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ABSTRACT
Centralized Training for Decentralized Execution, where agents are
trained offline using centralized information but execute in a decen-

tralized manner online, has gained popularity in the multi-agent

reinforcement learning community. In particular, actor-critic meth-

ods with a centralized critic and decentralized actors are a com-

mon instance of this idea. However, the implications of using a

centralized critic in this context are not fully discussed and under-

stood even though it is the standard choice of many algorithms.

We therefore formally analyze centralized and decentralized critic

approaches, providing a deeper understanding of the implications

of critic choice. Because our theory makes unrealistic assumptions,

we also empirically compare the centralized and decentralized critic

methods over a wide set of environments to validate our theories

and to provide practical advice. We show that there exist miscon-

ceptions regarding centralized critics in the current literature and

show that the centralized critic design is not strictly beneficial, but

rather both centralized and decentralized critics have different pros

and cons that should be taken into account by algorithm designers.
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1 INTRODUCTION
Centralized Training for Decentralized Execution (CTDE), where

agents are trained offline using centralized information but execute

in a decentralized manner online, has seen widespread adoption in

multi-agent reinforcement learning (MARL) [9, 15, 28]. In particular,

actor-critic methods with centralized critics have become popular

after being proposed by Foerster et al. [10] and Lowe et al. [20],

since the critic can be discarded once the individual actors are

trained. Despite the popularity of centralized critics, the choice is

not discussed extensively and its implications for learning remain

largely unknown.

One reason for this lack of analysis is that recent state-of-the-art

works built on top of a centralized critic focus on other issues such as

multi-agent credit assignment [10, 43], multi-agent exploration [8],
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teaching [29] or emergent tool use [1]. However, state-of-the-art

methods with a centralized critic do not compare with decentral-

ized critic versions of their methods. Therefore, without precise

theory or tests, previous works relied on intuitions and educated

guesses. For example, one of the pioneering works on centralized

critics, MADDPG [20], mentions that providing more information

to critics eases learning and makes learning coordinated behavior

easier. Later works echoed similar viewpoints, suspecting that a

centralized critic might speed up training [49], or that it reduces

variance [6], is more robust [36], improves performance [18] or

stabilizes training [19].

In short, previous works generally give the impression that a

centralized critic is an obvious choice without compromises under

CTDE, and there are mainly two advertised benefits: a) a central-
ized critic fosters “cooperative behavior”, b) a centralized critic also
stabilizes (or speeds up) training. It makes intuitive sense because

training a global value function on its own (i.e., joint learning [5])

would help with cooperation issues and has much better conver-

gence guarantees due to the stationary learning targets. However,

these intuitions have never been formally proven or empirically

tested; since most related works focus on additional improvements

on top of a centralized critic, the centralized critic is usually seen as

part of a basic framework rather than an optional hyperparameter

choice.
1
In this paper, we look into these unvalidated claims and

point out that common intuitions turn out to be inaccurate.

First, we show theoretically that a centralized critic does not

necessarily improve cooperation compared to a set of decentralized

critics. We prove that the two types of critics provide the decen-

tralized policies with precisely the same gradients in expectation.

We validate this theory on classical cooperation games and more

realistic domains and report results supporting our theory.

Second, we show theoretically that the centralized critic results

in higher variance updates of the decentralized actors assuming

converged on-policy value functions. Therefore, we emphasize that

stability of value function learning does not directly translate to a

reduced variance in policy learning. We also discuss that, in practice,

this results in a bias-variance trade-off. We analyze straightforward

examples and empirical evaluations, confirming our theory and

showing that the centralized critic often makes the policy learning

less stable, contrary to the common intuition.

1
Methods are also typically implemented with state-based critics [8, 10, 43, 49] instead

of the history-based critics we use in this paper, which might be another reason for

performance differences. However, we only consider history-based critics to fairly com-

pare the use of centralized and decentralized critics with the same type of information.
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Finally, we test standard implementations of the methods over a

wide range of popular domains and discuss our empirical findings

where decentralized critics often outperform a centralized critic.

We further analyze the results and discuss possible reasons for

these performance differences. We therefore demonstrate room

for improvement with current methods while laying theoretical

groundwork for future work.

