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ABSTRACT
Human gaze is known to be an intention-revealing signal in human
demonstrations of tasks. In this work, we use gaze cues from human
demonstrators to enhance the performance of agents trained via
three popular imitation learningmethods— behavioral cloning (BC),
behavioral cloning from observation (BCO), and Trajectory-ranked
Reward EXtrapolation (T-REX). Based on similarities between the
attention of reinforcement learning agents and human gaze, we
propose a novel approach for utilizing gaze data in a computation-
ally efficient manner, as part of an auxiliary loss function, which
guides a network to have higher activations in image regions where
the human’s gaze fixated. This work is a step towards augmenting
any existing convolutional imitation learning agent’s training with
auxiliary gaze data. Our auxiliary coverage-based gaze loss (CGL)
guides learning toward a better reward function or policy, without
adding any additional learnable parameters and without requiring
gaze data at test time. We find that our proposed approach improves
the performance by 95% for BC, 343% for BCO, and 390% for TREX,
averaged over 20 different Atari games. We also find that compared
to a prior state-of-the-art imitation learning method assisted by
human gaze (AGIL), our method achieves better performance, and
is more efficient in terms of learning with fewer demonstrations.
We further interpret trained CGL agents with a saliency map visual-
ization method to explain their performance. At last, we show that
CGL can help alleviate a well-known causal confusion problem in
imitation learning.

KEYWORDS
Human Gaze; Imitation Learning; Learning from Demonstration
ACM Reference Format:
Akanksha Saran, Ruohan Zhang, Elaine S. Short, and Scott Niekum. 2021.
Efficiently Guiding Imitation Learning Agents with Human Gaze. In Proc.
of the 20th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2021), Online, May 3–7, 2021, IFAAMAS, 9 pages.

1 INTRODUCTION
Learning agents can outperform humans at tasks such as Atari
game playing when provided with well-defined goals or rewards
using reinforcement learning (RL) [25, 36, 39]. However, designing
reward functions by hand can be difficult for complex tasks, even for
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experts. Imitation learning (IL) [1, 34] is an alternative methodology
which overcomes this difficulty by inferring an optimal policy from
demonstrations. A challenge in training and utilizing IL agents in
the real world is learning from few demonstrations to minimize the
burden on end-users, while also sufficiently resolving ambiguity
in user intentions and avoiding overfitting. Gaze, an additional
informative modality from the demonstrator, can help extract more
information out of the same number of demonstrations [50], in
addition to information from state-action pairs.

Human attention in the form of eye gaze has been known to
encode top-down attention versus bottom-up salience when per-
forming goal-directed tasks [15, 23, 30, 40]. Gaze has been shown to
improve the performance of imitation learning algorithms [52], par-
ticularly for autonomous driving [8, 46] andAtari game playing [50].
However, most prior approaches utilizing gaze for IL algorithms
either use gaze heat maps as input to the agent’s learning model
in addition to the world state [24, 50], or predict gaze heatmaps in
conjunction with learning the policy [46]. By contrast, we propose
using an auxiliary gaze loss during training of imitation learning
algorithms to improve the performance of existing methods with-
out increasing model complexity, data requirements, or requiring
test-time gaze.

Our methodology utilizes a demonstrator’s gaze fixations on the
image as part of a surrogate loss function (coverage-based gaze
loss or CGL) during the training phase. Encoding priors in loss
functions for label-free supervision of neural networks has been
suggested by Stewart et al. [38]. Similarly, we use an auxiliary
gaze loss to guide the learning of any agent using image-based
state representations and convolutional layers as part of its model
architecture. Inspired by our experimental results highlighting the
similarity of RL agent attention and human attention (Sec. 3.1), we
propose a coverage-based gaze loss (CGL). CGL guides a network
to attend to the demonstrator’s gaze locations and helps improve
the performance of three IL methods on 20 Atari games. A critical
advantage of our approach in contrast to several prior approaches
utilizing gaze, is that gaze is not required at test time and instead
used as a weak supervisory signal.

We evaluate our auxiliary gaze loss function on 20 Atari games
with three different IL approaches. Our experiments show that CGL
can improve performance for both inverse reinforcement learning
(IRL) and behavioral cloning (BC) frameworks averaged across 20
games: 95% for behavioral cloning (BC) [50], 343% for behavioral
cloning from observation (BCO) [42], and 390% for T-REX [6], com-
pared to not using any gaze information at all. Moreover, we show
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(a) Input image stack

(b) Gaze heatmap (c) Network activa-
tionwithout gaze loss

(d) Network activa-
tion with gaze loss

Figure 1: Our auxiliary gaze loss (CGL) guides a convolu-
tional network to focus on parts of the state space which the
human attends to (b). An example of network activations for
the BCO network on the Breakout game (a) is shown in (c)
without utilizing gaze and (d) when CGL is incorporated as
part of the training.

that to improve performance, human gaze is more informative than
information already encoded in the visual state space in the form
of motion of the visual scene.

