIDAR scan points and its transformation result in the image reference systems. 

  

(a) (b) 

Figure 4-3. The LIDAR scan points. (a) Points in the LIDAR coordinate system. Each green dot is one scan 

point. (b) These points are transformed to the image frame. Each blue star in the image is one LIDAR point. 

Vehicles in the red circles are the enlarged image of the detected area. 

 

After the LIDAR to image transformation coefficients are calculated, ROIs generated 

in the LIDAR-based subsystem is converted into the image frame. A larger ROI is gener-

ated due to the inaccuracy of the transformation from LIDAR data to image data.  

The Image to LIDAR Coordinate Transformation Module is called to correct the Ada-

boot classification result. More details will be given in the following sections.  
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4.2 Vision-Based System 

Object classification from the hypothesized ROIs is required for vehicle detection 

purpose. The feature representations are used for object classifiers by an Adaboost algo-

rithm [74]. Viola et al. proposed that the object is detected based on a boosted cascade of 

feature classifiers, which performs feature extraction and combines features as simple 

weak classifiers to a strong one. 

The Adaboost classifier should be off-line trained using target as well as non-target 

images. In our system, the target images, i.e., the rear view of the vehicles, are called pos-

itive samples; while the non-vehicles are named as negative samples. Fig. 4-4 illustrates 

some of the positive as well as negative samples in the training dataset. The training sam-

ples are taken from both the Caltech vehicle image dataset [75] and the video collected by 

our test vehicle. The positive samples include passenger cars, vans, trucks and trailers. 

The negative sample sets include roads, traffic signs, buildings, plants and pedestrians. 

4.2.1 Image Training Preprocessing 

 Both the positive and negative samples are used by the vision system for data training. 

They are originally colored images. In order to remove the effects of various illumination 

conditions and camera differences, grey-level transformation is required as a preprocess- 
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Figure 4-4. Positive and negative samples used in Adaboost training. 

ing step. In our system, the grey-level normalization method is applied to the whole im-

age, which transforms grey-level of the image to be in [0, 1] domain. The color image is 

transformed by [76]: 

        (4-1) 

where  is the intensity of pixel ,  and  are the minimum and 

maximum values in this image, respectively.  is the normalized grey-level value. 

The next step is to normalize the size of all the positive samples. It is implemented 

before training since different resolution may cause different number of features to be 
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counted. Size of the normalized positive samples determines minimum size of the object 

that can be detected [77]. In our test, the normalized image size is set to be  pix-

els. 

4.2.2 Haar Training 

   In the vision-based system, Haar-like features are used to classify objects. This ap-

proach combines more complex classifiers in a "cascade" which quickly discard the 

background regions while spending more computation on the Haar-like area [74]. 

More specifically, we use 14 feature prototypes for the Haar training [78]. These fea-

tures represent the characteristic properties like edge, line, and symmetry. The features 

prototypes can be grouped into three sets: 

 Edge features: the difference between the sum of the pixels within two rectangular 

regions. 

 

 Line features: the sum within two outside rectangular regions subtracted from the 

sum in the center rectangular. 
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 Center-surround features: the difference between the sum of the center rectangular 

and the outside area. 

 

Here black areas with '-1' have negative weights, and white areas with '1' have positive 

weights. 

   After the weak classifier has been trained at each stage, the classifier is able to detect 

almost all the targets of interest while rejecting certain non-target objects. Then a cascade 

of classifiers is generated to form a decision tree. In our training process, there are totally 

15 stages. Each stage was trained to eliminate  of the non-vehicle patterns, and the 

hit rate in each stage is set to be . Therefore, the total false alarm rate for this cas-

cade classifier is supposed to be , and the hit rate should be around 

. 
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4.3 Moving Vehicle Detection System 

   The Adaboost algorithm designs a strong classifier that can detect multiple objects in 

the given image. However, there is no guarantee that this strong classifier is optimal for 

the object detection. In contrast to the classic Adaboost algorithm, in our test there is only 

one vehicle in each ROI defined by the LIDAR clustering algorithm. Therefore, it is not 

necessary for the Adaboost algorithm to detect several possible targets in one ROI. The 

classification correction technique is proposed to utilize the LIDAR scanning data to re-

duce the redundancy in the Adaboost detection results. 

   There are two kinds of redundancy errors in the classification results. Fig. 4-5 gives 

some examples of these two cases. Both have detected more than one object, while the 

ground truth is that there is only one vehicle. One kind of error is that the Adaboost de-

tects two possible targets, while the area of the smaller one is almost covered by the larg-

er one, as is shown in Fig. 4-5(a). Another error shown in Fig. 4-5(b) is that all the de-

tected areas belong to the same object, while none of them covers the full body of the tar-

get. 
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         (a)                                          (b) 

Figure 4-5. Two kinds of redundancy errors in Adaboost detection. 

Suppose in the -th ROI, there exists a LIDAR point cluster , which has the fol-

lowing features in the LIDAR coordinate system:  as the center of the cluster, 

 as the width of the object, and  as the possible length of the vehicle. On 

the image side, there are  detected target candidates denoted as , , , . Initial-

ly, , , ,  are transformed from image coordinate to camera coordinate, then to 

LIDAR coordinates. 

The scan points in LIDAR coordinates are denoted as , , , . The  -th 

candidate  has center , width  and height .  Then in 

the LIDAR coordinate frame, two vectors are defined as  

and . Here  is the 
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information measured by LIDAR, and  consists of measurements in LIDAR 

coordinate systems which are transformed from the image reference system. The coeffi-

cient  for mapping multiple target areas to the LIDAR information satisfies: 

 (4-2) 

where  is the Euclidean norm.  is then used as a weight to recalculate the detected 

area, which is a combination of all the detected objects in one ROI. 

   The LIDAR scanning points and the Adaboost results are then combined to generate a 

complete map of vehicles. A summary of the vehicle detection process is given here: 

Algorithm 1: Vehicle Detection 

Given LIDAR points cluster  with features , detected tar-

get candidate , , ,  in the image; 

 

if no object detected in the ROI 

  enlarge ROI and search again 

else 

  define  

  transform , ,  in the image coordinate frame to LIDAR reference frame 

  define  

  calculate the weight vector which minimize  

end if 

 

The detected vehicle is located at . 

    The vehicle detection system proposed in this chapter can be summarized as: 
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 The Adaboost classifier training is done offline with both positive and negative 

samples. 

 ROI is defined by the LIDAR scan data. No more than one vehicle is assumed to 

exist in each ROI. 

 Use the Adaboost classifier to make a preliminary vehicle detection. 

 LIDAR data is used to correct the Adaboost redundancy error, and to merge the 

detect area in one ROI. 

 Combine the Adaboost detected area (in LIDAR coordinate) and the LIDAR output 

to generate a complete vehicle distance and dimension map. 

 

4.4 Vehicle Tracking System 

The LIDAR and computer vision sensors are integrated in a probabilistic manner for 

vehicle tracking. In our research, a Sampling Importance Resampling (SIR) Particle filter 

is used as the tracker, which is a sophisticated model estimation technique [80]. Unlike 

the commonly used Kalman filter and EKF, the particle filter does not assume that the 

linear dynamic system is perturbed by Gaussian noise. The key idea of the particle filter 
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is to represent the estimation by a set of random samples (they are called particles) with 

associated weights.  

4.4.1 Particle Filter 

Let  be the -th sample of the position and velocity of the target at time , 

, where  is the total number of samples or particles in the particle filter. 

 is the i-th weight at time  associated with . The procedure of the SIR particle 

filter is defined as follows: 

(1) Initial Particle Generation 

Generate  particles , . Here  is obtained from ve-

hicle detection results, and .  

(2) Particle Updating 

For each particle  at time , generate a particle  at time . This step cor-

responds to the prediction step in Kalman filter and EKF. However, in Kalman filter and 

EKF, at time  the state is updated only once. Here in the particle filter, each of the par-

ticles should be updated, so totally  particle updating calculations are implemented. 

In our system  is the sample of the position and velocity, so a linear 

model is used to update the particles:  
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                       (4-3) 

where  is the time interval, and  is the noise. 