2 RELATEDWORK
Recent deep MARL works often use the CTDE training paradigm.

Value function based CTDE approaches [7, 23, 33, 34, 38, 39, 44, 45,

48] focus on how centrally learned value functions can be reason-

ably decoupled into decentralized ones and have shown promising

results. Policy gradient methods on CTDE, on the other hand, have

heavily relied on centralized critics. One of the first works utiliz-

ing a centralized critic was COMA [10], a framework adopting a

centralized critic with a counterfactual baseline. For convergence

properties, COMA establishes that the overall effect on decentral-

ized policy gradient with a centralized critic can be reduced to

a single-agent actor-critic approach, which ensures convergence

under similar assumptions [17]. In this paper, we take the theory

one step further and show convergence properties for centralized

and decentralized critics as well as their respective policies, while

giving a detailed bias-variance analysis.

Concurrently with COMA, MADDPG [20] proposed to use a

dedicated centralized critic for each agent in semi-competitive do-

mains, demonstrating compelling empirical results in continuous

action environments. M3DDPG [19] focuses on the competitive

case and extends MADDPG to learn robust policies against altering

adversarial policies by optimizing a minimax objective. On the co-

operative side, SQDDPG [43] borrows the counterfactual baseline

idea from COMA and extends MADDPG to achieve credit assign-

ment in fully cooperative domains by reasoning over each agent’s

marginal contribution. Other researchers also use critic centraliza-

tion for emergent communication with decentralized execution in

TarMAC [6] and ATOC [13]. There are also efforts utilizing an at-

tention mechanism addressing scalability problems in MAAC [12].

Besides, teacher-student style transfer learning LeCTR [29] also

builds on top of centralized critics, which does not assume expert

teachers. Other focuses include multi-agent exploration and credit

assignment in LIIR [8], goal-conditioned policies with CM3 [49],

and for temporally abstracted policies [4]. Based on a centralized

critic, extensive tests on a more realistic environment using self-

play for hide-and-seek [1] have demonstrated impressive results

showing emergent tool use. However, as mentioned before, these

works use centralized critics, but none of them specifically investi-

gate the effectiveness of centralized critics, which is the main focus

of this paper.

3 BACKGROUND
This section introduces the formal problem definition of cooperative

MARL with decentralized execution and partial observability. We

also introduce the single-agent actor-critic method and its most

straight-forward multi-agent extensions.

3.1 Dec-POMDPs
A decentralized partially observable Markov decision process (Dec-

POMDP) is an extension of an MDP in decentralized multi-agent

settings with partial observability [27]. A Dec-POMDP is formally

defined by the tuple ⟨I,S, {A𝑖 },T ,R, {Ω𝑖 },O⟩, in which

• I is the set of agents,

• S is the set of states including initial state 𝑠0,

• A = ×𝑖A𝑖 is the set of joint actions,

• T : S × A → S is the transition dynamics,

• R : S × A × S → R is the reward function,

• Ω = ×𝑖Ω𝑖 is the set of observations for each agent,

• O : S × A → Ω is the observation probabilities.

At each timestep 𝑡 , a joint action 𝒂 = ⟨𝑎1,𝑡 , ..., 𝑎 |I |,𝑡 ⟩ is taken, each
agent receives its corresponding local observation ⟨𝑜1,𝑡 , . . . , 𝑜 |I |,𝑡 ⟩ ∼
O(𝒔𝑡 , 𝒂𝑡 ) and a global reward 𝑟𝑡 = R(s𝑡 , 𝒂𝑡 , s𝑡+1). The joint ex-

pected discounted return is 𝐺 =
∑𝑇
𝑡=1 𝛾

𝑡𝑟𝑡 where 𝛾 is a discount

factor. Agent 𝑖’s action-observation history for timestep 𝑡 is de-

fined as ⟨𝑜𝑖,1, 𝑎𝑖,1, 𝑜𝑖,2, . . . , 𝑎𝑖,𝑡−1, 𝑜𝑖,𝑡 ⟩, and we define history re-

cursively as ℎ𝑖,𝑡 = ⟨ℎ𝑖,𝑡−1, 𝑎𝑖,𝑡−1, 𝑜𝑖,𝑡 ⟩, likewise, a joint history is

𝒉𝑡 = ⟨𝒉𝑡−1, 𝒂𝑡−1, 𝒐𝑡 ⟩.2 To solve a Dec-POMDP is to find a set of

policies 𝝅 = ⟨𝜋1, . . . , 𝜋 |I |⟩ where 𝜋𝑖 : ℎ𝑖,𝑡 → 𝑎𝑖,𝑡 such that the

joint expected discounted return 𝐺 is maximized.