We also show that CGL outperforms two baseline methods
that incorporate gaze information for imitation learning: (1) gaze-
modulated dropout (GMD) [8] and (2) attention guided imitation
learning (AGIL) [50]. Similar to our approach, GMD does not use
additional learning parameters, whereas AGIL does. We find that
compared to AGIL, our auxiliary gaze loss is more efficient in in-
corporating gaze i.e. CGL improves performance more in low data
regimes and does not require additional learnable parameters. We
provide an analysis that shows that much of the performance im-
provement in AGIL comes from an increased number of model
parameters and access to test-time gaze data, neither of which are
required by CGL. We further perform analyses to show CGL indeed
successfully guides learning agents to attend to important regions
predicted by human gaze models through saliency map visualiza-
tion [14]. Finally, we also show experimental results that explain
part of the gains with CGL can come from its ability to partially
eliminate causal confusion.

2 RELATEDWORK
2.1 Imitation Learning for Atari Games
When learning from demonstrations, Atari game playing has been
attempted with various imitation learning approaches. Behavioral
cloning [3, 9, 29] is a class of imitation learning methods, where an
agent learns a policy by using the demonstrated states and actions
from the expert as input data for supervised learning. Behavioral
cloning from observation (BCO) [42] is a two-phase, iterative imi-
tation learning technique – first allowing the agent to acquire self-
supervised experience in a task-independent pre-demonstration
phase, which is then used to learn a model for a specific task policy
only from state observations of expert demonstrations (without

access to actions). The self-supervision produces an inverse dynam-
ics model to infer actions, given state observations. This model is
then used to infer expert actions from state-only demonstrations.
The inferred actions along with state information are then used to
perform imitation learning for the agent’s policy. GAIL [19] is an
adversarial imitation learning approach trained by alternating the
learning updates between a generator policy network and a dis-
criminator network distinguishing between the demonstrated and
generated trajectories. It achieved state-of-the-art performance for
low-dimensional domains. BCO shows comparable performance to
GAIL on low-dimensional MuJoCo benchmarks [41] with increased
learning speed.

Behavioral cloning does not explicitly model the goals or in-
tentions of the demonstrations which a succinct reward function
attempts to capture in inverse reinforcement learning (IRL), another
class of imitation learning approaches. Typically, such a succinct
inferred reward function makes IRL have better generalization prop-
erties compared to behavioral cloning [29]. Most deep learning-
based IRL methods either require access to demonstrated actions
[20] or do not scale to high-dimensional tasks such as video games
[12, 13, 28]. Tucker et al. [43] showed that their adversarial IRL
method is difficult to train and fails at high-dimensional tasks of
Atari game playing, even with extensive parameter tuning. Aytar
et al. [2] learn a reward function from observations for three Atari
games. They guide the agent to exactly imitate the checkpoints
from provided demonstrations, assuming access to high-quality
demonstrations. A recent IRL method called T-REX [6] is a reward
learning from observation algorithm, that extrapolates beyond a
set of ranked and potentially suboptimal demonstrations. T-REX
outperforms other imitation learning methods such as BCO and
GAIL, on Atari andMuJuCo benchmarks [41] and also demonstrates
the ability to extrapolate intentions of a suboptimal demonstrator.
However, a performance gap exists between reinforcement and
imitation learning methods for Atari game playing. In our work,
we propose to reduce this gap by incorporating an additional infor-
mation modality in the form of human gaze for imitation learning.

2.2 Utilizing Gaze for Learning
Prior studies have shown that human fovea moves to the correct
place at the right time to extract task-relevant information, making
visual attention a feature selection mechanism for humans [15, 30].
Human gaze information can be used in many ways to help AI
agents learn a variety of tasks [51]. Novice human learners can
benefit from observing experts’ gaze [44] for learning complex sur-
gical skills. Yamani et al. [47] showed that viewing expert gaze
videos can improve the hazard anticipation ability of novice drivers.
Saran et al. [31, 32] showed the advantage of incorporating a hu-
man demonstrator’s gaze for learning robotics manipulation tasks.
Gaze has been exploited in prior imitation learning approaches for
autonomous driving [8, 46] and Atari Games [50], but to the best
of our knowledge, our work is the first attempt to incorporate gaze
in a deep IRL algorithm (TREX).

A common method of incorporating human attention is to sim-
ply use the gaze map as an additional image-like input [24] or
predict the gaze heatmap and further use high-resolution parts
of the image to improve learning [46, 50]. Zhang et al. [50] show
improved learning on Atari games for imitation learning (AGIL)
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but use predicted heatmaps corresponding to demonstration states
as part of the input. In comparison, gaze-modulated dropout (GMD)
was proposed by Chen et al. [8] to implicitly incorporate gaze into
an IL framework for autonomous driving, instead of using gaze
as an additional input. An estimated gaze distribution is used to
modulate the dropout probability of units at different spatial loca-
tions in the first two convolutional layers. While GMD requires
gaze both at train and test time, our auxiliary loss only requires
gaze data at train time. We use AGIL and GMD as baseline methods
for comparison with CGL in our experiments.