(3) Particle Weighting 

  Each particle  at time  is associated with the weight , which is also called 

the importance factor. The weight at time  is a function of the weight at time ,  

and the probability function of measurements and states at time . The importance factor 

is commonly calculated as [80]: 

                         (4-4) 

where  is the measurement at time . In our sensor fusion system, both LIDAR and 

computer vision sensors are utilized for vehicle tracking. Therefore, the measurement is 

, where  is the output of LIDAR, and  is the measurement of the 

camera. This step corresponds to the update step in Kalman filter and EKF. The probabil-

ity  will be discussed in the following section.  

(4) Resampling 

A common problem with the particle filter is the degeneracy, which is the phenome-

non that after a few iterations only one particle has non-negligible weight [80].  has 

been defined to measure the degeneracy, which is calculated as [80]: 
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                         (4-5) 

where  is the normalized weight of the -th particle at time  with 

. If  is less than a given threshold , the degeneracy is detected.  

Resampling is performed at each iteration. It is designed to eliminate particles that 

have small weights and replicate particles that have large weights. Particles that have 

large weights are considered to be the “good” particles while the particles with small 

weights are “bad” particles. The resampled weights are set as .    

After obtaining , the posterior filtered density can be approximated as [80]: 

                    (4-6) 

4.4.2 The Sensor Model 

The sensor model describes the process by which the sensor measurements are made 

in the physical world. It relates the sensor output to the state of the vehicle. In our appli-

cations it is defined as the conditional probability , which is the probability 

of the LIDAR and computer vision sensor measurements given the state of the vehicle.  

A LIDAR sensor model is described in [82], which represents the probability as a 

mixture of four distributions corresponding to four types of measurement errors: the 
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small measurement noise, errors due to unexpected objects or obstacles, errors due to 

failure to detect objects, and random unexplained noise.  

Let  denote the true distance to an obstacle,  denote the recorded mea-

surement, and  denote the maximum possible reading. The small measurement error 

is defined as a Gaussian distribution  over the range  with mean  and 

standard deviation .  

The LIDAR detection zone is often blocked by the moving vehicles, which leads to 

the measurement whose length is shorter than the true length. This particular type of mea-

surement error is modeled by a truncated exponential distribution  with the coeffi-

cient . 

LIDAR sometimes fails to detect obstacles due to low reflectivity of the target. The 

errors due to failure to detect objects is defined as a pseudo point-mass distribution  

centered at .  

Finally, unexplainable measurements may be returned by the LIDAR sensor, which 

is caused by interference. This type of error is modeled by a uniform distribution  

over the entire measurement range.  

  is calculated as a combination of the four types of errors as: 
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 (4-7) 

where  ,  ,  and  are the weights for  ,  ,  and 

, respectively. . The parameters in Eqn. (4-7) are 

commonly used as the a priori information, which are obtained by data training.   

A camera weight model is proposed in [81] as:  

     (4-8) 

where  is a constant, . This model is based on the assumption that the cam-

era is able to detect all the objects in the detection zone.   

The sensor fusion probability model is calculated based on the LIDAR probability 

model as well as the camera probability model. It is proposed in [81] that  and  are 

independent measurements. So 

                  (4-9) 

However, in our system LIDAR and the camera are not two independent sensors. They 

have been calibrated to observe the same target, and the geometric relationships are given 

as a priori information. Moreover, the classification result of the camera is corrected by 

the LIDAR output.     
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In this dissertation, a novel sensor fusion model is proposed. As defined in [82], the 

LIDAR tracking process is modeled as a mixture of four types of errors: the small mea-

surement noise, unexpected objects detection error, detection failure error, and random 

unexplained noise. In our research, the small measurement noise error is considered to be 

the exclusive error source of the LIDAR sensor. The other types of error are removed by 

the integration of LIDAR and camera. The LIDAR tracking model is: 

            (4-10) 

in which the parameters are the same as the coefficients defined in Thrun‟s LIDAR mod-

el [82].  

The computer vision-based vehicle tracking is implemented by KLT tracking [74，

85]. A function  is used to determine if a predicted corner  is close to an ob-

served corner .  is defined as , where  is the 

total number of corners,  is the Euclidean distance between 

the i-th detected corner of the m-th particle  and the j-th extracted corner  [85]. 

The camera model is defined as [85]:  

              (4-11) 
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where  is a constant, .  is the successful feature tracking rate, which is 

obtained by the training image data. 

Finally, the sensor fusion tracing system has totally three measurement situations: 1) 

the vehicle is tracked by both LIDAR and camera. In this case the single sensor tracking 

error is eliminated by the sensor integration technique proposed in Section 4.3; 2) the ve-

hicle is out of camera detection zone, so it is tracked by the LIDAR alone; 3) and the case 

that the vehicle is tracked by the camera but not detected by the LIDAR sensor due to 

factors such as distance or weak reflection. The sensor fusion model is given as: 

 

(4-12) 

where the weight  and  are two coefficients obtained by data train-

ing, , which allows to balance the LIDAR and computer vision information. 

The weight  can be calculated using Eqn. (4-4). The particle filter is summarized 

in Algorithm 2. Unlike the Kalman filter or EKF, particle filter can track vehicle state 

with multi-model or arbitrary distributions. 
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4.5 Experiment Results 

   The experiment results of vehicle detection are discussed in this section. To evaluate 

the performance of the proposed system, a dataset of 377 images was used for training 

and testing. These images are taken from both the Caltech vehicle image dataset [75] 

and the video samples collected by the probe vehicle. Another test dataset consists of 

526 images with synchronized scanning data are used for performance evaluation. The 

test dataset was recorded in a local parking lot on different days during different seasons. 

Algorithm 2: Particle Filter for Sensor Fusion Systems 

Input: , : set of weighted particles at time  

      : LIDAR and computer vision measurement at time  

Output: , : set of weighted particles at time  

Process: 

for  to  do 

   Predict  as  

    
end for 

calculate  

if  

  for  to  do 

     computer  using Eqn. (4-4), in which  is given in Eqn. (4-10) 

     update the particle with  

  end for 

  else 

       

      for  to  do 

         update the particle with  

      end for 

end if 
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   The Hit rate (HR), false alarm rate (FAR) and region detection rate (RDA) are used to 

evaluate the performance of this system. Here HR is the number of detected vehicles over 

the total number of vehicles. RDA denotes the percentage of 'real' vehicle detection rate. 

A „real‟ vehicle detection is that most area of the vehicle is covered by a rectangle, and 

there is only one rectangle that covers this object. Therefore, a target that is hit may not 

be a region 'really' detected; and a region detected object is always a hit. The higher the 

RDA is, the more accurate the detection result will be. Fig. 4-6 illustrates several cases 

for hit, false alarm, and region detection. In this figure, TR represents the target region in 

the image, and DR is the detected region by the classifier.  

 

Figure 4-6. Three target detection cases. The first row is region detected, the second row is hit but not re-

gion detected, and the third row is false alarm. 
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Table 4-1 gives the detection performance of the Adaboost classifier (detection with 

camera only), the classic LIDAR-camera sensor fusion system, and our LIDAR and com-

puter vision-based detection/error correction/combination approach. Here in both the 

classic sensor fusion technique and our approach, LIDAR data are utilized for ROI gen-

eration. The difference lies in the fact that, in our approach LIDAR data help correct the 

classification result. Table 4-1 shows that our approach both improved the hit rate and 

reduced the false alarm rate in comparison with the Adaboost classifier. Compared with 

the classic LIDAR-camera fusion system, our approach improves the region detect rate 

from  to , since for each hit but not accurately covered object the LI-

DAR scanning data helps to recomputed position of the target. Most of the overlapping or 

partial target detection areas are merged during the LIDAR correction process. 

