
Learning by Reusing Previous Advice in
Teacher-Student Paradigm

Changxi Zhu
School of Software Engineering

South China University of Technology
cxzhu.cn@gmail.com

Yi Cai
School of Software Engineering

South China University of Technology
ycai@scut.edu.cn

Ho-fung Leung
Department of Computer Science and Engineering

The Chinese University of Hong Kong
lhf@cuhk.edu.hk

Shuyue Hu
Department of Computer Science
National University of Singapore

dcshus@nus.edu.sg

ABSTRACT
Reinforcement Learning (RL) has been widely used to solve se-
quential decision-making problems. However, RL algorithms suffer
from poor sample efficiency and require a long time to learn a suit-
able policy, especially when multiple agents are learning without
prior knowledge. This problem can be alleviated through reusing
knowledge from other agents during the learning process. One
notable approach is advising actions based on a teacher-student
relationship, where the decision of a student agent during learning
is aided by an experienced teacher agent. A critical assumption
in teacher-student paradigm is that the communication may be
limited, so that a student may wait for a while and learn by itself
before receiving the next advice. More importantly, in some noisy
or stochastic environments, the student may not be able to mas-
ter the advised actions when they are only performed once. We
propose three methods for agents choosing between learning by
exploration, asking for advice and reusing previous advice. The
results show that our approaches significantly outperform existing
advising methods without reusing advice.

KEYWORDS
reinforcement learning;multi-agent; action advising; teacher-student

ACM Reference Format:
Changxi Zhu, Yi Cai, Ho-fung Leung, and Shuyue Hu. 2020. Learning by
Reusing Previous Advice in Teacher-Student Paradigm. In Proc. of the 19th
International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), Auckland, New Zealand, May 9–13, 2020, IFAAMAS, 9 pages.

1 INTRODUCTION
Reinforcement learning (RL) has been employed to solve many
real world problems, e.g., robotics, optimizing memory control and
personalized web services [5, 15]. However, RL often suffers from
slow learning speed in complex applications. This can be further
intensified whenmultiple agents are independently learning and ob-
serving, since each of them needs to adapt for others. Undoubtedly,
when there exists a trained agent or a human expert, a new agent
can benefit from asking about the solution for current task. A more

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous
Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

general situation is that all agents learn without prior knowledge.
Nevertheless, they can accelerate the learning process by sharing
currently acquired knowledge with each other. Another practical
consideration is that the computing resource or communication
may be limited. It is essential for agents to decide what and when
to share, as well as how to utilize the shared knowledge.

Recently, the teacher-student framework [26] has received lots
of attention. In this paradigm, a trained agent (named teacher) ad-
vises a learning agent (named student) on which action to take in
a state. The teacher and the student are only required to have the
same action set without specifying their learning structures, mak-
ing this framework quite flexible for realistic scenarios, for example,
agents equipped with different sensors or policy representations
collaborate together. Da Silva et al. [8] adapt the teacher-student
framework to a Multi-Agent System (MAS) composed of several
simultaneously learning agents, focusing on how action advising
affects agents’ mutual learning processes. In their work, the advis-
ing opportunities are established on demand, which considers the
communication cost among agents. Omidshafiei et al. [17] view
teaching in Multi-Agent Reinforcement Learning (MARL) as a high-
level sequential decision task. An agent who takes the role of stu-
dent learns to ask for advice or not. Another agent who takes the
role of teacher learns to advise all possible actions in states, which
supports teaching heterogeneous teammates.

Previous works on action advising mainly address the problems
of when and what to advise, while rarely discuss the problem of
how to use the advice more effectively. A common key assumption
[2, 8, 26] behind the teacher-student framework and its variations
is that an agent who takes the role of teacher is more experienced
than another agent who takes the role of student in certain states.
The teacher is assumed to be an expert or has explored these states
plenty of times. However, the advice shared from teacher is per-
formed only once, and then will be forgot. Imagine that a coach
teaches a rookie how to shoot in a soccer game. The rookie will be
encouraged if he aims the shoot by following his coach’s advice in
current position. He may also miss the shot at this time due to noisy
or stochastic environment. In such case, if the rookie ignores the
former suggestion, he is likely to try other options in that position
or wait for a moment until obtaining next advice from the coach.
Then the rookie needs to take more time to perform as competitive
as the coach. However, we consider that if previous advice is reused,

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1674

the rookie’s learning can be accelerated since it will spend less time
to explore current situation.

Our work focuses on how a student (e.g., the rookie) can ben-
efit from reusing previous advice, in order to effectively utilize
the shared knowledge from a more experienced teacher (e.g., the
coach). As long as a student receives an advice in a state, the state
will be labeled as “advised” and the advice pair ⟨𝑠𝑡𝑎𝑡𝑒, 𝑎𝑑𝑣𝑖𝑐𝑒⟩ will
be stored. When the student visits such advised state again, it may
remember the advice previously shared from a teacher. Considering
that agents are initiated without prior knowledge, their policies
are generally non-optimal during learning. Insisting on some non-
optimal advices for too long may hinder the overall performance.
A student should choose proper time to reuse advised actions. Oc-
casional exploration for the students also needs to be allowed so as
to surpass the teachers. In this paper, we propose three methods
to help an agent choose between learning by exploration, asking
for advice, and reusing the shared knowledge at every time step. In
Q-change per Step (QChange), an agent will reuse previous advice
if such advice leads to an increased Q-value. Since the environment
can be noisy or stochastic, the reusing procedure in QChange may
not have a long term impact on the advised states. Reusing Budget
(ReBudget) is proposed for each agent reusing the advised actions
in a fixed number of times. As the advice from teacher may be
outdated during learning, we also propose Decay Reusing Probabil-
ity (Decay) to allow agents learning in usual advising frameworks
while reusing previous advices with decaying probabilities.

Our contribution in this paper is threefold. First, to our best
knowledge, this is the first paper to address the problem of how to
reuse the advice from teachers. Second, we propose three methods
that allow agents learning by reusing previous advice upon usual
action advising frameworks under limited communication. Third,
we show that reusing advice significantly accelerate learning in
one single learning agent game Mario, and two multiple learning
agent problems: Predator-Prey and Half Field Offense.