3 APPROACH
To enable existing IL algorithms to take advantage of human gaze
signals accompanying demonstrations, we first try to understand
the correlation between human gaze andwell-performing RL agents
for six Atari games (Sec. 3.1). Based on our findings, which show
a similarity between human gaze and RL attention, we formalize
our auxiliary coverage-based gaze loss term to mimic the attention
mechanism of human demonstrators (Sec. 3.2). This loss term can
guide any convolutional network to attend towards features that
human demonstrators attend to. Our approach does not increase the
model complexity of existing algorithms in terms of the number of
learnable parameters, and can be easily applied to the training of any
neural network with convolutional layers. We then describe other
baseline approaches incorporating human gaze information for IL,
which we evaluate and compare against our proposed approach
(Sec. 3.3).

3.1 Human Gaze coverage of RL Agent
Attention

Prior studies in the cognitive science literature have established the
concept of selective attention for decision making in primates [26].
While choosing an action among the available set of actions, animals
select a subset of information by directing their sensory organs
towards specific stimuli (overt attention) and focus on specific parts
of the stimulus internally (covert attention) to act upon. Human
gaze data only reveals overt attention which is directly connected
to a sensory organ. However, humans can still pay covert attention
to entities in the working memory [27]. In other words, being
attended by the human gaze model is a sufficient (but not necessary)
condition for the features to be important. An example of this is
shown in Fig. 2 where a high-performing RL agent on the game
Breakout attends to more features of the state space in addition to
what the human gaze attends to (human gaze predicted by a reliable
generative human gaze model [50], RL attention calculated by [14]).
Hence for our analysis comparing the attention of RL agents and
humans, we define a coverage metric (Equation 1) that penalizes the
RL agent only if it fails to pay attention to human attended regions,
or equivalently, a metric that is sensitive to false negatives if we
treat human attention as the ground truth. KL divergence is an
ideal candidate in this case [7]. Let P denote the human attention
map and Q denote the RL attention map. The coverage metric is
computed as follows:

𝐾𝐿(𝑃 | |𝑄) =
∑
𝑖

∑
𝑗

𝑃 (𝑖, 𝑗) log
(
𝑃 (𝑖, 𝑗) + 𝜖
𝑄 (𝑖, 𝑗) + 𝜖

)
(1)

(a) Game State (b) RL Attention (c) Human Gaze

Figure 2: A trained PPO agent’s attention map (b) and corre-
sponding human gaze map (c) for the same input image (a)
for the Breakout Atari game. The RL attention is directed
towards more regions than the human gaze.

where 𝜖 is a small regularization constant chosen to be 2.2204𝐸−16
following convention [7]. A lower value of the KL-divergence based
coverage metric would signify a stronger correlation between hu-
man gaze and RL attention.

We compute this coverage metric between the RL attention map
and the corresponding human gaze map for 100 images per game.
The overall metric reported for a game is averaged over all 100
images. The images are uniformly sampled from a policy rollout
of the learned RL agent trained via proximal policy optimization
(PPO). To examine if there is a correlation between the attention
of the agent and human, we compare human attention maps from
one game with RL attention maps of the other five games. We
hypothesize that the coverage metric would have a lower value for
the gaze maps and RL attention maps from the same game versus
other games.

We find that the lowest average coverage metric scores are ob-
tained between RL attention heatmaps and gaze heatmaps for
the same game (diagonal of Table 1). Comparison of human gaze
heatmaps for one game and RL attention heatmaps of all other
game agents is equivalent to comparison of gaze heatmaps with
randomly generated attention maps (without knowledge of the
game state with which gaze heatmap is computed). This one-to-one
comparison for each of the 100 time steps along a trajectory implies
a correlation between the human gaze and RL attention for the same
task. The analysis here informs our auxiliary loss function to guide
the attention of imitation learning algorithms to have coverage over
human gaze.

3.2 Coverage-based Gaze Loss
Based on the coverage metric (Equation 1), we propose adding an
auxiliary loss term in addition to the existing loss function for a
network, modifying the training procedure of any IL algorithm.
Our loss term will have a higher penalty if the network does not
attend to parts of the image that the demonstrator focused on,
but will have no penalty for activations where the demonstrator
did not pay attention. We refer to the proposed loss function as a
coverage-based gaze loss (CGL).

CGL operates on the human gaze heatmap and the output of the
last convolutional layer. For consistency in comparison with base-
lines, gaze heatmaps are generated using convolution-deconvolution
networks trained on real human gaze data [50]. Activation feature
maps from the last convolutional layer [35] of image classification
CNNs are shown to have the best compromise between high-level
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Table 1: Comparison between PPO network attention and human gaze attention using KL divergence. The values represent
the average KL divergence between gaze heat maps and RL attention heat maps for 100 uniformly sampled images from a
policy rollout of the PPO agent.