Table 4-1. Detection Result 

Type HR FAR RDA 

Adaboost 84.17% 3.27% 78.00% 

Classic LIDAR-

camera Fusion 
91.33% 1.78% 84.85% 

Our Approach 91.33% 1.78% 89.32% 

 

Fig. 4-7 shows some results of the vehicle detection system. The left column is the 

LIDAR scan points, and the right column illustrates the camera image with information 
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from the sensor fusion system. In Fig. 7(a), all the vehicles are detected and are marked 

with a rectangle. Fig. 7(b) shows that the classifier found two vehicles only, which are 

bounded in a red rectangle. The other two ROIs (shown in blue rectangles) are classified 

to have non-vehicle objects. In fact, one of them is a trash can. The other is a vehicle at a 

distance of 92.78 meters. This vehicle is too far away and too small in the image for the 

classifier to recognize.  

During the test, we find out that the hit rate decreases when the distance between our 

probe vehicle and the target vehicles increases. In our experiment, the targets are detected 

frame by frame. Therefore, the target vehicles may not be recognized by the classifier in 

certain frames even if it was recognized in the last frame. Vehicle tracking technique help 

solve this problem. By running a particle filter based tracking algorithm, the target will be 

detected in the initial frame or in several initial frames, then be tracked in the following 

frames. This approach both improves the detection accuracy and reduces the required 

amount of calculation. HR and RDA will be further improved by vehicle tracking. 
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Figure 4-7. LIDAR scan points and the final vehicle detection results. 
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4.6 Summary and Discussions 

In this chapter, we have proposed a novel vehicle detection system based on tightly 

integrating LIDAR and computer vision sensor. Distances to the objects are first defined 

by the LIDAR sensors, and then the object is classified based on computer vision images. 

In addition, the data from these two complementary sensors are combined for classifier 

correction and vehicle detection. The experimental results have indicated that, when 

compared with image-based and classic sensor fusion based vehicle detection systems, 

our approach has a higher hit rate and a lower false alarm rate. This system is quite useful 

for modeling and prediction of the traffic conditions over a variety of roadways. Thus it 

may be used in future autonomous navigation systems. 
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Chapter 5  

LIDAR and Inertial Sensor-Aided Vehicle Positioning 

 

  In order for a vehicle to be able to navigate safely and successfully in a given envi-

ronment, it is necessary that the vehicle knows its position and orientation. Determining 

the position and orientation is known as the vehicle localization problem, or the “where 

am I?” problem. A digital map of the environment is usually provided to the vehicle, 

which is equipped with a variety of sensors to perceive itself and the environment. Sensor 

fusion systems are commonly used to integrate the sensory data from disparate sources, 

so that the output will be more accurate and complete in comparison to the output of one 

sensor.  

In this chapter, a LIDAR and inertial sensor-based vehicle positioning framework is 

proposed, in which the inertial sensors are used to estimate the position and orientation of 

the vehicle, while the LIDAR sensor provides very accurate distance and azimuth mea-

surements from itself to the landmarks. An EFK is used to combine the two sensors and 

predict the position of the vehicle. This approach provides a more accurate positioning 

estimation in comparison to the single sensor-based method. One of the key features of 
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this technique is that we do not make the assumption that the navigation is in 2D plane. In 

our application, the navigation is in 3D coordinates. Moreover, a novel INS and LIDAR 

calibration method is proposed to transform the landmark in INS coordinate to LIDAR 

frame of reference, and vice versa.  

This chapter is organized as follows: in Section 5.1 a brief introduction of the frames 

used in this system is given, followed by a description of high speed sensor models. Sec-

tion 5.2 describes the calibration method, which calculates the geometric relationship be-

tween INS and LIDAR systems. The time propagation model is introduced in Section 5.3. 

LIDAR sensor model is proposed in Section 5.4. Finally, the EKF is provided in Section 

5.5, followed by conclusions and future work in Section 5.6.  

 

5.1 Sensor Modeling 

The LIDAR and inertial sensor models are discussed in this section. We first briefly 

describe the frame of reference, then describe the output of each sensor.  

5.1.1 Frames 

There are basically four frames in the vehicle positioning system. The frames and the 

quantities presented in these frames are discussed below. 
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 Inertial frame: Inertial frame is defined by the inertial sensors. Quantities in the 

inertial frame have a superscript .  

 Tangent frame: Tangent frame is considered to be the fundamental frame. Quanti-

ties in the tangent frame have a superscript . The axes in the body frame are 

north, east, and down. 

 Body frame: Body frame is the coordinate of the vehicle. Quantities in the body 

frame have a superscript . The axes in the body frame are forward, right and 

down.  

 LIDAR frame: The output of LIDAR is represented in this frame of reference. 

Quantities in the LIDAR frame have a superscript . The axes in the LIDAR 

frame are defined as right, forward and up. 

5.1.2 High Speed Sensor Model 

The high speed sensor in this system is the INS, which consists of three orthogonal 

gyros and three orthogonal accelerometers. The gyro provides change of Euler angles, 

and the accelerometers give the specific forces.  

A. Gyro Model 

The gyro measurement is modeled as: 
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                          (5-1) 

where  is the angular velocity of the gyro relative to the inertial frame represented in 

body frame,  is the measurement value of .  is the gyro bias, which is mod-

eled as a random constant plus random noise: 

                     (5-2) 

 is the white Gaussian measurement noise. We assume that .     

B. Accelerometer Model 

The accelerometer measurement is modeled as:  

                          (5-3) 

where  is the measurement noise with Gaussian distribution , and  is the 

accelerometer bias.  is modeled as a random constant plus random noise: 

                    (5-4) 

 is the specific force vector in the body frame [83, eqn. (12.11)]: 

                          (5-5) 

where  is the acceleration of the vehicle relative to the inertial frame 

represented in the body frame,    is the acceleration of the accelerometer w.r.t. the iner-
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tial frame,  is the local gravity vector at the vehicle location represented in the body 

frame, and  is the rotation matrix from the inertial coordinate to the body coordinate. 

5.1.3 Low Speed Sensor Model 

The LIDAR measurements are a set of points, in which each scan point is defined in a 

polar coordinate. The output of LIDAR is the distance and azimuth from the target to the 

sensor. In our system the LIDAR sensor is used to detect landmarks. There are two kinds 

of landmarks: points (e.g., a light pole) and lines (e.g, walls). The detection output of LI-

DAR is segmented and classified as points or lines. The LIDAR sensor model will be 

discussed in section 5.4. 

 

5.2 LIDAR and Inertial Sensor Calibration 

In order to effectively extract and integrate 3D information from both inertial sen-

sors and LIDAR systems, the relative position and orientation between these two sensor 

modalities should be obtained. 

The calibration is implemented in three steps: calibration of LIDAR and tangent 

coordinates, transformation from INS to tangent frame of reference, and the calibration 

from INS to LIDAR coordinates. The steps are introduced in the following sections. 
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5.2.1 Calibration of LIDAR and Tangent Frames 

 Suppose a point  in the tangent frame is located at  in the LIDAR coordinate 

system, the transformation from the tangent coordinate to the LIDAR coordinate system 

is: 

                          (5-6) 

where  is a  orthonormal matrix representing the rotation from tangent frame to 

LIDAR frame, and  is the translation vector. The subscript  is the origin of the 

LIDAR coordinate, and  is the origin of the tangent frame. Our goal is to calculate  

and .  

A. Geometric Constraint 

   The calibration is implemented through the observation of LIDAR to a planar board. 

This planar board is placed in front of the LIDAR sensor, which is called the calibration 

plane in this dissertation. The LIDAR measurement points on the calibration plane are 

called LIDAR points, which are not visible to human eyes or computer vision sensors.   

A field survey is carried out by GPS to get the position of the calibration plane in 

tangent frame. At least three points are taken on the plane, whose coordinates in ECEF 

frame are defined by GPS. Then the coordinates in ECEF are transformed to tangent 
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frame. The calibration plane is represented in tangent frame by a 3-vector , which is a 

unit normal vector to the checkerboard plane in tangent frame.  

A geometric constraint can be obtained between LIDAR points and the checkerboard. 