Notation. For notational readability, we denote the parameter-

ized decentralized policy 𝜋𝜃𝑖 as 𝜋𝑖 , on-policy 𝐺 estimate 𝑄𝜋
𝑖
as 𝑄𝑖 ,

and𝑄𝝅
as𝑄 . We denote the objective (discounted expected return)

for any agent with a decentralized critic as 𝐽𝑑 and the objective

with a centralized critic as 𝐽𝑐 . In addition, a timestep 𝑡 is implied

for 𝑠 , 𝒉, ℎ𝑖 , 𝒂 or 𝑎𝑖 .

3.2 Actor Critic method (AC)
Actor critic (AC) [17] is a widely used policy gradient (PG) ar-

chitecture and is the basis for many single-agent policy gradient

approaches. Directly optimizing a policy, policy gradient (PG) algo-

rithms perturb policy parameters 𝜃 in the direction of the gradient

of the expected return ∇𝜃E[𝐺𝜋𝜃 ], which is conveniently given by

the policy gradient theorem [17, 41]:

∇𝜃E[𝐺𝜋𝜃 ] = Eℎ,𝑎 [∇𝜃 log𝜋𝜃 (𝑎 | ℎ)𝑄𝜋𝜃 (ℎ, 𝑎)] (1)

Actor-critic (AC) methods [17] directly implement the policy gra-

dient theorem by learning the value function 𝑄𝜋𝜃
, i.e., the critic,

commonly through TD learning [40]. The policy gradient for up-

dating the policy (i.e., the actor) then follows the return estimates

given by the critic (Equation 1).

3.3 Multi-Agent Actor Critic methods
We introduce three extensions of single-agent Actor Critic methods

to multi-agent settings, which are highlighted in Table 1.

The first AC multi-agent extension, Joint Actor Critic (JAC) [2,

46], treats the multi-agent environment as a single-agent environ-

ment and learns in the joint observation-action space; JAC learns

a centralized actor, 𝝅 (𝒂 | 𝒉;𝜃 ), and a centralized value function

2
For Proposition 1 and all following results, we employ a fixed-memory history where

the history only consists of the past 𝑘 observations and actions. Formally, a history

at timestep 𝑡 with memory length 𝑘 is defined as 𝒉𝑡,𝑘 = ⟨𝒉𝑡−1,𝑘−1, 𝒂𝑡−1, 𝒐𝑡 ⟩ when
𝑘 > 0 and 𝑡 > 0, otherwise ∅.
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Method Critic Actor

JAC [2, 46] Centralized Centralized

IAC [10, 42] Decentralized Decentralized

IACC [10, 20] Centralized Decentralized

Table 1: Our Multi-agent Actor Critic Naming Scheme.

(critic), 𝑄𝝅 (𝒉, 𝒂;𝜙). The policy gradient for JAC follows that of

single-agent actor critic:

∇𝐽 (𝜃 ) = E𝒂,𝒉 [∇ log𝝅 (𝒂 | 𝒉;𝜃 )𝑄𝝅 (𝒉, 𝒂;𝜙)] . (2)

The second AC multi-agent extension, called Independent Ac-

tor Critic (IAC) [10, 42], learns a decentralized policy and critic

⟨𝜋𝑖 (𝑎𝑖 | ℎ𝑖 ;𝜃𝑖 ), 𝑄𝑖 (ℎ𝑖 , 𝑎𝑖 ;𝜙𝑖 )⟩ for each of the agents locally. At ev-

ery timestep 𝑡 , a local experience ⟨ℎ𝑖,𝑡 , 𝑎𝑖,𝑡 ⟩ is generated for agent 𝑖 .
The policy gradient learning for agent 𝑖 is defined as

∇𝜃𝑖 𝐽𝑑 (𝜃𝑖 ) = E𝒂,𝒉 [∇ log𝜋𝑖 (𝑎𝑖 | ℎ𝑖 ;𝜃𝑖 )𝑄𝑖 (ℎ𝑖 , 𝑎𝑖 ;𝜙𝑖 )] . (3)

Finally, we define Independent Actor with Centralized Critic

(IACC), a class of centralized critic methods where a joint value

function 𝑄𝝅 (𝒉, 𝒂;𝜙) is used to update each decentralized policy

𝜋𝜃𝑖 [2, 10].
3
Naturally, the policy gradient for decentralized policies

with a centralized critic is defined as

∇𝜃𝑖 𝐽𝑐 (𝜃𝑖 ) = E𝒂,𝒉 [∇ log𝜋𝑖 (𝑎𝑖 | ℎ𝑖 ;𝜃𝑖 )𝑄𝝅 (𝒉, 𝒂;𝜙)] . (4)