RL Attention →
Human Attention ↓ asterix breakout centipede ms_pacman phoenix seaquest

asterix 1.72 6.97 4.64 3.13 14.61 6.34
breakout 5.26 2.09 4.94 3.80 11.13 5.57
centipede 4.43 6.40 1.86 3.34 9.86 5.71
ms_pacman 4.53 6.46 5.49 1.78 13.34 5.92
phoenix 4.29 10.75 5.19 3.59 3.55 6.49
seaquest 5.07 7.70 5.97 3.51 14.10 3.03

semantics and detailed spatial information. Given a 3D feature map
of sizeℎ×𝑤×𝑐 from a convolutional layer, it is collapsed to a feature
map 𝑓 of size ℎ × 𝑤 using a 1 × 1 convolutional filter. Equation
3 shows the normalization of this feature map 𝑓 using a softmax
operator to values between 0 and 1. Given a normalized 2D gaze
heatmap 𝑔 of size ℎ ×𝑤 , CGL is computed as:

𝐶𝐺𝐿(𝑔, 𝑓
′
) =

∑
𝑖∈(1,ℎ)

∑
𝑗 ∈(1,𝑤)

𝑔𝑖, 𝑗

[
log

𝑔𝑖, 𝑗 + 𝜖
𝑓
′
𝑖, 𝑗

+ 𝜖

]
(2)

where
𝑓
′
𝑖, 𝑗 =

𝑒 𝑓𝑖,𝑗∑𝑘=ℎ−1
𝑘=0

∑𝑗=𝑤−1
𝑗=0 𝑒 𝑓𝑘,𝑙

(3)

CGL adds a penalty if activations from none of the convolutional
filters are high on areas where the demonstrator’s gaze fixates dur-
ing gameplay. Only regions of the gaze map which have a non-zero
value contribute to the auxiliary loss, and other regions of the con-
volutional output which are not fixated on by the demonstrator do
not affect the loss term. Hence, our loss term encourages coverage of
the demonstrator’s attended regions. This is because unattended re-
gions may also contain information necessary for decision-making
[26].

The magnitude of the penalty is computed using a smoothed
(𝜖 = 2.2204𝐸−16) KL divergence term between the normalized gaze
map and the collapsed and normalized convolutional map, and is
then weighted by the amount of gaze fixation an image region
gets (Equation 2). Instead of forcing the filter weights to exactly
match the demonstrator’s gaze, CGL guides the network to focus
on aspects of the state space which might be missed by the network,
for example, areas of the image which are not feature-rich but are
critical for decision-making (e.g., the ball in Fig. 6(a)), eventually
leading to better performance. A loss function which encourages
a network to attend proportional to the human’s gaze frequency
instead, will be more restrictive.

3.2.1 Auxiliary Gaze Loss for BC. For the behavioral cloning (BC)
method, the gaze coverage loss is added as an auxiliary loss term
in addition to the log likelihood action classification loss:

L(𝜃 ) =
𝑁∑
𝑖=1

[
− (1 − 𝛼) log𝜋𝜃 (𝑎𝑖 |𝑠𝑖 ) + 𝛼 𝐶𝐺𝐿(𝑔(𝑠𝑖 ), 𝑐3 (𝑠𝑖 ))

]
(4)

The network architecture is similar to the one used in Zhang et
al. [50], comprising of three convolutional layers and one fully-
connected layer. It takes in a single game image as input and outputs

a vector that gives the probability of each action. The gaze coverage
loss is applied to the feature maps at the third convolutional layer.
𝑔(𝑠𝑖 ) is the gaze map of size 21 × 21, 𝑐3 (𝑠𝑖 ) is the collapsed and
normalized feature map of size 21× 21 (Equation (3)) from the third
convolutional layer.

3.2.2 Auxiliary Gaze Loss for BCO. For BCO [42], we incorporate
CGL as part of learning the imitation policy after the agent learns
an inverse-dynamics model of the environment. Similar to Torabi
et al. [42], we use a neural network with three convolutional layers
and one fully-connected layer using a stack of four consecutive
frames as input. The output is the probability distribution over the
discrete action space of the Atari domain. The network is learned
using maximum likelihood estimation (MLE), finding the network
parameters that best match the provided state-action pairs – states
𝑠𝑖 obtained from a demonstrated trajectory 𝜏𝑖 and actions 𝑎𝑖 recov-
ered from the inverse dynamics model. The new loss function is a
weighted combination of the standard cross-entropy loss for MLE
and CGL applied to the output of the last convolutional layer as
shown below.

L(𝜃 ) =
𝑁∑
𝑖=1

[
− (1 − 𝛼) log𝜋𝜃 (𝑎𝑖 |𝑠𝑖 ) + 𝛼 𝐶𝐺𝐿(𝑔(𝑠𝑖 ), 𝑐3 (𝑠𝑖 ))

]
(5)

Here, 𝜋𝜃 is the imitation policy network, 𝑔(𝑠𝑖 ) is the gaze map
of size 84 × 84, 𝑐3 (𝑠𝑖 ) is the collapsed and normalized feature map
(Equation (3)) from the last convolutional layer (7 × 7 size map
upsampled to 84 × 84).