Since LIDAR points lie on the calibration plane, and  is the normal vector to the plane, 

we have:  

                               (5-7) 

which  is the coordinate of LIDAR point in tangent frame.  is a scalar representing 

the distance from the origin of tangent frame to the calibration board, which is calculated 

from the position and orientation of the calibration board. From Eqn. (5-6) we know that 

                       (5-8) 

By substituting Eqn. (5-8) into Eqn. (5-7), we have: 

                         (5-9) 

For any given LIDAR point and calibration board position, Eqn. (5-9) gives a constraint 

on  and . It will be solved in two consecutive steps: a linear solution, followed 

by a non-linear optimization. 

B. Linear Solution 
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   The LIDAR scan plane in the LIDAR coordinate is . Each scan point can be 

represented as . Then Eqn. (5-9) is rewritten as: 

                       (5-10) 

Let’s define , and , Eqn. (5-10) is re-

written as  

                           (5-11) 

in which  is the parameter to be solved, which is the integration of two unknown pa-

rameters  and . 

Eqn. (5-11) can be solved using the standard linear least square algorithm. In order to 

obtain a better result, multiple calibration planes should be used in the calibration. Sup-

pose in the calibration we use totally  calibration planes, with  LI-

DAR points on the i-th plane. Eqn. (5-11) can be rewritten as a  problem, where 

 is a  matrix, and  is a  vector. Let 

, the normal vector for the i-th plane , the dis-
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tance from origin of the tangent frame and the i-th calibration plane is , and the j-th 

LIDAR point on the i-th calibration plane is , Eqn. (5-11) is re-

written as: 

 (5-12) 

Therefore for each scan point we have a linear equation which is a row in Eqn. (5-12).  

can be calculated using the standard linear least square algorithm. Then  and  

will be obtained from . 

Let  be the i-th row of , then . So  

                      (5-13) 

Note that  is a rotation matrix, so the columns in  are orthogonal to each other. 

From Eqn. (5-13) we get: 

                        (5-14) 
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where  is the i-th column of the  matrix . Moreover, from Eqn. (5-13) we 

know that:  

                            (5-15) 

So  

                    (5-16) 

Now  and  have been solved by using Eqn. (5-14) and Eqn. (5-16).  

 is a rotation matrix, which has the property that . However, the 

calculated  may not meet the property of a rotation matrix. In our calibration a rota-

tion matrix  is computed by minimizing the Frobenius norm of the difference 

 subject to  [86], i.e., our goal is to find the  that minimizing 

 subject to . The solution is the polar de-

composition of  [87].  

C. Nonlinear Solution 

The linear solution is obtained by the least square method, which aims to minimize 

an algebraic distance. In this subsection, a nonlinear minimization method is proposed to 

minimize the differences between the measured Euclidean distances as well as the calcu-
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lated distance from the LIDAR points to the calibration plane, which is physically mea-

ningful. 

Eqn. (5-9) gives two types of distances:  is the distance from the calibration plane 

to the origin of tangent frame obtained by field survey, and  is the 

calculated distance. The difference between these two distances is defined as the distance 

error for one calibration plane pose. The nonlinear solution aims to minimize the sum 

function of the distance errors for all the plane positions. The sum function is defined as: 

                  (5-17) 

where  defines the i-th calibration plane,  is the distance from the i-th plane to the 

center of tangent frame, and  is the j-th LIDAR point with the i-th calibration plane. 

The pair of  and  that minimize Eqn. (5-17) are considered to be the rotation 

and translation matrix to be calculated. Eqn. (5-17) can be minimized as a nonlinear op-

timization problem by using the Levenberg-Marquardt method [68]. The Levenberg-

Marquardt algorithm requires an initial guess of  and , which is obtained using 

the method in 5.2.1 B. 
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When we get the translation and rotation matrix between tangent frame and LIDAR, 

any point in the tangent frame can be converted to a point in the LIDAR frame using Eqn. 

(5-6). 

5.2.2. Calibration of LIDAR and INS Systems 

The calibration of LIDAR and INS is to obtain the geometric relationship between 

LIDAR coordinate and body frame.  

   The INS consists of three gyros and three accelerometers. The gyro provides change 

of Euler angles, while the accelerometers give the specific force. By integrating the out-

put of the gyros and the accelerometers, we can obtain the rotation and translation matrix 

between tangent frame and body frame. Let the rotation matrix be , and translation 

vector be  in which the subscript  is the origin of the body frame, a point in 

body can be converted to a point in tangent frame as: 

                             (5-18) 

where  is the point in tangent frame, and  is the point in body frame. 

   Finally, by substituting Eqn. (5-6) into Eqn. (5-18) we have:  

                  (5-19) 

which is the transformation from body frame to LIDAR frame. 
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5.3 Time Propagation Error Modeling 

   The kinematic equations, navigation mechanization equations and the time propaga-

tion error model will be given in this section.  

5.3.1 Kinematic Equations 

 The standard form of the kinematic model is , where  is the state and 

 is the input. In our application , where  is the vector from 

the tangent frame origin to the body frame origin in the tangent coordinate,  is the ve-

locity of the vehicle in body coordinate, and  is the roll, pitch and 

yaw of the vehicle. The system kinematic model is [83, eqn. (12.5)-(12.7)]: 

                  (5-20) 

where  is the rotation matrix from body frame to tangent frame.  and  have 

been defined in Eqn. (5-5), and .  is defined as [83, eqn. (2.74)]: 

                 (5-21) 

 
is the angular rate of the body frame w.r.t. the tangent frame represented in body 

frame with , where  is the angular rate measurement by the gyro 



 95 

represented in body frame. 
 
with , where 

 
represents the latitude. 

5.3.2 Navigation Mechanization Equations 

The standard form of the navigation mechanization equations is , where 

 is the estimate value of the state , and  is the measured input. The navigation me-

chanization equations are given as [83, Eqn. (12.20)-(12.22)]: 

                   (5-22) 

where , 
 
with ,  

 

represents the computed latitude.  is defined as: 

                          (5-23) 

where  is the estimation of . We have . 

Finally,  is defined as: 

               (5-24) 

where  is the local gravity vector calculated at the vehicle location, and  is the es-

timation of . 

5.3.3 Time Propagation Error Modeling 
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The error is given by subtracting the mechanization eqn. (5-22) from the kinematic 

eqn. (5-20).  

A. Position Error Analysis 

The error in position is [83, Eqn. (12.34)]: 

                    (5-25) 

where ,  is the tangent plane tilt error, and . The 

second order error has been eliminated. 

B. Velocity Error Analysis 

 he error in velocity is modeled as [83, eqn. (12.35)-(12.36)]:   

(5-26) 

where we used the property that  and . 

C. Attitude Error Analysis 

 The attitude error between the body and geographic frames is given in [83, eqn. 

(12.45)] as: 

                 (5-27) 
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where  is calculated by [83, eqn. (12.44)] 

                  (5-28) 

D. Error Model 

The state of the system is 

                    (5-29) 

and the input is 

                        (5-30) 

The error state vector is: 

                  (5-31) 

where each delta term is defined by subtracting the computed value from the true value, 

e.g., . 

The state space model of the system is represented in the format . 

Based on Eqns. (5-2), (5-4), and (5-25, 5,26, 5-27), the state error model is: 
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 (5-32) 

where 

 

 

and   

 . 

 

5.4 Aiding Sensor Model 

LIDAR sensor is able to detect three types of landmarks: point features, arc features, 

and line features. The aiding sensor models for both types of feature detection are dis-

cussed in this section.  

5.4.1 Point Feature Detection 
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The LIDAR scans a single laser beam through    
 
. Therefore, a post which will be 

modeled as a vertical line in the tangent frame will appear as a point in the LIDAR frame. 

Similarly, a wall which will be modeled as a vertical plane in the tangent frame will ap-

pear as a line in the LIDAR frame of references. The LIDAR position and point feature 

detection are shown in Fig. 5-1. 

 

Figure 5-1. The LIDAR position and point feature detection. 

Consider a mapped vertical post at . The post will appear as a point in the LIDAR 

return. The vector from  to  in tangent frame is , which is 

known in the survey. The line is denoted as:  

                       (5-33) 

where  is the vector in tangent frame from  to a point  at height  on 

the post,  is a scalar with . The vector  is parallel to the post. In our 
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application, all the posts and planes are modeled as vertical. For a vertical post,

 in the tangent frame.   