2 RELATEDWORK
The idea of peer to peer knowledge sharing has its root in RL. Tan
[24] points out that Q-learning agents can communicate several
aspects of their learning processes, such as policies (or value func-
tions), episodes (state, action quality triplets) and sensations, in
order to accelerate the joint learning. Q-values Sharing has shown
to surpass advising actions both in single-agent [11] and multi-
agent tasks [29] under limited communication. However, it requires
that agents have identical optimal polices and learning structures
or to build hand-coded knowledge mapping relationship, resulting
in limit scalability in complex applications. Works on imitation
learning [3, 19] study how a student learns a policy by observing an
experienced agent or a human’s actuation. Learning from Demon-
stration [4] tries to mimic the collected demonstrations, which are
typically recorded as state-action pairs following an expert’s policy
for a certain period of time. By contrast, our work builds upon Ac-
tion Advising [2, 8, 10, 26], where an agent should act to maximize
a reward with the help of interweaved action suggestions, not just
to mimic a teacher. Advising actions is one of the most flexible
knowledge sharing frameworks, as agents need only a common un-
derstanding of the actions and current state. The main idea involves

two fundamental roles, a teacher and a student. An experienced
agent or a human expert who takes the role of teacher guides the
action selection of a learning agent who takes the role of student by
suggesting actions to take in certain states. Existing literature on
action advising mainly emphasizes to solve the problems of when
and which action to advise, while our work focuses on how to use
the advice more efficiently. As communication among agents is usu-
ally limited or costly, it is critical to decide advising opportunities.
There have been three modes of giving advice: a) student-initiated
[7]; b) teacher-initiated [26]; c) jointly-initiated [2]. Advising deci-
sions made only by a student may be weak as itself is still learning.
By contrast, the teacher-initiated method requires that the teacher
constantly monitor the student’s learning progress. The jointly-
initiated method establishes initiating advising relations under the
agreement of both teacher and student, which is quite suitable for
applications with limited communication.

The solution to the problem of which action to advise can be
classified as two lines. In the first one [2, 8, 9, 26, 30], when a student
asks for advice, a teacher shares its currently learned best action
(or optimal action), which corresponds to the maximum Q-value
for the requested state. The intuition behind this method is that the
student and the teacher have the same (or similar) learning goal
(e.g., goal states). However, there exist scenarios where agents learn
best by exhibiting behavioral specialization or where agents have
heterogeneous capabilities and state-action space altogether. They
may learn different optimal polices, so that advising personally best
actions even degrades team performance. Omidshafiei et al. [17]
introduce LeCTR that enables a student to learn whether asks for
advice or not, and a teacher to learn which action to advise. The cur-
rent task is transformed into two level RL problems: the task-level
and the teaching-level. In the teaching-level, agents are equipped
with a centralized actor-critic algorithm to learn both when and
what to advise. They also explore how to adapt LeCTR in domains
with long horizons, delayed rewards, and continuous states/actions
[13]. However, compared with heuristic methods, both works de-
mand extensive interactions with the task-level learning process,
in order to evaluate the teacher’s advice.

Another category of action advising on existing works is based
on the task they apply in: a) discrete states/actions [8, 17, 25];
b) continuous states and discrete actions [12, 26]; c) continuous
states/actions [13]. The environment with discrete states/actions,
often based on grid game, is consider to be the most commonly
applied in RL tasks. Da Silva et al. [8] propose several heuristics
extended from [26] to decide when to ask for and give advice in
a cooperative team of SARSA(𝜆) agents. İlhan et al. [12] focus on
solving how to evaluate agents’ confidence in the environment
with continuous states and discrete actions, where multiple DQN
agents learn together. In the work of Kim et al. [13], agents use
deep models in their task-level policies and act in environment with
continuous states/actions, while only two agents are involved.

3 PRELIMINARIES
3.1 Single-agent RL and MARL
RL is used to solve decision-making problems, which are usually
formulated as Markov Decision Processes (MDPs) [23]. An MDP is
described by a tuple ⟨𝑆,𝐴,𝑇 , 𝑅,𝛾⟩, where 𝑆 is a set of environment

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1675

states,𝐴 is the available actions of an agent,𝑇 is transition function,
𝑅 is reward function, and 𝛾 is discount factor. At each time step,
an agent observes current state 𝑠 and selects action 𝑎. Then the
next state is defined by 𝑇 and reward signal 𝑟 can be received. The
goal of an agent is to learn a policy 𝜋 : 𝑆 → 𝐴 which maps states
to actions in such a way that the expected cumulative discounted
reward is maximized. Temporal difference (TD) RL algorithms such
as Q-learning [28] and SARSA [23] learn an action-value function,
𝑄 (𝑠, 𝑎), which is an estimate of the expected return that an agent
takes action 𝑎 in state 𝑠 . The Q-function of an agent is incrementally
updated based on following rules,

𝑄 (𝑠, 𝑎) ← 𝑄 (𝑠, 𝑎) + 𝛼 × 𝛿 (1)

where𝛼 ∈ [0, 1] is the learning rate, and 𝛿 is TD error. In Q-learning,
𝛿 = 𝑟 + 𝛾 max𝑎 𝑄 (𝑠 ′, 𝑎) − 𝑄 (𝑠, 𝑎), where 𝛾 ∈ [0, 1) is the discount
factor. In SARSA, 𝛿 = 𝑟 + 𝛾𝑄 (𝑠 ′, 𝑎′) −𝑄 (𝑠, 𝑎), where 𝑎′ ∈ 𝐴 is the
next action that the agent will execute. The Q(𝜆) [23] and SARSA(𝜆)
[20] are extensions of Q-learning and SARSA respectively, which
improve the learning speed by updating Q-values from past states
with the TD error of current time step. 𝜆 ∈ [0, 1] is trace decay factor
that controls the impact of current TD error on past Q-values in
each episode. As the updating times of previous Q-values increases,
current TD error has smaller influence on these Q-values. These
algorithms are guaranteed to converge to the optimal Q-function
𝑄∗, from which the optimal policy 𝜋∗ can be derived,

𝜋∗ (𝑠) = argmax
𝑎

𝑄∗ (𝑠, 𝑎) (2)

During learning, the agent executes its best actions corresponding
to the maximum Q-values in states. The agent also tries to find even
better options. A common strategy is 𝜖-𝑔𝑟𝑒𝑒𝑑𝑦, where the agent
takes a random action with a small probability 𝜖 and its best action
with probability (1 − 𝜖).

In the multi-agent case, we are interested in cooperative RL
agents getting local observations and learning in a decentralised
fashion [16]. They jointly affect the environment and receive the
same reward, while learn individual policies without accessing
knowledge beyond the environment.