3.2.3 Auxiliary Gaze Loss for T-REX. T-REX [6] is concerned with
the problem of reward learning from observation, using rankings
of demonstrations to efficiently infer a reward function. To the best
of our knowledge, gaze has not been incorporated as part of a deep
inverse reinforcement learning. Given a sequence of𝑚 demonstra-
tions ranked from worst to best, 𝜏1, . . . , 𝜏𝑚 , a parameterized reward
network 𝑟𝜃 is trained with a cross-entropy loss over a pair of tra-
jectories (𝜏𝑖 ≺ 𝜏 𝑗 ), where 𝜏 𝑗 is ranked higher than 𝜏𝑖 . We add CGL
to the reward network’s loss, so the new loss function becomes:

L(𝜃 ) =

(1 − 𝛼)
[
−

∑
𝜏𝑖 ≺𝜏 𝑗

log
exp

∑
𝑠∈𝜏 𝑗 𝑟𝜃 (𝑠)

exp
∑
𝑠∈𝜏𝑖 𝑟𝜃 (𝑠) + exp

∑
𝑠∈𝜏 𝑗 𝑟𝜃 (𝑠)

]
+ 𝛼

[ ∑
𝑠∈𝜏𝑖

𝐶𝐺𝐿(𝜏𝑔
𝑖
(𝑠), 𝑐4 (𝑠)) +

∑
𝑠∈𝜏 𝑗

𝐶𝐺𝐿(𝜏𝑔
𝑗
(𝑠), 𝑐4 (𝑠))

] (6)
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𝜏
𝑔

𝑖
(𝑠) represents the gaze map corresponding to the state 𝑠 from

the trajectory snippet 𝜏𝑖 and 𝑐4 (𝑠) represents the collapsed and
normalized version of the last convolutional layer’s output for the
same state 𝑠 . The loss function accumulates gaze over the entire
trajectory snippet for both trajectories used as input to the network.

We use the default implementation of T-REX from Brown et al.
[6]. The reward network has four convolutional layers. The gaze
loss is computed over the last convolutional layer output – a spatial
map of size 16 × 7 × 7 (normalized, collapsed and upsampled to the
size of the gaze heatmaps 84 × 84). At the end, a fully connected
layer with 64 hidden units with a single scalar output is used to
determine the ranking between a pair of demonstrations.

Similar to the implementation of Brown et al. [6], the trajectories
are first subsampled by maximizing over every 3rd and 4th frame,
from which a stack of 4 consecutive frames with pixel values nor-
malized between 0 and 1 is passed as input to the reward network.
The snippets are ranked based on ground truth rewards or cumula-
tive game scores of the trajectories they are sampled from. A PPO
agent is then trained using the learned reward to obtain a policy
for gameplay.

3.3 Other Techniques to Incorporate Gaze
Here we describe two alternative methods incorporating human
gaze for imitation learning, which we compare against.

3.3.1 Gaze-modulated Dropout (GMD). As a baseline for learning
from human gaze, we implement GMD [8] for the first two convolu-
tional layers of the BCO policy network Torabi et al. [42]. The BCO
policy network does not originally use dropout layers. Gaze maps
are generated using a convolution-deconvolution network [50],
trained separately for each game on the Atari-HEAD dataset [53].
The gaze prediction network uses as input a stack of 4 consecutive
game frames, each of size 84 × 84. Details of the network architec-
ture are similar to Zhang et al. [50]. We employ this network for
gaze prediction, as it has been shown to work well for the Atari
domain, instead of the Pix2Pix network [21] used by Chen et al. [8]
for the autonomous driving domain. The generated gaze map is
then used as a mask for the additional dropout layer added after
first two the convolutional layers as described by Chen et al. [8].
Units of the convolutional layer near the estimated gaze location
are assigned a lower dropout probability than units far from the
estimated gaze location. This is similar to conventional dropout
[37], but with non-uniform dropout probability for spatial units
corresponding to different parts of the image space.

3.3.2 Attention Guided Imitation Learning (AGIL). AGIL adds more
parameters to a BC network to utilize gaze. The output of the gaze
prediction network is used as input to an additional convolutional
pathway in a modified version of standard behavioral cloning. AGIL
consists of two channels of 3 convolutional layers. One channel
takes as input a single image frame (game state) and another uses
a masked image which is an element-wise product of the original
image and predicted gaze saliency map. Finally, the outputs of the
two channels are averaged to predict one of the 18 actions within
ALE [4]. We use the same hyperparameters provided by Zhang et
al. [50] for the implementation of AGIL.