For any feature point , the vector from LIDAR to the point is: 

                  (5-34) 

as is shown in Fig. 5-2. Eqn. (5-34) is valid for all the frame of references.  

 

Figure 5-2. The LIDAR, body and tangent frames as well as the feature point P. 

 In Eqn. (5-34),  is a constant in tangent frame known from the feature survey. 

 will be calculated in the tangent frame.  in the body frame is known, which 

can be determined by the pre-calibration.  is the rotation matrix from the body frame 

to the LIDAR frame, which is determined by the pre-calibration by using the method in 



 101 

Section 5.2. So the vector from LIDAR to a feature point in LIDAR coordinate is denoted 

as:  

                 (5-35) 

By substituting Eqn (5-33) into (5-35) we have:  

             (5-36) 

which is the vector in the LIDAR coordinate from the origin of the LIDAR sensor to a 

point with height  on the post. By expanding Eqn. (5-36), the coordinate of  

on - direction is: 

         (5-37) 

Eqn. (5-37) is the theoretical equation. Note that for a single-planar LIDAR, the scan 

plane in LIDAR coordinate is . Therefore, for all the LIDAR points we have 

. We can use this fact to calculate  as: 

                 (5-38) 

By substituting Eqn. (5-38) into (5-36), the detected point is: 

 

(5-39) 

Eqn. (5-39) will be used to predict the LIDAR measurement.  
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LIDAR sensor provides both range and bearing angles as an output when a point is 

detected. The range and bearing measurements are given as:

 

 

           (5-40) 

where  and  are the measurement noise for  and , respectively. 

 and . 

Let , .  is to be solved for the aiding sensor model us-

ing partial derivative. See Appendix A for the calculation of . For point feature detec-

tion,     

              (5-41) 

where  

      
    

   t       
     

    
    

   t        
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5.4.2 Line Feature Detection 

For the line feature, the basic detection method is to decompose the data into seg-

ments of points, such that each segment can be modeled as a line, or a cluster of lines. 

The Iterative End Point Fit (IEPF) algorithm has been widely used for line extraction [84]. 

Here we have an assumption that the data has been processed into segments and the line 

has been extracted for each segment. The LIDAR position, a wall in the real world, and 

the line feature are shown in Fig. 5-3. 

 

Figure 5-3. The LIDAR position, a wall in the real world, and the line features. 

There are several features of the line, such as position, orientation, length, start and 

end position of the line, etc. Fig. 5-4 shows that it is very difficult to determine the length 
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and end points of lines, since in some cases only part of the line can be detected. There-

fore, in this report we use the expression of the line in the LIDAR frame as features.  

   

(a) (b) (c) 

Figure 5-4. Three line detection cases. The line features are represented by solid lines. In (a), the line is covered by the 

detection area so it can be fully detected. In (b) and (c), part of the line can be covered by the LIDAR detection area. 

Both ends are out of detection zone in (b). One end can be detected in (c).  

A line feature detected by the LIDAR is a plane in the world coordinate. In our appli-

cation we only model, map, and consider vertical planes. Let  be a point on this plane, 

and  be the normal vector of this plane in tangent frame. Point  on this plane has 

the following property in tangent frame:  

                       (5-42) 

and in LIDAR plane 

                        (5-43) 

where  is the normal vector in LIDAR frame. From Eqn. (5-35) we know that 

                (5-44) 

After rotation from tangent coordinate to LIDAR coordinate, the normal vector  in LI-

DAR frame of reference is . So the plane in LIDAR coordinate satisfies: 
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       (5-45) 

The LIDAR detection plane is . By substituting  in Eqn. (5-45) the de-

tected line in LIDAR coordinate is: 

 

(5-46) 

where , , , , , 

, and .  

The LIDAR measurements are usually calculated by the following method. In the 

survey, the line feature as denoted as  in the LIDAR frame, where a, b 

and c are scalars. d and  are defined as , and , 

where  is the distance from LIDAR origin to the line, and  is the angle between the 

x- axis and the dash line perpendicular to the feature line, as is shown in Fig. 5-5. Then in 

the LIDAR detection, the point data on the same line will be collected. By using least 

square fitting method the points are fitted into a straight line as . Then 

 and  will be calculated.  is the single measure-

ment used in [41]. In our positioning system  is considered to be a pair of mea-

surements. With a unique , the position of the line feature can be determined. 
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Figure 5-5. Measurement d and   in the line feature detection. 

Since ,  are derived from , , and , while  and  are derived from , , 

and , instead of using  we use  as the pair of measurements. 

 is also able to determine the position of the line feature. Moreover, the calcu-

lation of  is more effective and less time-consuming compared with the calcu-

lation of . To the best of our knowledge, this approach is the first method to use 

 as the measurements.  

On the other hand,  is not able to determine the unique position of the line 

feature if another line feature is an extension of the detected line (which is also true for 

the  features). In order to solve this problem, the start point  and  of 

the i-th line feature are utilized for identification. If two line features have been detected 

with the same , the line between  and  will be considered to be 

the i-th line feature, as is shown in Fig. 5-6.  

 



 107 

 

Figure 5-6. Two line features with the same measurement. The start and end points of each line feature are 

used for identification. 

The line feature in LIDAR coordinate is provided in Eqn. (5-46). In our implementa-

tion, the measurements are defined as 

      (5-47) 

where  and  are the measurement noise for  and  , respectively. 

Let , .  will be solved using partial derivative (see Ap-

pendix B). Here for line feature detection,  is: 

                     (5-48) 

where 
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5.4.3 Arc Feature Detection 

A cylinder in the tangent frame will appear as an arc in the LIDAR frame. The cylind-

er can be a traffic light pole, or a trash can. When the LIDAR is near a cylinder-shaped 

landmark, the detected feature is an arc; while the LIDAR is far away, the feature will be 

a point. Therefore, the arc feature and the point feature can be detected by LIDAR sensor 

from the same landmark. The LIDAR position, a cylinder in the real world, and the arc 

feature are shown in Fig. 5-7. 

 

Figure 5-7. LIDAR and arc feature detection. 
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   The center of the arc in the LIDAR coordinate is calculated from the LIDAR scan-

ning points. The measurement of LIDAR sensor is the distance and azimuth to the center 

point, which is the same as the point feature. Therefore, the sensor model for point fea-

ture is also valid for arc feature detection. 

5.4.4 Feature Identification 

    The vehicle navigation is implemented by detecting the landmarks from one frame 

to the next frame. In order to calculate the position and orientation of the vehicle from 

frame to frame, the features must be detected in both scans and each feature should have 

a constant ID. This is done by estimating the position of the feature in the next frame and 

identifying the detected feature position with the estimated feature locations.  

   In this system, the transformation between two consecutive frames is estimated by the 

output of the INS. By mapping the transformation from body frame to LIDAR frame, the 

relative position of the features in next scan in LIDAR coordinates can be predicted. For 

point features, the information to be estimated is the position of the point. The informa-

tion to be predicted for arc feature is the location of the center of the arc. As to the line 

features, the coordinate of its start and end points will be estimated. After the estimation, 

a search window is generated around the prediction results to allow for uncertainties. 
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5.5 Extended Kalman Filter 

This section derives the Extended Kalman Filter (EKF) prediction procedures to 

propagate the estimation error.  

5.5.1 System Model in Continuous and Discrete Time Domain 

 The error model in continuous time domain from Eqn. (5-32) is: 

                     (5-49) 

In the discrete time domain, the time propagation model is: 

                   (5-50) 

where  with , and . Using the Taylor expansion 

we have . So from Eqn. (5-32): 

      (5-51) 

5.5.2 Aided Navigation Process 

 The aided navigation is implemented in two steps. The first step is time propagation, 

in which we integrate the high rate sensor output and get the estimation of current state. 
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In the second step, the low speed sensor measurement is collected to correct the estima-

tion in step 1. 

Step 1: Time propagation 

1. At time , given  and , integrate  over  to obtain 

.  

2. Calculate  where ,  and 

. 