3.2 Teacher-Student Framework
Our work builds upon usual teacher-student frameworks. Here we
introduce a promising multi-agent advising framework AdhocTD
[8], where when to share teachers’ best actions is well defined.
This framework has shown to surpass two branches of method
under budget constraint: Episode Sharing [24], agents share tuples
of ⟨𝑠, 𝑎, 𝑟, 𝑠 ′⟩ after a successful episode and then these tuples will
be used to update corresponding Q-values, and Importance-Based
Advising [26], where advice is given if all other agents detect the
range of Q-values in a state is higher than a predefined threshold
𝑡 : 𝐼 (𝑠) = max𝑎 𝑄 (𝑠, 𝑎) −min𝑎 𝑄 (𝑠, 𝑎) > 𝑡 . In AdhocTD, for current
state 𝑠 , agent 𝑎𝑖 asks for advice with an asking probability calculated
by function 𝑃𝑎𝑠𝑘 = (1+ 𝑣𝑎)−

√
𝑛𝑣𝑖𝑠𝑖𝑡 (𝑠) , where 𝑣𝑎 is a predetermined

parameter, 𝑛𝑣𝑖𝑠𝑖𝑡 (𝑠) is the number of times that the agent visits
state 𝑠 . For the state of agent 𝑎𝑖 , another agent 𝑎 𝑗 gives its best
action with a giving probability calculated by function 𝑃𝑔𝑖𝑣𝑒 =

1−(1+𝑣𝑏)−
√
𝑛𝑣𝑖𝑠𝑖𝑡 (𝑠)×𝐼 (𝑠) , where 𝑣𝑏 is a predetermined parameter. In

case agent 𝑎𝑖 receives more than one advice, it selects the executed

Algorithm 1 Q-change per Step for agent 𝑖
Require: function Φ, asking probability function 𝑃𝑎𝑠𝑘
1: for each time step 𝑡 do
2: let current state be 𝑠𝑡
3: if 𝑏𝑎𝑠𝑘 > 0 then
4: if 𝑠𝑡 ∈ Φ then
5: 𝑎𝑡 ← Φ(𝑠𝑡)
6: if no advice is reused then
7: if 𝑃𝑎𝑠𝑘 (𝑠) > 𝑔𝑒𝑡𝑅𝑎𝑛𝑑𝑜𝑚𝑉𝑎𝑙𝑢𝑒 (0, 1) then
8: denote 𝑎𝑡 as the advice chose by agent 𝑖
9: 𝑏𝑎𝑠𝑘 ← 𝑏𝑎𝑠𝑘 − 1
10: Φ(𝑠𝑡) ← 𝑎𝑡

11: if no action is reused or advised then
12: select action 𝑎𝑡 from usual exploration strategy
13: 𝛽 ← 𝑄𝑡 (𝑠𝑡 , 𝑎𝑡)
14: perform action 𝑎𝑡 in state 𝑠𝑡
15: if 𝑠𝑡 ∈ Φ then
16: 𝛽 ← 𝑄𝑡+1 (𝑠𝑡 , 𝑎𝑡) − 𝛽
17: if 𝛽 <= 𝜂 then
18: remove state 𝑠𝑡 from Φ

action through a majority vote. In order to model communication
cost, the number of times that an agent asks for and gives advice
are constrained by two numeric budget 𝑏𝑎𝑠𝑘 and 𝑏𝑔𝑖𝑣𝑒 respectively.

4 METHOD
We focus on a teacher-student relationship, which is established
only when needed. The goal of our proposed methods is to explore
how a student effectively utilizes the advice previously shared from
a teacher, thereby accelerating learning process. Before introducing
themethod, we assume that agent 𝑖 has taken the role of student and
asked for advice in current state 𝑠 (e.g., with the probability 𝑃𝑎𝑠𝑘 (𝑠)
defined by AdhocTD). Correspondingly, a more experienced agent
𝑗 has taken the role of teacher and given advice for the state re-
quested by agent 𝑖 (e.g., with the probability 𝑃𝑔𝑖𝑣𝑒 (𝑠) defined by
AdhocTD). After receiving an advice, agent 𝑖 labels 𝑠 as an advised
state. When agent 𝑖 visits state 𝑠 next time, such label makes it recall
that this state has been advised. If agent 𝑗 has already learned an
optimal policy for current task, there is no doubt that the action
previously advised by agent 𝑗 benefits agent 𝑖’s learning. Despite
this, occasional exploration needs to be allowed for agent 𝑖 to sur-
pass the teacher’s performance. In addition, where all agents learn
together, their policies are general to be non-optimal. Therefore,
agent 𝑖 should decide whether learning by itself, asking for advice
again or reusing previous advice when visiting the advised states.
Each agent is limited by a budget𝑏𝑎𝑠𝑘 to ask for advice and a budget
𝑏𝑔𝑖𝑣𝑒 to give advice, which is a regular setting in works on action
advising [2, 8, 12, 26]. Note that agent 𝑖 begins to learn by itself
immediately when asking budget 𝑏𝑎𝑠𝑘 is used up.

4.1 Q-change per Step
As agent 𝑖 is still learning, it is not easy to decide when to reuse
the advised actions. The agent can evaluate every piece of impact
of these actions, and then make a decision. A good advice may be
associated with a positive feedback. If agent 𝑖 is a Q-learner, it can

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1676

Algorithm 2 Reusing Budget for agent 𝑖
Require: function Φ, remaining budget function Ψ, maximum bud-

get 𝐿, asking probability function 𝑃𝑎𝑠𝑘
1: for each time step 𝑡 do
2: let current state be 𝑠𝑡
3: if 𝑏𝑎𝑠𝑘 > 0 then
4: if 𝑠𝑡 ∈ Φ then
5: if Ψ(𝑠𝑡) > 0 then
6: 𝑎𝑡 ← Φ(𝑠𝑡)
7: Ψ(𝑠𝑡) ← Ψ(𝑠𝑡) − 1
8: if no advice is reused then
9: if 𝑃𝑎𝑠𝑘 (𝑠) > 𝑔𝑒𝑡𝑅𝑎𝑛𝑑𝑜𝑚𝑉𝑎𝑙𝑢𝑒 (0, 1) then
10: denote 𝑎𝑡 as the advice chose by agent 𝑖
11: 𝑏𝑎𝑠𝑘 ← 𝑏𝑎𝑠𝑘 − 1
12: Φ(𝑠𝑡) ← 𝑎𝑡
13: Ψ(𝑠𝑡) ← 𝐿

14: if no action is reused or advised then
15: select action 𝑎𝑡 from usual exploration strategy
16: perform action 𝑎𝑡 in state 𝑠𝑡

reuse the advice next time encountering the same state when the
advised action leads to an increased Q-value. The change of the
Q-value will be detected after agent 𝑖 updating its Q-function. We
call this method as Q-change per Step (QChange), as described in
Algorithm 1. After receiving action 𝑎 suggested by agent 𝑗 , agent
𝑖 performs the action in current state 𝑠 . If the change of the Q-
value corresponding to action 𝑎 in state 𝑠 exceeds a predefined
threshold 𝜂, agent 𝑖 labels state 𝑠 as an advised state and stores
such advice pair ⟨𝑠, 𝑎⟩ to a function Φ : 𝑆 → 𝐴. Due to the budget
constraint, the maximum number of stored states is limited to 𝑏𝑔𝑖𝑣𝑒 .
When agent 𝑖 visits the labeled state again, action 𝑎 will be queried
from Φ and then executed. After that, the policy is updated as
usual. In the meanwhile, the assessing procedure of reusing action
𝑎 will be performed again, which increases the chance of reusing
previous advice. If no advice is reused, agent 𝑖 selects current action
according to an usual teacher-student framework (e.g., AdhocTD).
In particular, when agent 𝑖 receives a new advice in state 𝑠 , the
original advised action will be replaced by the latest one in terms
of the teachers’ latest knowledge.