At any timestep, the joint expected return estimate 𝑄𝝅 (𝒉, 𝒂;𝜙)
is used to update the decentralized policy 𝜋 (𝑎𝑖 | ℎ𝑖 ;𝜃𝑖 ). Notice
that the centralized critic𝑄𝝅 (𝒉, 𝒂;𝜙) estimates the return based on

joint information (all agents’ action-histories) that differs from the

decentralized case in Eq. 3. In the following section, we shall show

that from a local viewpoint of agent 𝑖 , for each joint action-history

⟨𝒉𝑡 , 𝒂𝑡 ⟩,𝑄𝝅 (𝒉𝑡 , 𝒂𝑡 ;𝜙) is a sample from the return distribution given

local action-histories Pr(𝐺𝑡 :𝑇 | ℎ𝑖,𝑡 , 𝑎𝑖,𝑡 ), while the decentralized
critic 𝑄𝑖 (ℎ𝑖,𝑡 , 𝑎𝑖,𝑡 ) provides an expectation.

4 BIAS ANALYSIS
In this section, we prove policies have the same expected gradi-

ent whether using centralized or decentralized critics. We prove

that the centralized critic provides unbiased and correct on-policy

return estimates, but at the same time makes the agents suffer

from the same action shadowing problem [24] seen in decentral-

ized learning. It is reassuring that the centralized critic will not

encourage a decentralized policy to pursue a joint policy that is

only achievable in a centralized manner, but also calls into question

the benefits of a centralized critic. We provide a theoretical proof

on bias equivalence, then analyze a classic example for intuitive

understanding.

4.1 Equivalence in Expected Gradient
We first show the gradient updates for IAC and IACC are the same

in expectation. We assume the existence of a limiting distribution

Pr(𝒉) over fixed-length histories, analogous to a steady-state as-

sumption. That is, we treat fixed-memory trajectories as nodes in a

3
For example, COMA [10] is then considered as an IACC approach with a variance

reduction baseline.

Markov chain for which the policies induce a stationary distribu-

tion.

Proposition 1. Suppose that agent histories are truncated to an
arbitrary but finite length. A stationary distribution on the set of
all possible histories of this length is guaranteed to exist under any
collection of agent policies.

We provide formal justification for Proposition 1 in Appen-

dix A.1 [22], necessary to derive Bellman equations in our following

theoretical results. With this, we begin by establishing novel con-

vergence results for the centralized and decentralized critics in

Lemmas 1 and 2 below, which culminate in Theorem 1 regarding

the expected policy gradient.
4

Lemma 1. Given the existence of a steady-state history distribu-
tion (Proposition 1), training of the centralized critic is character-
ized by the Bellman operator 𝐵𝑐 which admits a unique fixed point
𝑄𝝅 (ℎ𝑖 , ℎ 𝑗 , 𝑎𝑖 , 𝑎 𝑗 ) where𝑄𝝅 is the true expected return under the joint
policy 𝝅 .

Lemma 2. Given the existence of a steady-state history distribution
(Proposition 1), training of the 𝑖-th decentralized critic is character-
ized by a Bellman operator 𝐵𝑑 which admits a unique fixed point
Eℎ 𝑗 ,𝑎 𝑗

[
𝑄𝝅 (ℎ𝑖 , ℎ 𝑗 , 𝑎𝑖 , 𝑎 𝑗 )

]
where𝑄𝝅 is the true expected return under

the joint policy 𝝅 .

Theorem 1. After convergence of the critics’ value functions, the
expected policy gradients for the centralized actor and the decentral-
ized actors are equal. That is,

E [∇𝜃 𝐽𝑐 (𝜃 )] = E [∇𝜃 𝐽𝑑 (𝜃 )] (5)

where 𝐽𝑐 and 𝐽𝑑 are the respective objective functions for the central
and decentralized actors, and the expectation is taken over all joint
histories and joint actions. All actors are assumed to have the same
policy parameterization.

Proof sketch: We derive Bellman equations for the centralized

and decentralized critics and express them as Q-function operators.