Step 2: Measurement update 

1. At time , predict the measurement . 

2. The measurement residual is . 

3. The correction gain is . 

4. Correct the state . 

5. Correct the error covariance: 

 

 

5.6 Summary and Future Work 

   In this chapter a LIDAR and inertial sensor-based vehicle positioning approach is 

proposed. First of all, the high speed as well as low speed sensor models were introduced. 
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A calibration method between the LIDAR and the inertial sensors has also been presented 

in this chapter. The LIDAR sensor is supposed to detect several types of features: the 

point feature, the arc feature and the line feature. Finally, an EKF is utilized to estimate 

the position and orientation of the vehicle. Further field tests will be implemented to test 

the performance of the calibration method as well as the vehicle positioning approach.  
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Chapter 6 

Multi-Vehicle Tracking Based on Feature Detection and Color 

Probability Model 

 

One important capability that is critical for traffic surveillance systems is the ability to 

track vehicles from a video stream. Current vehicle tracking systems have been described 

in Chapter 2. However, none of the current approaches work well when significant occlu-

sions occur. 

In this chapter, a new vehicle tracking framework is proposed, which is based on both 

feature tracking and a color probability model. The general approach is to estimate the 

target motion by detecting and tracking the corner features. The tracking result provides 

an initial guess of the target location. Subsequently, the occlusion is detected, and a prob-

ability model is used to re-estimate the target position by only considering the pixels that 

lie in the occluded area. Our approach is more accurate yet efficient, since the time-

consuming probability calculation is called only for cases of occlusion. 

This chapter is organized as follows: a description of the vehicle tracking system is 

given in Section 6.1, followed by the probability model in Section 6.2. Experimental re-
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sults are provided in Section 6.3. Finally, we present the conclusion and future work in 

Section 6.4. 

 

6.1 Overview of the Vehicle Tracking System 

Vehicle motion tracking is one of the fundamental components of a traffic surveil-

lance system. With a video camera mounted above the freeway, the foreground image 

changes rapidly and the background makes little change. Therefore, it is easy to extract 

the foreground from the background. Then the vehicles on the freeways can be detected 

and tracked. The flow of this tracking system is shown in Figure 6-1. 

 

Figure 6-1. Block diagram of the vehicle tracking system. 
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6.1.1 Background Extraction 

For a given video image series, the gray scale of each pixel is modeled by a Gaussian 

mixture model. For each pixel, the value in the image series is described as a mixture of 

Gaussian distributions. The probability of current pixel value is given by [70]: 

 (6-1) 

where  is the total number of distributions, and  is the weight of the  Gaussian 

distribution at time .  is the  normal distribution at time , with its 

mean value  and variance . Eqn. (6-1) defines the distribution of values of each 

pixel. A new pixel value represented by one of the major components of the model will 

be used to update the mixture model. 

   In the background extraction process, the parameters ,  and  are to be 

determined. It was proposed in [70] that the first  distribution of the mixture model 

best represents the background process. Here  is defined as: 

 (6-2) 

where  is a constant to determine the minimum portion of the background in the scene.  

When the background has been extracted from the video stream, foreground can be 

obtained by subtract the background from the image. 
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6.1.2 Shadow Removal 

One of the challenges is shadow identification, which moves along with the vehicle. 

Shadows may cause detection errors when the shadow pixels are segmented and grouped 

as foreground pixels. A very simple method is used in our implementation to remove the 

shadows. 

Suppose a pixel in the image at position  is denoted as , and the pixel in 

the background is . The absolute difference  is considered to 

be the foreground, which in fact consists of both the moving vehicles and their shadow. 

In the shadow removal process, the pixel difference is compared with the shadow value 

threshold as: 

 (6-3) 

where  and  are the lower and upper threshold defined by the user. If the differ-

ence is between the upper and lower bound, this pixel is a shadow pixel. The masks be-

fore and after shadow removal are shown in Figure 6-2. 

For the foreground extraction, we follow a standard procedure:  

(1) Threshold the difference between foreground and background,  

(2) Apply the morphological operation (erosion and dilation), and  
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(3) Remove small regions, fill in the connected components, and detect the object 

blobs.  

 

Figure 6-2. Foreground (a) before, and (b) after the shadow removal. 

Now the foreground is ready for vehicle detection. 

6.1.3 Feature Detection and Tracking 

The corner points in regions with rich enough texture are extracted as features. The 

features are detected and tracked by applying the Kanade-Lucas-Tomasi (KLT) feature 

detection and tracking method [26, 71]. Lucas and Kanade developed a feature detection 

method by finding the eigenvalues of the local sums of the weighted gradients [71]. The 

windowed second moment matrix is calculated by averaging a  matrix in a spatial 

window. Suppose the windowed area is , and the image gradient matrix is , then 

the second moment matrix in  is . If both the eigenvalues of  
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are larger than a threshold, the point is assumed to be a feature point, i.e., a 'trackable' 

point. Here the threshold is defined by the user. In our implementation, the eigenvalue 

threshold is set as , where  is the minimum of 

eigenvalues  and  at point . Tomasi and Kanade used the same techniques to 

track the positions of the feature points in the following frame [26]. 

The feature detection and tracking are implemented in every frame. A feature point is 

considered to be 'valid' only when it has been tracked in a couple of frames. A feature that 

does not overlap with the tracking result of an existing feature is considered to be a new 

one, and will be tracked in the next frame. 

In order to detect multiple targets, the connected components in the foreground have 

been extracted and considered as blobs. Suppose for object , there are  features 

 in the -th frame. These features are detected inside blob . Here  

is the contour of object  in frame . The corresponding features tracked in frame 

 are . So the blob  that covers the features 

 is considered to be target  in the  frame. 

 In the current vehicle tracking methods, corner features are capable of representing 

the target. Thus they are sufficient for vehicle tracking. However, in high density traffic 
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features may be obstructed by the neighboring vehicles. In the following subsection we 

will discuss how to detect the occlusion situation. 

6.1.4 Occlusion Detection 

The targets are represented as blobs. Each blob may represent one real-world object, 

or multiple objects. Occlusions are detected by considering the overlap of multiple ob-

jects on one blob. There are two cases of occlusions, as is shown in Figure 6-3. 

 

                  (a)                                             (b) 

Figure 6-3. wo occlusion cases. The first case (a) is that when the blob appears, it is an overlap of two ob-

jects. In this case, the two targets will be tracked when they are separated. The second case (b) is that the 

two targets are two separated blobs in the first frame that they show up. In this case, the blob which is the 

overlap of the two targets will be split into two objects by the tracking algorithm. 

The first case is shown in Figure 6-3(a). Each new detected blob is considered to be a 

single target. If the blob shows up as an overlap of two targets, we cannot tell whether it 

is a single object or multiple targets until the blob is split into two objects. The two ob-
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jects are tracked independently only when they are separated. The first case will not be 

discussed in this dissertation.  

  Figure 6-3(b) illustrates the second case, in which the two targets appear to be two sep-

arate blobs in the first frame. In this case, we are able to detect the occlusion, and split the 

merged blob into two objects. 

  The association of object and blob has been introduced in Section 6.1.3. Here the ob-

ject position is estimated by feature tracking. If multiple objects are associated with one 

blob, then the occlusion is detected. This paper proposed a color probability model to 

solve the occlusion problem, which is introduced in Section 6.2. 

 

6.2 Color Probability Model 

In order to solve the occlusion problem, two representations are used to demonstrate 

the property of the target. One is the feature-contour model, which generates a hypothesis 

of the target position in the overlapped blob. The other is a color representation of the 

target. 

The combination of both corner features and color models has the following benefits. 

The corner features provide texture information, while the color representation gives a 
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full object mask. In occluded cases, the feature points are used to provide an estimation of 

the target position. Moreover, the color model estimates the probability of the occluded 

region associated with the target label. When the two models are combined together, they 

provide a robust joint probability to assign each pixel to a particular object. 

6.2.1 Feature-Contour Model 

Jie Yu et al. proposed a corner-center model [72], in which a spatial vector is defined 

as the distance from the feature points to the center. This vector does not vary with the 

target's position or orientation. However, in our implementation we found out that: 1) the 

feature points are not evenly distributed in the blob. They may concentrate in a small re-

gion. So the distance between the features and the center cannot represent the shape of 

the blob. 2) The distance vector changes with the target's position and orientation. 