4.2 Reusing Budget
In QChange, teachers’ advice may not have a long term impact on
advised states, since the estimation in changes of Q-values can be
misled due to noise or stochastic environment. When a student
receives an optimal action from a trained agent, insisting on advice
for a while is likely to stabilize performance. In Reusing Budget
(ReBudget), agent 𝑖 will memorize advice for a fixed number of
times. Each advised action will not be reused when a maximum
reusing budget 𝐿 is reached. Algorithm 2 describes how agent 𝑖
reuses previous advice with ReBudget. After establishing a teacher-
student relationship with agent 𝑗 , agent 𝑖 performs advice 𝑎 and
labels current state 𝑠 as advised. The advice pair ⟨𝑠, 𝑎⟩ is stored to
function Φ, and the remaining budget function Ψ : 𝑆 → 𝑅 for state
𝑠 is initialized with budget 𝐿. Every time agent 𝑖 encounters state 𝑠 ,
action 𝑎 will be executed instead of selecting action by itself and

Algorithm 3 Decay Reusing Probability for agent 𝑖
Require: function Φ, reusing probability function 𝑃𝑟𝑒𝑢𝑠𝑒 , decay

value 𝜌
1: for each time step 𝑡 do
2: let current state be 𝑠𝑡
3: if 𝑏𝑎𝑠𝑘 > 0 then
4: 𝑎𝑝𝑟𝑒 ← Φ(𝑠𝑡)
5: if 𝑃𝑟𝑒𝑢𝑠𝑒 (𝑠𝑡) > 𝑔𝑒𝑡𝑅𝑎𝑛𝑑𝑜𝑚𝑉𝑎𝑙𝑢𝑒 (0, 1) then
6: 𝑎𝑡 ← 𝑎𝑝𝑟𝑒
7: 𝑃𝑟𝑒𝑢𝑠𝑒 (𝑠𝑡) ← 𝑃𝑟𝑒𝑢𝑠𝑒 (𝑠𝑡) × 𝜌
8: if no advice is reused then
9: if 𝑃𝑎𝑠𝑘 (𝑠) > 𝑔𝑒𝑡𝑅𝑎𝑛𝑑𝑜𝑚𝑉𝑎𝑙𝑢𝑒 (0, 1) then
10: denote action 𝑎𝑡 as the advice chose by agent 𝑖
11: 𝑏𝑎𝑠𝑘 ← 𝑏𝑎𝑠𝑘 − 1
12: Φ(𝑠𝑡) ← 𝑎𝑡
13: 𝑃𝑟𝑒𝑢𝑠𝑒 (𝑠𝑡) ← 1
14: if no action is reused or advised then
15: select action 𝑎𝑡 from usual exploration strategy
16: perform action 𝑎𝑡 in state 𝑠𝑡

asking for advice. Then the associated remaining budget for state
𝑠 in function Ψ will be decremented by 1. During this period, if
agent 𝑖 receives a new advice from other agents in state 𝑠 , the latest
advice will be used and the reusing budget will be reset to 𝐿. The
reusing procedure in state 𝑠 is stopped when the remaining budget
is equal to 0.

4.3 Decay Reusing Probability
The agent who takes the role of teacher may still be adjusting its
policy even if it is considered to be a more experienced agent. As
training times increases, previously advised actions are likely to be
outdated, especially when all agents are learning simultaneously.
Every time agent 𝑖 visits advised states, a more flexible method is to
give it the opportunity to choose between reusing previous advice,
learning by itself and asking for advice. We name this method as
Decay Reusing Probability (Decay). The detail of Decay is shown in
Algorithm 3. If agents use 𝜖-greedy as exploration strategy, when
agent 𝑖 visits an advised state 𝑠 , current action 𝑎𝑡 at time step 𝑡 is
selected as follows:

𝑎𝑡 =

Previous Advice w.p. 𝑃𝑟𝑒𝑢𝑠𝑒
Asking for Advice w.p. 𝑃𝑟𝑒𝑢𝑠𝑒 × 𝑃𝑎𝑑𝑣𝑖𝑐𝑒
Greedy Action w.p. (1 − 𝑃𝑟𝑒𝑢𝑠𝑒 × 𝑃𝑎𝑑𝑣𝑖𝑐𝑒) × (1 − 𝜖)
Random Action w.p. (1 − 𝑃𝑟𝑒𝑢𝑠𝑒 × 𝑃𝑎𝑑𝑣𝑖𝑐𝑒) × 𝜖

where 𝑃𝑟𝑒𝑢𝑠𝑒 is a reusing probability for state 𝑠 , and 𝑃𝑎𝑑𝑣𝑖𝑐𝑒 is
the probability of receiving advice from other agents. In AdhocTD,
𝑃𝑎𝑑𝑣𝑖𝑐𝑒 can be defined as: 𝑃𝑎𝑑𝑣𝑖𝑐𝑒 = 𝑃𝑎𝑠𝑘×𝑃𝑔𝑖𝑣𝑒 . In our work, 𝑃𝑟𝑒𝑢𝑠𝑒
determines whether learning agent 𝑖 should reuse a teacher’s advice
to guide its action selection: agent 𝑖 will follow previous advice with
probability 𝑃𝑟𝑒𝑢𝑠𝑒 , ask for a new advice with probability 𝑃𝑟𝑒𝑢𝑠𝑒 ×
𝑃𝑎𝑑𝑣𝑖𝑐𝑒 , exploit its Q-values with probability (1−𝑃𝑟𝑒𝑢𝑠𝑒 ×𝑃𝑎𝑑𝑣𝑖𝑐𝑒)×
(1−𝜖), and act randomly with probability (1−𝑃𝑟𝑒𝑢𝑠𝑒 ×𝑃𝑎𝑑𝑣𝑖𝑐𝑒) ×𝜖 .
When agent 𝑖 receives an advice in state 𝑠 , 𝑃𝑟𝑒𝑢𝑠𝑒 (𝑠) is typically
initialized with 1 and such advice will be stored to function Φ.
Note that the value of 𝑃𝑟𝑒𝑢𝑠𝑒 (𝑠) will be reinitialized when the next

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1677

advice is shared from other agents in state 𝑠 , ensuring that agent
𝑖 can follow the teachers’ current learning. As agent 𝑖 repeatedly
performs the latest advice in state 𝑠 , 𝑃𝑟𝑒𝑢𝑠𝑒 (𝑠) decays exponentially.
We define 𝑃𝑟𝑒𝑢𝑠𝑒 (𝑠) for state 𝑠 as follows:

𝑃𝑟𝑒𝑢𝑠𝑒 (𝑠) = 𝜌𝑚𝑣𝑖𝑠𝑖𝑡 (3)

where decay value 𝜌 ∈ [0, 1], and𝑚𝑣𝑖𝑠𝑖𝑡 is the number of times that
agent 𝑖 adopts the latest advice in state 𝑠 and will be refreshed when
agent 𝑖 receives the next advice. When 𝜌 is 0, agent 𝑖 is not able
to reuse advice, which is equal to learn in usual teacher-student
framework. When 𝜌 is 1, agent 𝑖 simply follows a teacher’s advice
rather than learning a policy. The reusing process will be stopped
when the maximum asking budget is reached.