We show that these operators are contraction mappings and admit

fixed points at 𝑄𝝅 (ℎ𝑖 , ℎ 𝑗 , 𝑎𝑖 , 𝑎 𝑗 ) and Eℎ 𝑗 ,𝑎 𝑗

[
𝑄𝝅 (ℎ𝑖 , ℎ 𝑗 , 𝑎𝑖 , 𝑎 𝑗 )

]
, re-

spectively. These convergence results reveal that the decentralized

critic becomes the marginal expectation of the centralized critic

after training for an infinite amount of time. Under the total ex-

pectation over joint histories and joint actions, these fixed points

are identically equal, implying that gradients computed for the

centralized and decentralized actors are the same in expectation

and therefore unbiased. The full proofs for Lemmas 1 and 2 and

Theorem 1 are respectively provided in Appendices A.2, A.3, and

A.4.

Our theory assumes that the critics are trained sufficiently to

converge to their true on-policy values. This assumption often

exists in the form of infinitesimal step sizes for the actors [3, 10,

17, 37, 50] for convergence arguments of AC, since the critics are

on-policy return estimates and the actors need an unbiased and

up-to-date critic. Although this assumption is in line with previous

theoretical works, it is nevertheless unrealistic; we discuss the

practical implications of relaxing this assumption in Section 6.1.

4
While it appears that we analyze the case with two agents, agent 𝑖 and 𝑗 , the result

holds for arbitrarily many agents by letting 𝑗 represent all agents except 𝑖 .
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4.2 Climb Game as an Intuitive Example
We use a classic matrix game as an example to intuitively highlight

that IAC and IACC give the same policy gradient in expectation.

The Climb Game [5], whose reward function is shown in Table 2, is

a matrix game (a state-less game) in which agents are supposed to

cooperatively try to achieve the highest reward of 11 by taking the

joint action ⟨𝑢1, 𝑢1⟩, facing the risk of being punished by −30 or 0
when agents miscoordinate. It is difficult for independent learners

to converge onto the optimal ⟨𝑢1, 𝑢1⟩ actions due to low expected

return for agent 1 to take 𝑢1 when agent 2’s policy is not already

favoring 𝑢1 and vise versa.

This cooperation issue arises when some potentially good action

𝑎 has low ("shadowed") on-policy values because yielding a high re-

turn depends on other agents’ cooperating policies, but frequently

taking action 𝑎 is essential for other agents to learn to adjust their

policies accordingly, creating a dilemma where agents are unwilling

to frequently take the low-value action and are therefore stuck in

a local optimum. In the case of the Climb Game, the value of 𝑢1 is

often shadowed, because 𝑢1 does not produce a satisfactory return

unless the other agent also takes 𝑢1 frequently enough. This com-

monly occurring multi-agent local optimum is called a shadowed
equilibrium [11, 31], a known difficulty in independent learning

which usually requires an additional cooperative mechanism (e.g.,

some form of centralization) to overcome.

Solving the Climb Game independently with IAC, assume the

agents start with uniformly random policies. In expectation, IAC’s

decentralized critic would estimate 𝑄1 (𝑢1) at (1/3) × 11 + (1/3) ×
(−30) + 0 ≈ −6.3, making 𝑢3 (with 𝑄1 (𝑢3) ≈ 3.7) a much more

attractive action, and the same applies for agent 2. Naturally, both

agents will update towards favoring𝑢3; continuing this path, agents

would never favor 𝑢1 and never discover the optimal value of 𝑢1:

𝑄∗
𝑖
(𝑢1) = 11.

In the case of an IACC method, unsurprisingly, the centralized

critic can quickly learn the correct values, including the value of the

optimal joint action 𝑄 (𝑢1, 𝑢1) = 11 since there is no environmental

stochasticity. However, consider at timestep 𝑡 agent 1 takes optimal

action 𝑢1, the (centralized)𝑄 value estimate used in policy gradient

∇𝑄 (𝑢1, 𝑎2,𝑡 )𝜋1 (𝑢1) actually depends onwhat action agent 2 chooses
to take according to its policy 𝑎2,𝑡 ∼ 𝜋2. Again assuming uniform

policies, consider a rollout where action 𝑎2,𝑡 is sampled from the

policy of agent 2; then with sufficient sampling, we expect the mean

policy gradient (given by centralized critic) for updating 𝜋1 (𝑢1)
would be

E𝜋2
∇𝐽𝐶 (𝜃 | 𝑎1,𝑡 = 𝑢1)