In this dissertation we propose a feature-contour model. In our implementation, each 

blob is represented by an ellipse. A set of features within the target  are denoted as 

, where  is the coordinate of 

feature point  in the -th frame. The center of the ellipse is . The 

axes length of the ellipse on  and  directions are  and , respectively. In 

the -th frame, the feature point position is updated as 
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. We define 

 and . So the center of the target  

in frame  is estimated as . The two axes of the ellipse 

are  and 

. From ,    and , 

a hypothesis of the target position in frame  is generated. Figure 6-4 explains the 

position estimation. 

 

Figure 6-4. The feature-contour positions in frame k and k+1. Here the arrows represent the feature shift 

from frame k to frame k+1. 

6.2.2 Color Model 

Color histograms have become extremely popular to describe a large image region. 

Since it does not vary much to target translation, rotation, or the target scale variation, it 
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has been used in many tracking applications. Color histogram describes the color distri-

bution in a given region, which is robust against partial occlusions. However, color histo-

gram fails to provide spatial information of the object being modeled. It is also suscepti-

ble to illumination changes. In this chapter, the color model is used to estimate the target 

label while the position hypothesis has been established by the feature-contour model. 

Therefore, the color histogram works in a limited region. 

In our implementation, the color model of mean-shift tracking algorithm is used to 

represent the histograms. Let  be the pixel positions normalized to range [-1, 

1]. We found out that the peripheral pixels are the least reliable in the occlusion region. 

So the probability of color  in the target is modeled as a kernel profile, which assigns a 

larger weight to the pixels close to the center and smaller weights to the peripheral loca-

tions [27]. The robustness of the estimation is increased by the weighted algorithm, since 

the largest weights are allocated to the center pixels, i.e., the most reliable ones. Variable 

 associates the pixel at location  to the index  of the histogram bin, which 

corresponds to the color of that pixel. The probability of the color  in the target is de-

rived as [27]: 

 (6-4) 
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where  is the Kronecker delta function. The constant  is to normalize the probability 

, which is computed as [27]: 

 (6-5) 

since .  is the profile of a kernel , . There are usually 

two kinds of kernel profiles. One is the multivariate Epanechnikov profile, the other is the 

normal profile. In our implementation, the Epanechnikov profile is used, which is defined 

as [73, pp.139]: 

    (6-6) 

where .  is the volume of the unit d-dimensional sphere. 

6.2.3 Color Probability Tracking Model 

Occlusion is caused by two or more objects. Their contours are merged as one fore-

ground blob. The tracking model is to classify which object (among all the objects that 

participate in the occlusion) each pixel belongs to. In order to reduce the calculation 

amount and promote the speed, the occlusion blob is divided into multiple small patches. 

So our model estimates the posterior probability of each patch belonging to a particular 

target. 
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  We found that although the whole blob is overlapped by two or more targets, some 

of the patches are covered by only one object. Therefore, the patches in the blob can be 

divided into two categories: ‘non-occluded patches’ and ‘occluded patches’. A hypothesis 

generation algorithm of the target position has been proposed in Section 6.2.1. Then each 

patch is labeled as ‘non-occluded’ or ‘occluded’ (see Figure 6-5). 

 

Figure 6-5. The overlap blob, hypothesis of two target positions, and the non-occluded as well as occluded 

patches. 

The non-occluded patches are covered by only one target. Therefore, when a patch is 

defined to be non-occluded, the object it belongs to is determined. In the following sub-

sections the probability of occluded patches will be discussed. 

   Suppose there are  objects participating in the occlusion, marked as . 

For each patch, we have two observations: position and color. The coordinate of the patch 
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center is denoted as . The color in this patch is  So the probability of one patch be-

longing to object  is . By using the Bayesian inference, we have: 

 (6-7) 

where  is the probability of color observation at position  in the image. With 

known position and color, the value of  has no effect on the final object label 

determination. So the probability in Eqn. (6-7) is factorized as: 

 (6-8) 

Now the object probability for each patch is defined by two factors: the probability of 

object label given position, i.e., ; and the probability of color given both object 

label and position, i.e., . 

A. The Probability of Object Label Given Position  

Let the occluded patch being covered by  objects. The probability of object label 

given position is . In other words, the patch that is covered by objects 

gets a likelihood of  for each of the objects. In the vehicle tracking application, we 

usually have , which means that the occluded patch is often covered by two ve-

hicles. So  is assumed to be a constant. Eqn. (6-8) is simplified as: 

 (6-9) 



 127 

which means that the object label only depends on the probability of color given both ob-

ject label and position. 

B. The Probability of Object Color Given Position and Label  

In frame  the color distribution probability is written as , which is 

the color distribution of object  at image coordinate . Let the original position of 

the occluded patch in frame  be . The color observation in the occluded re-

gion is defined by: 

        (6-10) 

where  can be calculated by the corner feather shift from frame  to . Note 

that the color distribution represents the global information. Without loss of generality, 

the original position of the occluded region (which was occluded in frame ) in frame 

 is considered to have the same color distribution. In another word, the region is 

occluded in frame , and the color probability is calculated in frame . Suppose 

 is the original location of the occluded region of target  in the -th 

frame. From Eqn. (6-10) we have: 

      (6-11) 

where  is defined by the color model in Eqn. (6-4). 
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   For each of patch in the occlusion region, the probability of the patch belonging to 

each object is calculated by Eqn. (6-11). Then the patch is assigned to the target with 

maximum probability.  An example is shown in Figure 6-6. 

 

6.3 Experiment Results 

To evaluate the performance of our system, a traffic monitoring video was used. This 

video was captured by a freeway surveillance camera on the top of the 215-N freeway in 

Southern California. The video is about 80 seconds, consisting of totally 1200 frames. 

The resolution of this video is , and the frame rate is 15 fps. The video clip is 

challenging, with multiple trucks and clusters of vehicles. Some video tracking samples 

are shown in Figure 6-7. 

The performance of our approach is evaluated together with the standard KLT [26] and 

mean-shift tracking algorithms [27]. The ground truth was obtained by manual labeling. 

Three aspects are relevant for the performance comparison: the hit rate, false alarm rate, 

and missing rate. Here the hit rate assesses the ability of the system to detect the target at 

the beginning, and track the object during frame-wise without losing the position or 

changing the ID. The false alarm rate illustrates the rate to detect non-target objects as the  
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Figure 6-6. An example of the probability tracking model. (a) Original image. (b) Feature points. The vec-

tor of the features from current frame to the next frame is shown as arrows. (c) The color probability of the 

occlusion region. Here the color is divided into 256 bins. (d) The vehicle tracking result in the occlusion 

area. 

the targets. Furthermore, the missing rate is the total number of targets missed by the 

tracking system vs. the total number of the vehicles. The tracking results are summarized 

in Table 6-1. 

Table 6-1 shows that our approach is a significant improvement compared with the 

KLT and mean-shift tracking algorithms. The hit rate of our approach is , which 
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shows that the method we proposed outperforms KLT and mean-shift tracking. Both the 

false alarm rate and the missing rate of KLT are higher than those of the mean-shift track-

ing. As an improvement of the KLT in occlusion cases, our approach achieves a better 

false alarm as well as a better missing rate. The false alarm and missing rate of our ap-

proach are close to those of mean-shift tracking method. The experiment results illustrate 

that by combining the features used in KLT and mean-shift tracking methods, the robust-

ness of the tracking performance is increased. 

Table 6-1. Vehicle Detection and Tracking Results. 

Detection and Tracking 

Approach 

Total Frame 

Number 

Total Vehicle 

Number (frame-

wise) 

Hit Rate False Alarm 

Rate 

Missing 

Rate 

Our Approach 

1200 14276 

93.55% 3.0% 2.92% 

Standard KLT 87.31% 3.02% 3.77% 

Mean-shift Tracking 89.53% 2.87% 2.86% 

The main false alarm errors and missing errors happen due to the following reasons: 

 This method does not work very well in dense crowded regions, where a reasona-

ble background subtraction is not achieved. 