5 EXPERIMENTS
We evaluate our method on both single learning agent case and
multiple learning agents case. The former one requires that an
experienced agent who has already learned a fixed policy assists the
learning of a new agent. By contrast, in the latter one, all agents are
learning from scratch and accelerate the joint learning by advising
each other. Three RL problems are offered to perform experiments:
Mario, Predator-Prey and Half Field Offense. Mario is a complex
stochastic game and used as the single agent environment. Predator-
Prey is a popular benchmark for multi-agent learning. Half Field
Offense is a hard learning robot soccer game, where agents must
take stochastic action effects and noisy observations into account.
We compare the performance of following methods:
(a) IL/Multi-IL. Each agent learns independently without commu-

nication, which is served as a baseline to validate the benefit of
advising and reusing previous advice in different tasks.

(b) AdhocTD. The detailed AdhocTD is described in Section 3.2.
Thismethod has shown to largely reduce advising budgets while
achieving excellent results in Half Field Offense [8]. We adapt
AdhocTD in the single-agent case by recording the number of
times that a teacher visits each state and the Q-values of the
teacher after converging to a fixed policy.

(c) AdhocTD-QChange/ReBudget/Decay. AdhocTD can be viewed
as an ideally basic learning algorithm and is combined with our
proposed methods QChange, ReBudget and Decay.

5.1 Mario
Game Description. Mario is a benchmark domain based on Nin-

tendo’s Mario Brothers [18]. Our implementation is based on [27],
where only one agent learns from scratch, and can take the role
of student.1 The other agent who has trained to converged to a
fixed policy is employed to be as a teacher. There are many possible
representations of the state-space in this game. In order to test
our approaches in a large state-space, 27 discrete state-variables
are used, which is also adopted by previous works [22, 27]. The
variables encode a learning agent’s state/position information, sur-
rounding blocks, and enemies. The agent learns to choose between
12 (3× 2× 2) actions (movement direction× jump button× Run/Fire
button). Mario is designed as an episodic task. Every episode, an
agent plays a randomly generated level, starting from a randomly
selected mode (small, large, fire-mario). The level is end either with
1The source code is available at https://github.com/chauncyzhu/Mario.

(a) ARE of all methods

(b) Budget consuming of all methods

Figure 1: ARE and budget consumption of IL-Q(𝜆), Ad-
hocTD, AdhocTD-QChange/ReBudget/Decay when 𝑏𝑎𝑠𝑘 =

𝑏𝑔𝑖𝑣𝑒=50,000, 𝜂=0, 𝐿=5 and 𝜌=0.9

the agent’s success, the agent’s death, or a timeout of 200 seconds.
For the learning task, both the student and teacher are equipped
with Q(𝜆) with following parameters: 𝛼=0.001, 𝛾=0.9, 𝜆=0.5. We use
𝜖greedy as action selection strategy for all methods, where 𝜖= 0.05.

Evaluation Metrics. In Mario, the learning agent’s performance
is assessed by Average Reward per Episode (ARE). ARE is an agent’s
average reward for each episode during a predefined number of
training episodes, and we set 100. The teacher has trained for 50,000
episodes to obtain a fixed policy. Then in all methods (except IL-
Q(𝜆)), the students are advised by the same teacher. We perform 30
runs for all methods to stabilize the performance. The selection of
𝑣𝑎 and 𝑣𝑏 may heavily effect the advising opportunities in AdhocTD
as well as corresponding action reusing methods. When 𝑣𝑎 is small
and 𝑣𝑏 is high, the student is more likely to ask for advice and the
teacher is more likely to give advice, resulting higher communi-
cation cost. One the contrary, high value of 𝑣𝑎 and low value of
𝑣𝑏 make the student asks for advice when it visits current state
few times and the teacher gives advice when it has experienced
the student’s state many times respectively. Then we choose 𝑣𝑎=2
and 𝑣𝑏=0.2, in which AdhocTD spends about 50,000 budget in the
50,000 training episodes. In order to compare the effect of different
value of parameters on the learning process, we set: a) 𝜂=0, 0.01
and 0.03; b) 𝐿=5, 10 and 100; c) 𝜌=0.8, 0.9 and 0.99.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1678

Table 1: Performance metrics for the agents in Mario (aver-
age of 30 trials). Maximum values of action reusingmethods
with 𝜂, 𝐿 and 𝜌 are shown in bold respectively. Higher values
are better. The best value of each column is underlined.

Agents Jump Start Last Mean
IL-Q(𝜆) -412.686 1516.355 1286.195

AdhocTD -11.933 1388.411 1238.722
QChange (𝜂=0) 49.667 1518.773 1362.383

QChange (𝜂=0.01) 36.467 1452.036 1290.747
QChange (𝜂=0.03) 145.267 1408.7 1260.696
ReBudget (𝐿=5) 721.677 1661.853 1537.968
ReBudget (𝐿=10) 1262.8 1634.525 1510.712
ReBudget (𝐿=100) 1337.125 1584.468 1426.272
Decay (𝜌=0.8) 919.8 1653.793 1511.439
Decay (𝜌=0.9) 1082.774 1643.75 1520.172
Decay (𝜌=0.99) 1722.067 1540.297 1417.719

Experimental Results. The averaged ARE and the consumption
of advising budget over 30 runs for all methods are shown in Figure
1. In Figure 1a, we firstly present the ARE value of action reusing
methods turned with best parameters. We can see that action ad-
vising schema, AdhocTD has significant higher ARE than IL-Q(𝜆)
before about 12,000 episodes. During this period, the student visits
most states very few times, and benefit more from asking for advice.
Hence, the student quickly spends advising budgets, as shown in
Figure 1b. As the agent learns, it is less likely to ask for advice.
AdhocTD gradually has lower ARE than IL-Q(𝜆), which probably
means that the student does not master the advised actions due
to stochastic environment. Too much advice even disturbs the stu-
dent’s learning. As for AdhocTD-QChange, since the student is less
likely to insist on the teacher’s advice for too long, this method fi-
nally achieves similar ARE values as IL-Q(𝜆). By contrast, AdhocTD-
ReBudget/Decay have much higher ARE and spend much lower
budget than other methods. Furthermore, the consumed budget of
AdhocTD-Decay is slightly lower than AdhocTD-ReBudget.