= 𝜋2 (𝑢1)∇𝑄 (𝑢1, 𝑢1)𝜋1 (𝑢1) + 𝜋2 (𝑢2)∇𝑄 (𝑢1, 𝑢2)𝜋1 (𝑢1)
+ 𝜋2 (𝑢3)∇𝑄 (𝑢1, 𝑢3)𝜋1 (𝑢1)

= (1/3)∇11𝜋1 (𝑢1) + (1/3)∇ − 30𝜋1 (𝑢1) + (1/3)∇0𝜋1 (𝑢1)
≈ −6.3 · ∇𝜋1 (𝑢1)

(6)

That is, with probabilities 𝜋2 (𝑢1), 𝜋2 (𝑢2) and 𝜋2 (𝑢3), the joint Q-
values 11,−30 and 0 are sampled for generating the policy gradient

of action 1 for agent 1, 𝜋1 (𝑢1). It implies that the sample-average

gradient for 𝜋1 (𝑢1) is high only when agent 2 takes action 𝑢1 fre-

quently. If agent 2 has a uniform policy, the sample-average gradient

−6.3∇𝜋1 (𝑢1) cannot competewith the gradient for𝑢3 at 1.7∇𝜋1 (𝑢3).
Therefore, in the IACC case with a centralized critic, we see the

Figure 1: ClimbGame empirical results (50 runs permethod)
showing both decentralized and centralized critic methods
succumb to the shadowed equilibrium problem.

agent 1

𝑢1 𝑢2 𝑢3

agent 2

𝑢1 11 -30 0

𝑢2 -30 7 6

𝑢3 0 0 5

Table 2: Return values for Climb Game [5].

rise of an almost identical action shadowing problem we described

for IAC, even though the centralized critic trained jointly and has

the correct estimate of the optimal joint action.

Empirical evaluation on the Climb Game (shown in Figure 1)

conforms to our analysis, showing both methods converge to the

suboptimal solution ⟨𝑎3, 𝑎3⟩. At the same time, unsurprisingly, a

centralized controller always gives the optimal solution ⟨𝑎1, 𝑎1⟩. In
general, we observe that the centralized critic has the information

of the optimal solution, information that is only obtainable in a

centralized fashion and is valuable for agents to break out of their

cooperative local optima. However, this information is unable to be

effectively utilized on the individual actors to form a cooperative

policy. Therefore, contrary to the common intuition, in its current

form, the centralized critic is unable to foster cooperative behavior

more easily than the decentralized critics.

5 VARIANCE ANALYSIS
In this section, we first show that with true on-policy value func-

tions, the centralized critic formulation can increase policy gradient

variance. More precisely, we prove that the policy gradient variance

using a centralized critic is at least as large as the policy gradient

variance with decentralized critics. We again assume that the critics

have converged under fixed policies, thus ignoring the variance

due to value function learning; we discuss the relaxation of this

assumption in Section 6.

We begin by comparing the policy gradient variance between

centralized and decentralized critics:

Theorem 2. Assume that all agents have the same policy param-
eterization. After convergence of the value functions, the variance of
the policy gradient using a centralized critic is at least as large as that
of a decentralized critic along every dimension.

Proof sketch: As with our proof of Theorem 1, Lemmas 1 and 2

show that a decentralized critic’s value estimate is equal to the
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marginal expectation of the central critic’s 𝑄-function after con-

vergence. This implies that the decentralized critics have already

averaged out the randomness caused by the other agents’ deci-

sions. Since each agent has the same policy parameterization, their

policy gradient covariance matrices are equal up to the scale fac-

tors induced by the critics’ value estimates. By Jensen’s inequality,

we show that the additional stochasticity of the central critic can

increase (but not decrease) these scale factors compared to a decen-

tralized critic; hence, Var(𝐽𝑐 (𝜃 )) ≥ Var(𝐽𝑑 (𝜃 )) element-wise.

In the following subsections, we define and analyze this variance

increase by examining its two independent sources: the “Multi-

Action Variance” (MAV) induced by the other actors’ policies, and

the “Multi-Observation Variance” (MOV) induced by uncertainty

regarding the other agents’ histories from the local perspective of

a single agent. We introduce these concepts along with concrete

examples to illustrate how they affect learning.