4 EXPERIMENTS AND RESULTS
We use demonstrations from 20 games in ALE [4] with varying
dynamics and features. Demonstrations and corresponding human
gaze data are from the publicly available Atari-HEAD dataset [53].
We augmented three imitation learning algorithms with CGL — BC,
BCO, and T-REX. These algorithms were implemented in the Ope-
nAI Gym platform [5], which contains Atari 2600 video games with
high-dimensional observation space (raw pixels). All reported re-
sults were game scores averaged over 30 different rollouts (episodes)
of the learned policy, similar to the procedure followed by Zhang
et al. [50]. We used the default settings from OpenAI baselines [11]
for parameters of ALE [4]. All experiments are conducted on server
clusters with NVIDIA 1080, 1080Ti, Titan V, or DGX GPUs.

For evaluation, we intend to show improvement in terms of
game scores using CGL. We calculate the improvement factor over
baseline in the following way: improvement = (new score - baseline
score) / baseline score. If both the baseline score and the new score
are zero, improvement is zero. However, for some games baseline
game scores are zeroes but new scores are non-zero. In such cases,
the improvement will not be calculated. We report average improve-
ment (including games in which improvements are negative) across
20 games. Details on the experiments and individual games scores
can be found in the supplementary material [33]. Note that the
improvement factors are underestimated, due to the way we handle
zero score games.

4.1 CGL Improves BC
BC+CGL outperforms basic BC on 19 out of 20 games with 15 min-
utes of demonstration data (Fig. 3). On average, the improvement
is 95.1%. With all 300 minutes of human gameplay data, BC+CGL
outperforms BC on all 20 games with an average improvement of
86.2%. The hyperparameter 𝛼 is tuned using a grid search from a
set of 7 values — 0.01, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9. Batch size 𝑁 = 50
and Adadelta optimizer [49] is used for all models based on BC.

4.1.1 Efficiency of CGL in terms of Learnable Parameters. Previous
methods (such as AGIL) incorporate human attention by introduc-
ing extra parameters to the model due to additional neural network
modules added. To tease apart whether improvement in these ap-
proaches comes from increased parameters to standard behavioral
cloning or from the gaze information itself, we perform the follow-
ing experiment. We re-train the AGIL network, but instead of using
gaze heatmaps, we pass the original image as input to the gaze path-
way, referred to as the BC-2ch model. This helps us disambiguate if
more parameters in the model help more versus the gaze informa-
tion itself. As shown in Fig. 3, we find that the BC-2ch model does
result in improved performance over BC, indicating that part of
AGIL’s improvement over BC is due to additional parameters. This
hints at the fact that increasing model complexity alone without
using any additional information as input proves beneficial.

4.1.2 CGL Provides Stronger Guidance than AGIL. In Fig. 3, we also
show that on average, CGL outperforms the previously best method
to incorporate gaze (AGIL [50]) by a large margin. This study sug-
gests that CGL performs significantly better than AGIL with fewer
model parameters, and the advantage is even more evident with a
limited amount of human demonstration data (95.1% improvement
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Figure 3: Average (across 20 games) percentage improve-
ment over the BC baseline. Results are presented as as
mean±standard error of the mean (N=20).

over BC versus 10.1%). The sample efficiency of CGL is critical as it
can be beneficial for applying this method to challenging imitation
learning problems, where collecting demonstrations is cumbersome,
expensive and time-critical.

4.2 CGL Improves BCO
BCO+CGL outperforms basic BCO on 14 out of 20 games with 15
minutes of human demonstration data (Fig. 4). On average, the
improvement is 160.9%. The hyperparameter 𝛼 is tuned using a
grid search from a set of 9 values — 0.001, 0.005, 0.01, 0.05, 0.1,
0.3, 0.5, 0.7, 0.9. The Adam optimizer [22] is used to solve for the
network parameters with a batch size 𝑁 = 32. There are six games
for which BCO achieves scores of zero but BCO+CGL can achieve
non-zero scores. With all 300 minutes of human demonstration data,
BCO+CGL outperforms BCO on 12 out of 20 games with an average
improvement of 343.6%. The largest improvement comes from the
game Centipede, which increases the average improvement by a
large margin. However, we found that BCO is unable to learn an
accurate inverse dynamics model for up to seven of the 20 games.
For these games, the baseline BCO policy model scores zero and
the utilization of gaze is also unable to overcome the shortcomings
of the inverse dynamics model.

4.2.1 CGL Provides Stronger Guidance than GMD. We test GMD
and CGL with BCO and find that on average across 20 games,
CGL outperforms GMD both with 15 minutes and 300 minutes
of demonstration data (Fig. 4). One may expect that convolutional
dropout helps generalization by reducing over-fitting. However, it is
far less advantageous, since the shared-filter and local-connectivity
architecture in convolutional layers is a drastic reduction in the
number of parameters and this already reduces the possibility to
overfit [18]. Empirical results by Wu et al. [45] confirm that the
improvement in generalization to test data from convolutional
dropout is often inferior to max-pooling or fully-connected dropout.