Average Jump Start (the reward of the first training episode), Last
(the last value of ARE), and Mean (the average ARE of the whole
training episodes) are detailed in Table 1. We can see that AdhocTD-
ReBudget with 𝐿=5 achieves the highest Mean performance. The
advice reusing methods (except QChange with 𝜂 =0.01 and 0.03)
have significantly better Last andMean performance than AdhocTD
and IL-Q(𝜆). As for the Jump Start, since agents rarely visit all states
in the first episode, they extremely benefit from action advising
based methods, especially for our proposed methods. As 𝐿 increases
to 100, the student has much less chance to explore the state space
and simply follows the teacher’s advised actions in the advised
states, resulting in lower Last and Overall Average performance.
Similar results can be seen in AdhocTD-Decay with different 𝜆.
When 𝜆=0.99, the student rarely learns by exploration, and finally,
the performance is worse than 𝜆=0.9.

5.2 Predator-Prey domain
Game Description. Predator-Prey (PP) is a grid world domain,

which has become the first trial for MAS before applying in more

complex situations. In this paper we use the publicly available
instantiation of PP domain implemented in [6].2 In our experiments,
there are 5 agents, including 4 predators and 1 prey settled in an
𝑁 ×𝑁 grid world, where N is the number of grids in x (y) direction.
Each agent occupies one grid, and chooses between five actions
Stay, Go Up, Go Down, Go Left, and Go Right. By executing an action,
they either stay in place or move one grid in one of the four cardinal
directions. In this game, only predators are RL agents, while the
prey takes a random action 20% of the time, with rest of the time
moving away from all predators. The four predators independently
observe the environment and learn to catch the prey by cooperation.
The prey is caught if four predators are next to the prey in four
cardinal directions. In this way, when predators catch the prey,
each predator receives a common reward of 1, otherwise 0. Despite
this environment’s representational and mechanical simplicity, it
is still capable of presenting complex cooperative behaviours for
MARL. To avoid the challenge of hidden states, each predator has
fully observation. At each time step, each predator observes the
relative positions of other predators as well as the prey in form
of x-axis and y-axis values. All values of states are normalised to
[−1, 1] by dividing by the number of grids 𝑁 . In order to reduce
the state space, Tile coding [21] is used to force a generalization
with 8 tilings and tile-width 0.5. In all experiments, we use classic
RL algorithm, Q(𝜆), where 𝛼=0.1, 𝛾=0.9 and 𝜆=0.9. The 𝜖-greedy
strategy is used as the exploration strategy for all agents with 𝜖=0.1.

Evaluation Metrics. There is one popular performance metric for
PP domain. Time to Goal (TG) is the number of steps that predators
take to catch the prey. One episode starts when predators and
the prey are initialized with a random position in the grid world.
The episode ends when either predators catch the prey or a time
limit is exceeded. We set the maximum number of steps in each
episode as 1,500. The game is trained for 10,000 episodes. After every
100 training episodes, we average the TG values to obtain a more
stable value. The process is repeated over 400 runs. The parameters
of AdhocTD have been tuned in current task for achieving the
best TG values. Then we choose 𝑣𝑎=0.2 and 𝑣𝑏=1 for AdhocTD
and AdhocTD-QChange/ReBudget/Decay. To show the effect of
different values of parameters, we set: a) 𝜂=0, 0.01 and 0.03; b) 𝐿=50,
100 and 150; c) 𝜌=0.9, 0.99 and 0.999.

Experimental Results. Figure 2a shows the performance of TG
and the consumption of advising budget, averaged over 400 runs.
AdhocTD-Decay with 𝜌=0.99 has significant lower TG values than
all other methods. Since agents in AdhocTD-ReBudget can insist
on the advised actions for a longer period, this method has shown
to surpass AdhocTD-QChange. Thanks to action advising, the TG
of AdhocTD is sightly lower than Multi-IL-Q(𝜆), while it is still
much higher than the TG of AdhocTD-ReBudget/Decay. In Figure
2b, we can see that our proposed methods spend lower budget
than AdhocTD. The consumed budget of AdhocTD-Decay is higher
than AdhocTD-ReBudget, which may be due to that with 𝐿=100,
agents in AdhocTD-ReBudget has less chance to ask for advice. The
detailed performance of our methods with different parameters is
shown in Table 2. We record the first TG value (Initial), the last TG
value (Last) and the mean TG value (Mean). As 𝜂 decreases, agents

2The source code is available at http://www.biu-ai.com/RL.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1679

(a) TG of all methods

(b) Budget consuming of all methods

Figure 2: TG and budget consumption of Multi-IL-Q(𝜆),
AdhocTD, and AdhocTD-QChange/ReBudget/Decay when
𝑏𝑎𝑠𝑘 = 𝑏𝑔𝑖𝑣𝑒=4,000, 𝜂=0.01, 𝐿=100 and 𝜌=0.99

are easier to reuse previous advice, and obtain lower TG values.
Proper value of 𝜂 (e.g., 𝜂=0.01) helps a student filter some bad advice.
Overall, AdhocTD-Decay with 𝜌=0.99 achieves the lowest last and
mean TG values compared with all other methods, which allows
agents exploring the state space while reusing advices.

5.3 Half Field Offense
Game Description. Half Field Offense (HFO) is a simulated robot

soccer game [14].3 In our experiments, there are three players and
one goalkeeper. Only players are learning from scratch, while the
goalkeeper adopts a fixed policy Helios Policy [1]. Each player
learns to score a goal when possesses the ball, otherwise move.
They choose between four actions Shoot, PassNear, PassFar, and
Dribble. The players can benefit from cooperative behaviors, for
example, one player passes the ball to another player for better shot.
In our implementation, a player’s state is composed of following
observations: 1) whether the player is in possession of the ball;
2) the proximity to the center of the goal; 3) the angle from one
player to goal center; 4) the largest angle of one player to the goal
without blocking players; 5) the goal opening angle of the nearest
(or farthest) partner. These features are normalized in the range
[−1, 1] and discretized by Tile Coding with 5 tilings and 0.5 tile
3The source code is available at https://github.com/f-leno/AdHoc_AAMAS-17.

Table 2: Performance metrics for the agents in PP domain
(average of over 400 trials). Maximum values of action
reusing methods with 𝜂, 𝐿 and 𝜌 are shown in bold respec-
tively. Lower values are better. The best value of each col-
umn is underlined.

Agents Initial Last Mean
Multi-IL-Q(𝜆) 1400.929 314.679 387.757
AdhocTD 1374.108 297.499 371.257

QChange (𝜂=0) 1380.338 297.225 455.628
QChange (𝜂=0.01) 1384.214 308.214 449.224
QChange (𝜂=0.03) 1389.183 307.377 456.549
ReBudget (𝐿=50) 1304.371 311.588 326.361
ReBudget (𝐿=100) 1274.574 312.039 325.001
ReBudget (𝐿=150) 1276.654 281.741 367.076
Decay (𝜌=0.9) 1329.096 242.126 323.914
Decay (𝜌=0.99) 1285.165 206.067 312.541
Decay (𝜌=0.999) 1299.662 239.546 365.294

size. One episode starts when all players and the ball initialized
with a random position on the field. The episode ends when either
the players scores a goal, the goalkeeper catches the ball, the ball
leaves the field, or a time limit is exceeded. When a player scores a
goal, all players receive a common reward of 1, otherwise -1. Due to
the complexity of this task, we use SARSA(𝜆) to promote learning
speed for all methods. In SARSA(𝜆), we use 𝛼=0.1, 𝛾=0.9, and 𝜆=0.9.
The exploration strategy for all agents is 𝜖-greedy with 𝜖= 0.1.

