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ABSTRACT
While multi-agent interactions can be naturally modeled as a graph,

the environment has traditionally been considered as a black box.

To better utilize the inherent structure of our environment, we

propose to create a shared agent-entity graph, where agents and

environmental entities form vertices, and edges exist between the

vertices which can communicate with each other, allowing agents to

selectively attend to different parts of the environment, while also

introducing invariance to the number of agents or entities present

in the system as well as permutation invariance. We present state-

of-the-art results on coverage, formation and line control tasks for

multi-agent teams in a fully decentralized execution framework.
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1 INTRODUCTION
The complexity of multi-agent systems precludes them from be-

ing solved with pre-programmed agent behaviors by making the

design of heuristic behavior strategies difficult. Multi-agent rein-

forcement learning (MARL) enables agents to learn cooperative

behavior to maximize some team reward function, but poses signif-

icant challenges including the non-stationarity of the environment,

combinatorially growing joint action and state spaces of the agents,

and the multi-agent credit assignment problem.

While multi-agent systems have been modeled as graphs in

previous works [2, 6], the environment has been usually treated

as a black box. The agents receive information about other agents

and entities in the environment in the form of a single vector or

image with everything stacked together, which is a gross under-

utilization of the natural structure present in the environment.

Here, building upon graph neural networks [3, 7], we propose to

incorporate the inherent high-level structure of the environment

directly in the learning framework by creating a shared agent-

entity graph where both, agents and environmental entities, form
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vertices and edges exist between those vertices whose occupants

can communicate with each other. Agents learn to achieve global

consensus important for solving fully cooperative tasks by sending

and receiving messages along the edges of this graph [1, 4], which

also provides invariance to the number of agents or entities present

in the environment.

2 METHOD
2.1 Agent-Entity Graph
We define a graph G := (V, E) where each node 𝑛 ∈ V is either

an agent or an environment entity, and there exists an edge 𝑒 ∈
E between two nodes if the node occupants can communicate

with each other. In this work, we consider static entities, i.e., their

positions remain same throughout an episode. However, across

different episodes, the entities can take random positions in the

environment. Also, we assume that the agents have access to the

position of all the entities at the beginning of each episode. This

means that there always exists an edge between each agent-entity

pair. With respect to communication between agents, we consider

both restricted (to a distance radius) and unrestricted variants.

2.2 Learning to communicate
We now describe the message passing mechanism by which agents

establish a global consensus among themselves in order to accom-

plish the given task. Each agent 𝑖 ∈ V observes only its own local

state 𝑋 𝑖
(position, velocity) and learns encoding 𝑈 𝑖 = 𝑓𝑎 (𝑋 𝑖 ). It

then aggregates all the information about the environment into a

fixed size embedding 𝐸𝑖 , by representing each environment entity

as a stateful node, using dot-product attention [7] to aggregate

them together.

It then receives messages from other agents using a similar dot-

product attention mechanism, and aggregates all the messages by

computing a weighted sum of its neighbors’ messages, which are

used to update the agent’s own state. This attention mechanism

enables the agents to selectively attend to messages coming from its

neighbors. We use multi-hop communication to allow information

to propagate between agents that might not be directly connected

with each other. After 𝐾 rounds of message passing, each agent has

an updated encoding ℎ𝑖 . It then feeds this encoding into another

neural network with value and policy heads to predict an estimate

of its state value and a probability distribution over all possible

actions respectively. Each agent samples an action from the distri-

bution and acts accordingly, upon which the environment gives a

joint reward to the team. In this work, we consider scenarios where

the agents form a homogeneous team and share all the learnable

parameters including those of agent encoder network, entity en-

coder network, graph networks, and policy and value networks.
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Figure 1: The proposed shared agent-entity graph on the right, and a detailed look at the internal architecture of each agent on the left. Messages exchanged
between agents are depicted by red edges while those between an entity and an agent are shown by blue edges.

The entire model is trained in an end-to-end manner using the

actor-critic policy gradient PPO [5] algorithm. A salient feature of

our proposed model is that it can be trained and executed both in a

completely decentralized manner. We also use curriculum learning

to bootstrap policies learned by agents cooperating in small teams,

and apply them to environments with more agents.