4.2.2 CGL Provides Stronger Guidance than Implicit Motion In-
formation. Prior work has established that human gaze encodes
attention which is different from salient regions in a scene (such as

Figure 4: Average (across 20 games) improvement over the
BCObaseline. Results are presented asmean±standard error
of the mean (N=20).

motion) [15, 23, 30, 40]. We test whether our proposed approach
extracts the additional information from human gaze data, in com-
parison to what might already be encoded in the visual game state,
such as motion. We replace the gaze heat maps used by CGL with
heatmaps representing the normalized motion in an input image
frame stack (the difference between the last and first frame in a
stack shown in Fig. 5). We test this motion-based loss for BCO
(Fig. 4). Overall, the gains from CGL are higher than those from mo-
tion, more so with 300 minutes of demonstration data. Our results
are in line with prior work [48] which shows that using optical flow
between two frames as the attention map provides only moderate
performance improvements in Atari Games. Incorporating both
gaze and motion information simultaneously in an auxiliary loss
can be investigated as part of future work.

4.3 CGL Improves T-REX
T-REX is an inverse reinforcement learning algorithm which com-
pares pairs of trajectory snippet to learn the reward. Along with full
300 minutes of demonstration data, we evaluate with 30 minutes
of demonstration data to compare trajectories from two different
demonstrations (each demonstration in Atari-HEAD [53] was at
least 15 minutes long). The hyperparameter 𝛼 is tuned using a grid
search from a set of 9 values — 0.001, 0.005, 0.01, 0.05, 0.1, 0.3, 0.5, 0.7,
0.9 and the Adam optimizer [22] is used. T-REX+CGL outperforms
basic T-REX on 15 out of 20 games both with 30 minutes and 300
minutes worth of training data [33]. On average, the improvement
due to CGL is 390.4% with 30-minutes of data, and 373.6% with
300-minutes of data (Table 2). There are four games that T-REX
achieves scores of zero but T-REX+CGL can achieve non-zero scores.
To the best of our knowledge, CGL is the first method to augment
the learning of an IRL algorithm with human gaze.

4.4 Best Performing Models for each Game
We then summarize the best game scores obtained from various
algorithms presented above. The results are shown in Table 3. We
notice that CGL augmented methods achieve the best results in 15
out of 20 games. For comparison, we also show DQN scores [17, 25]
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(a) A masked frame stack for Ms. Pacman (b) Motion heatmap (c) Gaze heatmap

(d) A masked frame stack for Asterix (e) Motion heatmap (f) Gaze heatmap

Figure 5: Motion in the visual game state, i.e. the difference between the last and first frame in an input image stack, cannot
alone explain human attention. This is further highlighted with minimal performance gains when CGL utilizes the motion
heatmap instead of the human gaze heatmap.

Table 2: Average (across 20 games) improvement over the T-
REXbaseline. Result is presented as asmean±standard error
of the mean (N=20).

Improvement over T-REX (%) T-REX+CGL

30min data 390.4 ± 203.5

300min data 373.6 ± 206.5

as a reference (the evaluation methods are slightly different). With
human gaze information (especially with CGL), imitation learning
algorithms start to match and even outperform DQN. Note that
DQN is trained with 200M samples per game, while IL methods are
at most trained with 360K samples (300-minutes of human data).

4.5 Visualizing CGL Attention
We can analyze whether the CGL agents have successfully learned
to pay attention to the critical regions highlighted by human saliency
maps in two ways. First, we directly visualize the activation map
of the networks trained with and without CGL, which has already
been shown in Fig. 1 for a trained BCO agent. However, this only
shows that the convolutional layer we applied CGL to behaves as
expected.

We use a second method to show that the whole trained network
has learned to attend to the desired region with CGL. We visualize
the attention maps of trained CGL agents with a method commonly
used to provide visual interpretations of deep RL agents [14]. The
algorithm takes an input image 𝐼 and applies a Gaussian filter to
a pixel location (𝑖, 𝑗) to blur the image. This manipulation adds
spatial uncertainty to the surrounding region and produces a per-
turbed image Φ(𝐼 , 𝑖, 𝑗). A saliency score for this pixel (𝑖, 𝑗) can be
defined as how much the blurred image changes the network out-
put [14]. Doing this for every pixel results in a saliency map that
approximates the “attention" of a network. The results for a case

Table 3: A summary of the best game scores obtained. DQN
scores are from no-op starts evaluation regime table of [16]
, except for game Riverraid [25]. With human gaze infor-
mation (especiallywithCGL), imitation learning algorithms
start to match and even outperform DQN.

Game Algorithm (#demo) Score DQN Score

alien AGIL (300min) 2104.7 1620.0
asterix T-REX+CGL (30min) 66445.0 4359.0

bank_heist BC-2ch (300min) 174.3 455.0
berzerk BCO+CGL (15min) 687.67 585.6
breakout T-REX+CGL (300min) 438.4 385.5
centipede T-REX+CGL (30min) 20762.5 4657.7

demon_attack T-REX+CGL (300min) 17589.0 12149.4
enduro BC+CGL (300min) 445.1 729.0
freeway BC-2ch (300min) 31.4 30.8
frostbite BC+CGL (30min) 5897.7 797.4
hero BC+CGL (15min) 19023.2 20437.8