Evaluation Metrics. We train the players for 10,000 episodes. In
each episode, the maximum number of steps is 200. After every 20
training episodes, the learning is halted and 100 testing episodes
are played. During testing episodes, all players no longer update
their policies, advise each other and reuse advice. They execute
currently learned best action in every state. This training process
is repeated over 50 runs. We use two standard metrics for perfor-
mance evaluation. Goal Percentage (GP) is the percentage of testing
episodes in which a goal is scored. Time to Goal (TG) in this game
is the average number of steps that the players score a goal during
testing episodes. We choose 𝑣𝑎=0.5 and 𝑣𝑏=1.5 for AdhocTD, which
is the same as [8]. In order to compare the performance of different
parameters, we set: a) 𝜂=0.01, 0.05 and 0.1; b) 𝐿=5, 10 and 15; c)
𝜌=0.6, 0.8 and 0.99.

Experimental Results. The average results are shown in Figure
3. We can see that AdhocTD-Decay with 𝜌=0.8 and AdhocTD-
ReBudget with 𝐿=5 have much higher GP and lower TG than other
methods, while consume less budget. Since agents are still learning,
they may advise some non-optimal actions at the early stage of
learning. Before about 6,000 episodes, AdhocTD-Decay has better
GP than AdhocTD-ReBudget, which means that it is vital for learn-
ing students to explore the state space even following their teachers’
advices. The first GP/TG value (Initial), the last GP/TG value (Last),
the mean GP/TG value (Mean) and the AUC of GP/TG (AUC) are
shown in Tables 3-4. Due to the rare chance of exploration in the
environment when advising, we can see that AdhocTD-Decay with
𝜌=0.99 has the lowest GP than all other methods even compared
with non-advising method Multi-IL-SARSA(𝜆).

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1680

(a) GP of all methods (b) GP after 7,000 episodes

(c) TG of all methods (d) TG after 7,000 episodes (e) The consumed budget

Figure 3: GP, TG and consumed budget of Multi-IL-SARSA(𝜆), AdhocTD, AdhocTD-QChange/ReBudget/Decay when 𝑏𝑎𝑠𝑘 =

𝑏𝑔𝑖𝑣𝑒=600, 𝜂=0.05, 𝐿=10 and 𝜌=0.8

Table 3: Performance metrics regarding GP values in HFO
(average of over 50 trials). Higher values are better.

Agents Initial Last Mean AUC
Multi-IL-SARSA(𝜆) 2.81 74.1 59.894 29968.255

AdhocTD 3.01 75.31 61.855 30950.24
QChange (𝜂=0.01) 3.05 75.97 62.298 31171.96
QChange (𝜂=0.05) 2.81 75.56 62.277 31161.435
QChange (𝜂=0.1) 2.81 72.92 61.787 30917.495
ReBudget (𝐿=5) 3.05 77.97 63.592 31819.31
ReBudget (𝐿=10) 3.17 76.74 63.199 31622.525
ReBudget (𝐿=15) 2.65 76.57 62.538 31292.11
Decay (𝜌=0.6) 3.0 76.99 63.827 31937.115
Decay (𝜌=0.8) 2.71 79.07 63.961 32003.74
Decay (𝜌=0.99) 3.2 71.47 56.237 28137.575

6 CONCLUSION AND FURTHERWORKS
In this paper, we address how to use advice more effectively in
the teacher-student paradigm, which are particularly suitable for
budget constraint. Specifically, with our proposed methods, when
an agent encounters a state advised before, it either reuses pre-
vious advice, asks for a new advice or select the next action in a
usual exploration strategy. Our main finding is that reusing ad-
vice achieves significantly better performance than the advising
framework without specifying advice reusing. Moreover, when all
agents are learning and adapting their policies, it is vital for them
to explore while reusing the advised actions. Last but not least,
insisting on non-optimal teachers’ advice for too long may even
hinder the overall learning process.

Table 4: Performance metrics regarding TG values in HFO
(average of over 50 trials). Lower values are better.

Agents Initial Last Mean AUC
Multi-IL-SARSA(𝜆) 37.64 96.85 98.772 49417.355

AdhocTD 39.5 94.67 96.985 48522.325
QChange (𝜂=0.01) 38.62 93.9 96.395 48227.86
QChange (𝜂=0.05) 35.19 93.47 96.403 48233.77
QChange (𝜂=0.1) 37.82 93.84 97.194 48628.42
ReBudget (𝐿=5) 40.85 92.17 94.829 47442.88
ReBudget (𝐿=10) 38.38 91.94 94.59 47324.67
ReBudget (𝐿=15) 37.71 92.4 94.4 47229.565
Decay (𝜌=0.6) 38.1 91.59 94.675 47367.405
Decay (𝜌=0.8) 37.85 90.99 94.289 47174.4
Decay (𝜌=0.99) 39.5 94.0 95.464 47760.86

As future work, we consider to filter the influence of bad advice,
and learn a model to represent the shared knowledge from teachers.
A student can also learn how to choose reusing advice, following
the exploration strategy or asking for advice. Such decision can be
included into the high-level advising framework like LeCTR [17].

ACKNOWLEDGEMENT
This work was supported by the Fundamental Research Funds for
the Central Universities, SCUT (No. 2017ZD048, D2182480), the
Science and Technology Planning Project of Guangdong Province
(No. 2017B050506004), the Science and Technology Programs of
Guangzhou (No. 201704030076, 201802010027, 201902010046).

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1681

REFERENCES
[1] Hidehisa Akiyama. 2012. Helios team base code. (2012). https://osdn.jp/projects/

rctools/
[2] Ofra Amir, Ece Kamar, Andrey Kolobov, and Barbara J. Grosz. 2016. Interac-

tive teaching strategies for agent training. In Proceedings of the Twenty-Fifth
International Joint Conference on Artificial Intelligence (IJCAI). 804–811.

[3] Thomas Anthony, Zheng Tian, and David Barber. 2017. Thinking Fast and Slow
with Deep Learning and Tree Search. InAdvances in Neural Information Processing
Systems. 5360–5370.

[4] Brenna D. Argall, Sonia Chernova, Manuela M. Veloso, and Brett Browning. 2009.
A survey of robot learning from demonstration. Robotics and Autonomous Systems
57, 5 (2009), 469–483.