 The features are not grouped correctly. The features are grouped as an object by 

comparing their positions with the blob contours. The feature grouping errors are usually 

caused by blob segmentation errors. 
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Frame 107 Frame 300 

  

Frame 642 Frame 654 

  

Frame 764 Frame 1083 

Figure 6-7. The vehicle tracking results. They are part of the video frames where occlusion is detected. The 

ellipses are the position of the targets. The points represent the trajectories. 
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 Long trucks with multiple trailers are sometimes classified as two objects. 

 As is discussed in Section 6.1.4, if the blob is an overlap of two objects in the first 

frame it appears we cannot correctly split the blob into two separate targets. 

 The video stream is unstable due to camera vibration. It can be solved by image 

stabilization. 

 

6.4 Summary and Discussion 

A camera-based vehicle detection and tracking approach is proposed in this chapter. 

We introduced an integration of the feature tracking and mean-shift tracking in occlusion 

cases, which can be applied in real-time applications. Promising results were presented 

with a transportation video clip. This method can handle both the stationary camera and 

moving camera video streams.  

The performance can be further improved by integrating vehicle classification together 

with vehicle tracking. If the vehicle type is known, size and speed of the vehicle can be 

constrained. Furthermore, camera calibration provides projection from the image plane to 

the real world coordinate. By camera calibration the tracking results can be implemented 

in the real world plane, and vehicle trajectories can be collected. 
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Chapter 7 

Conclusions and Future Work 

 

   This dissertation has presented a multi-sensor equipped vehicle navigation system 

that was developed to specifically obtain the state of surrounding vehicles and its own 

position. It involves the development of a tightly-coupled LIDAR and computer vision 

system, the calibration approach of a pair of multi-planar LIDAR sensors and  the 

camera system, the sensor fusion-based vehicle detection and tracking technique, the 

estimation of the test vehicle’s position, and the methodology of vehicle tracking applied 

in high density traffic surveillance. 

   This chapter provides a brief summary of the dissertation, as well as the possible 

future work. 

 

7.1 Summary 

   Automatic vehicle navigation techniques are becoming an essential part of our daily 

lives. They open up many potential opportunities but they also come with challenges in 

terms of sensing capability and accuracy. In this dissertation, we have addressed two 

problems: where am I? and where are they?, and demonstrated our approaches to each of 

the problems in a traffic environment.  

The goal of this research is to provide a solution to measure the state of the 



134 

 

surrounding vehicles as well as the test vehicle. The state of the vehicle includes position, 

orientation, speed, and acceleration. Sensor fusion techniques are utilized to provide a 

direct measurement of the state. A variety of sensors have been used in this dissertation, 

including LIDAR, computer vision, as well as an inertial measurement unit. The goal is 

to quantitatively show that the integration of the sensors will provide a more accurate and 

effective estimation of the vehicle state. The developed system has successfully met this 

goal. 

The developed multi-planar LIDAR and computer vision sensor calibration 

approach, as to the author’s best knowledge, is the first calibration method for a 

‘invisible-beam’ multi-planar LIDAR and a camera. In comparison to other calibration 

methods that require a infrared camera to ‘see’ the LIDAR beams or a special designed 

calibration shape, this approach is easy to implement with low cost. It has been 

theoretically and experimentally proven to be able to estimate the geometric relationships 

between the two sensors.  

   Based on this unique calibration method, a sensor fusion-based vehicle detection and 

tracking system was designed and implemented. It consists of three major components: 1) 

ROIs are generated by the LIDAR sensor; 2) vehicle classification using a computer 

vision-based Adaboost algorithm, and 3) vehicle position is verified using the output of 

the LIDAR sensor. A vehicle tracking model is also presented in this dissertation, which 
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uses a joint probability model-based particle filter to predict the state of the vehicle. The 

experiment result shows that the designed sensor fusion system achieves higher detection 

rate and lower positive as well as negative error rates compared with a single 

sensor-based detection method. Then the relative positions of detected vehicles in the 

surrounding environment have been represented in the vehicle coordinate to generate a 

local traffic map. 

    In addition, a LIDAR and inertial sensor-based vehicle localization approach has 

been presented in this dissertation. The positioning solution is derived by combining 

measurements from both LIDAR and inertial sensors, i.e., gyros and accelerometers. 

Calibration between the two sensors is implemented by the transformation from body 

coordinate to ECEF coordinate, and from ECEF coordinate to the LIDAR frame of 

reference. In vehicle positioning system, the angular velocities as well as the 

accelerations of the vehicle are used to measure the state of the vehicle, while the LIDAR 

measurements to the landmark structures (posts and surfaces) are considered to be 

observations. An Extended Kalman Filter is used in position estimation.  

   Finally, a vehicle tracking technique has been developed for the freeway traffic 

surveillance system. Vision techniques have been more and more involved in vehicle 

tracking and counting in the ITS area. However, currently there is no solid solution to 

track vehicles in high density traffic conditions. The vehicle tracking approach proposed 
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in this dissertation integrates the corners features and the color histogram probability for 

vehicle tracking. If occlusion is not detected, feature-based tracking is implemented; 

otherwise if occlusion occurs, the color probability model is used to determine which 

object each pixel in the occlusion area belongs to. The experimental results show that the 

vehicle tracking technology performs well in high density traffic situations. 

Taken together, the results in this dissertation demonstrate that a good navigation 

performance can be achieved using a LIDAR, computer vision, and inertial sensors-based 

moving platform. Such results are especially important for vehicle navigation systems 

that are equipped with multiple sensors.  

 

7.2 Future Work 

Thus far, only a few experimental LIDAR and computer vision sensor-based vehicle 

detection data have been collected, within limited time and regions. More data should be 

collected for Haar training. Further long-term and extensive vehicle tracking videos and 

LIDAR data will be collected and processed in future research. 

 In Chapter 5, a LIDAR and inertial sensor calibration method has been proposed. 

Simulation results are also given in this dissertation. In addition, the performance of the 

calibration method will be evaluated with field test.  

 A sensor fusion-based vehicle positioning method has also been discussed in this 

dissertation. In addition, more experimental data will be collected to evaluate the 
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performance of the vehicle positioning approach, both on the local road and on the 

freeways.  

Finally, more robust and reliable vehicle tracking techniques are worthy to be 

explored to provide complete and effective traffic surveillance results. 
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Appendix 

A. Calculation of   in point feature detection  

For point feature detection, we have 
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      . So we need to solve         . 

From Eqn. (5-39) we know 

               
    

        
  
    

    
        

      
     

  
    

   
   

   
      

      

       
   

          
   

  
  
    

   
          

    
   

         
    

     

  
    

   
   

                         

   
   

         
                                                                                                      



146 

 

We will represent the error         
      

      in terms of the error state   . 
 
     

will be computed term by term. The second order terms will be eliminated.  
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in which we use the property that             when      . So 

 
 

 
 
 

 
 
  

  
 

  

  
 
    

   
                                                          

So error of the second term in eqn. (A3) is: 
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From (A8) to (A9) we used the property that   
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Similarly we have: 
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From eqns. (A4)-(A15), the error 
 
     is computed as: 
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Then (A1) and (A2) will be rewritten as: 

                                  
    
  

                         

                                  
    
  

 
 

       
        

  
 

  
                  

 
    

      
 

       
                                                                      

 

B. Calculation of   in Line Feature Detection  

For point feature detection, we have 
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where 
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We need to calculate      ,       and      .  

                                                
    

   
       

    
    

     

                                                    
    

    
              

    
     

                                                    
    

    
         

                              
   

    
                                                                                   

Similarly,  
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For      , we have: 
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where the first term in Eqn. (A23) is 
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From Eqn. (A24) to (A25) we use the property that if   is a scalar, then     . The 

second term in eqn. (A23) is 
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The third term in Eqn. (A23) is 
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From Eqns. (A23)-(A27),  

      
    

    
 
   

    
              

          
 

           
    

        
         

      
 
   

    
            

    
    

 
   

    
           

(A28) 

So from Eqns. (A20), (A21), (A22) and (A28),  
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