montezuma BC+CGL (300min) 1720.0 0.0
ms_pacman BC+CGL (30min) 2739.7 3085.6

name_this_game AGIL (300min) 5817.0 8207.8
phoenix AGIL (300min) 5140.0 8485.2
riverraid T-REX+CGL (300min) 7370.0 8316.0

road_runner BC+CGL (300min) 33510.0 39544.0
seaquest T-REX+CGL (30min) 759.3 5860.6

space_invaders T-REX+CGL (300min) 1563.7 1692.3
venture BC+CGL (15min) 376.7 163.0

of Breakout where CGL outperforms the baseline T-REX method
can be found in Fig. 6, where the T-REX+CGL agent successfully
learned to focus on the ball like the human did, while the T-REX
agent did not. We also highlight a failure case with MsPacman,
where the CGL agent does not outperform baseline T-REX. We find
that the network fails to attend to both modes of attention in the
human’s gaze map.
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(a) Input image (b) Human (c) T-REX (d) T-REX+CGL

(e) Input image (f) Human (g) T-REX (h) T-REX+CGL

Figure 6: CGL guides the T-REX reward network (d) to focus
onparts of the state spacewhich the human attends to (b) for
Breakout (a). A failure case where CGL is unable to guide the
T-REX reward network (h) to attend to both modes which
the human attends to (f) for MsPacman (g).

4.6 Reducing Causal Confusion with CGL
Discriminative models for IL such as BC are non-causal, i.e. the
training procedure is unaware of the causal structure of the in-
teraction between the demonstrator and the environment. Causal
misidentification is the phenomenon where cloned policies fail by
misidentifying the causes of the demonstrator’s actions. A very
problematic effect of distributional shift in BC can lead to causal
misidentification. This is exacerbated by the causal structure of
sequential action: the very fact that current actions cause future
observations often introduces complex new nuisance correlates.

Prior work on understanding causal confusion in IL [10] uses past
action information (often correlated with current action) to identify
if the IL algorithm is in a causal confusion trap. To understand
the performance gains of CGL, we investigate if it disambiguates
the intent of the user in the demonstrated actions by eliminating
causal confusion.We overlay the four frame image stack (state) with
actions from the last frame in the previous stack (Fig. 7). This lays
a causal confusion trap for the IL agent. If the agent can ignore the
new correlated action information that is part of the state space, it
hints towards the fact that the agent learns to ignore those features
and perform better empirically. We find that on average (across
20 games), CGL agents suffer less when trained with confounded
data compared to the BC baseline (-34.0% versus -47.8%), and still
perform better than BC agents. Detailed results are available in [33].
This hints to the fact that in addition to directing the attention of
the network to learn a better mapping between states and actions,
part of the gains from using human gaze data with CGL can come
from reducing causal confusion.

5 CONCLUSIONS
In this work, we introduced an auxiliary coverage-based gaze loss
(CGL) term which guides the training of any imitation learning
network with convolutional layers. Our experiments showed im-
proved performance on several Atari games over standard imitation
learning algorithms. Our approach provides these gains without

(a) Breakout (b) Asterix (c) Demon Attack (d) Freeway

Figure 7: Confounded states with past actions to test reduc-
tion of causal confusion with CGL. The design follows [10].

requiring gaze prediction at test time or increasing the model com-
plexity of existing algorithms. We outperform a baseline method
(GMD), which also does not increase model complexity. CGL is
more efficient in terms of both learnable parameters and data ef-
ficiency when compared to a state-of-the-art gaze-augmented IL
method (AGIL) which utilizes gaze in the form of additional in-
put to a BC algorithm. AGIL requires gaze prediction at test time
and is shown to gain performance by increasing model complexity
alone. Our approach improved performance by utilizing gaze with-
out these shortcomings. We also highlighted that utilizing human
gaze provides additional information to what is encoded implic-
itly in the game state (such as motion). Our work confirms prior
research showing gaze can help extract more information from a
demonstrator than traditional state-action pairs, bridging the gap
in performance between IL and RL agents.

6 DISCUSSION AND FUTUREWORK
Human attention can be seen as a form of spatial prior on the visual
input. In deep learning research, this prior is often used as a mask to
filter out unimportant information (e.g., AGIL). This approach has
two main drawbacks. First, it requires the mask at testing time. Sec-
ondly, some unattended visual features handled by human memory
systems could still be useful for decisions. Therefore, completely
filtering out all unattended information seems inappropriate. In this
work, we present a novel method to incorporate gaze effectively
that only requires access to human gaze data at training time. More-
over, by utilizing a coverage-based loss, this method highlights the
attended features while keeping the unattended features available
for the learning agent. This novel method in training deep neural
networks can be applied to other learning tasks that utilize other
forms of spatial priors.

Additionally, human gaze and actions from demonstrations may
be correlated in time. Our approach only utilizes gaze per game
state, and so do all other approaches we compare against. Utilizing
temporal connections in the gaze signal is a direction for future
work. We also hope our work encourages the research community
to innovate on other novel ideas for efficiently incorporating human
attention.
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