[5] Andrew G. Barto., Philip S. Thomas, and Richard S. Sutton. 2017. Some Recent
Applications of Reinforcement Learning. In Proceedings of the 18th Yale Workshop
on Adaptive and Learning Systems.

[6] Tim Brys, Ann Nowé, Daniel Kudenko, and Matthew Taylor. 2014. Combining
Multiple Correlated Reward and Shaping Signals by Measuring Confidence. In
Proceedings of 28th AAAI Conference on Artificial Intelligence. 1687–1693.

[7] Jeffery A. Clouse. 1996. On integrating apprentice learning and reinforcement
learning. PhD thesis, University of Massachusetts.

[8] Felipe Leno da Silva, Ruben Glatt, and Anna Helena Reali Costa. 2017. Simultane-
ously Learning and Advising in Multiagent Reinforcement Learning. In Proceed-
ings of the 16th International Conference on Autonomous Agents and MultiAgent
Systems. 1100–1108.

[9] Anestis Fachantidis, Matthew E. Taylor, and Ioannis P. Vlahavas. 2017. Learning
to Teach Reinforcement Learning Agents. Machine Learning and Knowledge
Extraction 1 (2017), 21–42.

[10] Anna Helena Reali Costa Felipe Leno da Silva. 2019. A Survey on Transfer
Learning for Multiagent Reinforcement Learning Systems. Journal of Artificial
Intelligence Research 64 (2019), 645–703.

[11] Vaibhav Gupta, Daksh Anand, Praveen Paruchuri, and Balaraman Ravindran.
2019. Advice Replay Approach for Richer Knowledge Transfer in Teacher Student
Framework. In Proceedings of the 18th International Conference on Autonomous
Agents and MultiAgent Systems. 1997–1999.

[12] Ercüment Ilhan, Jeremy Gow, and Diego Perez Liebana. 2019. Teaching on a
Budget in Multi-Agent Deep Reinforcement Learning. ArXiv abs/1905.01357
(2019).

[13] Dong-Ki Kim, Miao Liu, Shayegan Omidshafiei, Sebastian Lopez-Cot, Matthew
Riemer, Golnaz Habibi, Gerald Tesauro, Sami Mourad, Murray Campbell, and
Jonathan P. How. 2019. LearningHierarchical Teaching in CooperativeMultiagent
Reinforcement Learning. ArXiv (2019), abs/1903.03216.

[14] Hiroaki Kitano, Minoru Asada, Yasuo Kuniyoshi, Itsuki Noda, Eiichi Osawa, and
Hitoshi Matsubara. 1997. RoboCup: A Challenge Problem for AI. AI Magazine 18
(1997), 73–85.

[15] Jens Kober, J. Andrew Bagnell, and Jan Peters. 2013. Reinforcement learning
in robotics: A survey. The International Journal Of Robotics Research 32 (2013),

1238–1274.
[16] Laëtitia Matignon, Guillaume J. Laurent, and Nadine Le Fort-Piat. 2012. Indepen-

dent reinforcement learners in cooperative Markov games: a survey regarding
coordination problems. Knowledge Eng. Review 27 (2012), 1–31.

[17] Shayegan Omidshafiei, Dong-Ki Kim, Miao Liu, Gerald Tesauro, Matthew Riemer,
Christopher Amato, Murray Campbell, and Jonathan P. How. 2019. Learning to
Teach in Cooperative Multiagent Reinforcement Learning. In The Thirty-Third
AAAI Conference on Artificial Intelligence. 6128–6136.

[18] IEEE Transactions on Computational Intelligence and AI in Games. 2012. The
Mario AI Benchmark and Competitions. 4, 1 (2012), 55–67.

[19] Bob Price and Craig Boutilier. 2003. Accelerating Reinforcement Learning through
Implicit Imitation. Journal of Artificial Intelligence Research (JAIR) 19 (2003), 569–
629.

[20] G. A. Rummery and M. Niranjan. 1994. On-line Q-learning using connection-
ist systems. Technical Report CUED/F-INFENG/TR 166. Cambridge University
Engineering Dept.

[21] Alexander A. Sherstov and Peter Stone. 2005. Function Approximation via
Tile Coding: Automating Parameter Choice. In Proc. Symposium on Abstraction,
Reformulation, and Approximation (SARA-05). Edinburgh, Scotland, UK.

[22] Halit Bener Suay, Tim Brys, Matthew E. Taylor, and Sonia Chernova. 2016. Learn-
ing from Demonstration for Shaping through Inverse Reinforcement Learning. In
Proceedings of the 2016 International Conference on Autonomous Agents Multiagent
Systems. 429–437.

[23] Richard S. Sutton and Andrew G. Barto. 1998. Reinforcement Learning: An Intro-
duction (1nd. ed.). MIT press, Cambridge, MA, USA.

[24] Ming Tan. 1993. Multi-agent Reinforcement Learning: Independent vs. Coopera-
tive Agents. In 10th International Conference on Machine Learning. 330–337.

[25] Lisa Torrey and Matthew E Taylor. 2012. Help an Agent Out: Student/Teacher
Learning in Sequential Decision Tasks. In Proceedings of the 2012 Adaptive and
Learning Agents Workshop (AAMAS). 41–48.

[26] Lisa Torrey and Matthew E. Taylor. 2013. Teaching on a budget: agents advis-
ing agents in reinforcement learning. In Proceedings of 12th the International
Conference on Autonomous Agents and MultiAgent Systems. 1053–1060.

[27] Zhaodong Wang and Matthew E. Taylor. 2017. Improving Reinforcement Learn-
ing with Confidence-Based Demonstrations. In Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelligence (IJCAI). 3027–3033.

[28] Christopher J.C.H. Watkins and Peter Dayan. 1992. Technical Note: Q-learning.
Machine Learning 8 (1992), 279–292.

[29] Changxi Zhu, Ho fung Leung, Shuyue Hu, and Yi Cai. 2019. A Q-values Sharing
Framework for Multiple Independent Q-learners. In Proceedings of the 18th Inter-
national Conference on Autonomous Agents and MultiAgent Systems. 2324–2326.

[30] Matthieu Zimmer, Paolo Viappiani, and Paul Weng. 2014. Teacher-Student Frame-
work: A Reinforcement Learning Approach. In AAMAS Workshop Autonomous
Robots Multirobot Systems.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1682

https://osdn.jp/projects/rctools/
https://osdn.jp/projects/rctools/

	Abstract
	1 introduction
	2 Related Work
	3 Preliminaries
	3.1 Single-agent RL and MARL
	3.2 Teacher-Student Framework

	4 Method
	4.1 Q-change per Step
	4.2 Reusing Budget
	4.3 Decay Reusing Probability

	5 Experiments
	5.1 Mario
	5.2 Predator-Prey domain
	5.3 Half Field Offense

	6 CONCLUSION AND FURTHER WORKS
	References