3 EXPERIMENTS
We evaluate our proposed model on standard swarm robotics tasks

of coverage control, formation control and line control.

Table 1:Comparisons with prior works with𝑀 = 3 and𝑀 = 6 agents. UC: Unre-
stricted Communication, RC: Restricted Communication, T: Average Episode
Length, S%: success rate, DIST: average agent-landmark distance.

Observ- 𝑀 = 3 𝑀 = 6

Task Method ability Comm Dist. T S % Dist. T S %

CC Q-Mix Full N/A 0.46 50 0 0.51 50 0

CC VDN Full N/A 0.44 50 0 0.47 50 0

CC IQL Full N/A 0.51 50 0 0.43 50 0

CC COMA Full N/A 0.41 50 0 0.43 50 0

CC MADDPG Full N/A 0.065 17.89 95 0.52 50 0

CC Ours Partial UC 0.047 14.12 100 0.15 20.47 93

CC Ours Partial RC 0.049 14.22 98 0.17 48.32 5

FC MADDPG Full N/A – 15.66 100 – 50 0

FC Ours Partial UC – 13.56 100 – 14.22 100

FC Ours Partial RC – 12.97 100 – 14.26 100

LC MADDPG Full N/A – 35.84 58 – 50 0

LC Ours Partial UC – 15.14 98 – 16.31 100

LC Ours Partial RC – 15.24 97 – 17.07 100

We used 3 metrics to compare different methods: Success Rate
(S%): In what percentage of episodes does the team achieve its

objective? (Higher is better) Time (T): How many time steps does

the team require to achieve its objective? (Lower is better)Average
Distance (DIST.): What is the average distance of a landmark from

its closest agent? This metric is used in coverage control task only.

(Lower is better).

Table 2: Curriculum Learning for coverage control task. EMP: Entity Message
Passing, N: Number of updates.

Comm EMP 𝑀 = 3 𝑀 = 5 𝑀 = 7 𝑀 = 10

S% N S% N S% N S% N

No UC 92 2450 96 3900 0 – – –

No RC 90 2900 0 – – – – –

Yes UC 96 1100 92 250 98 1000 86 200

Yes RC 91 1100 96 3700 81 50 85 3250

Table 3: Zero Shot Generalization results. Policy trained for 𝑀 = 5 agents is
evaluated directly for different team sizes without any fine-tuning and the
obtained mean success rates (S%) are reported, along with the standard devia-
tion in parentheses. Each experiment was repeated 10 times.

Task Com 𝑀 − 2 𝑀 − 1 𝑀 = 5 𝑀 + 1 𝑀 + 2

CC UC 99.1(0.70) 99.4(0.49) 99.0(0.77) 98.8(1.08) 97.7(1.85)

CC RC 93.2(2.23) 98.4(1.80) 99.4(0.66) 99.3(0.64) 92.8(3.54)

FC UC 5.5(2.5) 95.7(1.90) 99.3(0.64) 93.0(2.28) 17.5(5.57)

FC RC 71.8(3.28) 98.5(1.28) 98.2(1.25) 35.9(5.13) 33.9(5.89)

LC UC 10.5(3.38) 83.2(3.63) 99.5(0.67) 95.1(1.22) 57.5(4.39)

LC RC 15.0(3.10) 74.3(3.38) 99.3(0.64) 43.1(3.75) 17.4(2.80)

4 CONCLUSION
This paper presents a new method for cooperative multi-agent

reinforcement learning. Instead of treating the environment as a

black box, we proposed to utilize the inherent structure in a shared

agent-entity graph whose vertices are formed by both, the agents

and environment entities. The agents learn cooperate behaviors

by exchanging messages with each other along the edges of this

graph. Our proposed model is invariant to the number of agents

or entities present in the environment which enables us to estab-

lish a curriculum learning framework in multi-agent systems. We

showed state-of-the-art results on coverage and formation con-

trol for swarms in a fully decentralized execution framework and

demonstrated that the learned policies have strong zero-shot gen-

eralization to scenarios with different team sizes.
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