5.1 Multi-Action Variance (MAV)
We discuss MAV in the fully observable case and will address the

partially observable case in MOV. Intuitively, from the local per-

spective of agent 𝑖 , when taking an action 𝑎𝑖 at state 𝑠 , MAV is

the variance Var[𝐺 (𝑠, 𝑎𝑖 )] in return estimates due to the fact that

teammates might take different actions according to their own sto-

chastic policies. With decentralized critics, MAV is averaged into

the value function (Lemma 2) which is an expectation incorporating

teammates actions 𝑎 𝑗 ; thus, at given timestep 𝑡 , 𝑄𝑖 (𝑠, 𝑎𝑖 ) has no
variance. On the other hand, a centralized critic 𝑄 (𝑠, 𝑎𝑖 , 𝑎 𝑗 ) distin-
guishes between all action combinations ⟨𝑎𝑖 , 𝑎 𝑗 ⟩ (Lemma 1), but 𝑎 𝑗
is sampled by agent 𝑗 during execution: 𝑎 𝑗 ∼ 𝜋 𝑗 (𝑠); therefore, the
value of 𝑄 (𝑠, 𝑎𝑖 , 𝑎 𝑗 ) varies during policy updates depending on 𝑎 𝑗 .

We propose a simple domain to clarify this variance’s cause and

effect and show that a centralized critic transfers MAV directly to

policy updates.

5.1.1 The Morning Game and the MAV. The Morning Game, in-

spired by Peshkin et al. [32], shown in Table 3, consists of two

agents collaborating on making breakfast in which the most de-

sired combination is ⟨𝑐𝑒𝑟𝑒𝑎𝑙,𝑚𝑖𝑙𝑘⟩. Since there is no environmental

stochasticity, a centralized critic can robustly learn all the values

correctly after only a few samples. In contrast, the decentralized

critics need to average over unobserved teammate actions. Take

a closer look at action 𝑐𝑒𝑟𝑒𝑎𝑙 : for a centralized critic, cereal with

milk returns 3 and cereal with vodka returns 0; meanwhile, a decen-

tralized critic receives stochastic targets (3 or 0) for taking action

𝑐𝑒𝑟𝑒𝑎𝑙 , and only when agent 2 favors 𝑚𝑖𝑙𝑘 , a return of 3 comes

more often, which then would make 𝑄1 (𝑐𝑒𝑟𝑒𝑎𝑙) a higher estimate.

Therefore, the centralized critic has a lower variance (zero in this

case), and the decentralized critic has a large variance on the update

target.

Often neglected is that using a centralized critic has higher vari-

ance when it comes to updating decentralized policies. Suppose

agents employ uniform random policies for both IAC and IACC,

in which case agent 1’s local expected return for 𝑐𝑒𝑟𝑒𝑎𝑙 would be

𝑄1 (𝑐𝑒𝑟𝑒𝑎𝑙) = 𝜋2 (𝑚𝑖𝑙𝑘) · 3 + 𝜋2 (𝑣𝑜𝑑𝑘𝑎) · 0 = 1.5. Assuming con-

verged value functions, then in IACC, a centralized critic would uni-

formly give either 𝑄 (𝑐𝑒𝑟𝑒𝑎𝑙,𝑚𝑖𝑙𝑘) = 3 or 𝑄 (𝑐𝑒𝑟𝑒𝑎𝑙, 𝑣𝑜𝑑𝑘𝑎) = 0 for

𝜋1 (𝑐𝑒𝑟𝑒𝑎𝑙) updates, and𝑄 (𝑝𝑖𝑐𝑘𝑙𝑒𝑠,𝑚𝑖𝑙𝑘) = 0 or𝑄 (𝑝𝑖𝑐𝑘𝑙𝑒𝑠, 𝑣𝑜𝑑𝑘𝑎) =

agent 1

𝑝𝑖𝑐𝑘𝑙𝑒𝑠 𝑐𝑒𝑟𝑒𝑎𝑙

agent 2

𝑣𝑜𝑑𝑘𝑎 1 0

𝑚𝑖𝑙𝑘 0 3

Table 3: Return values for the proposed Morning Game.

1 for 𝜋1 (𝑝𝑖𝑐𝑘𝑙𝑒𝑠) updates. With IAC, a decentralized critic always

gives 𝑄 (𝑐𝑒𝑟𝑒𝑎𝑙) = 1.5 for 𝜋1 (𝑐𝑒𝑟𝑒𝑎𝑙), and 𝑄 (𝑝𝑖𝑐𝑘𝑙𝑒) = 0.5 for

𝜋2 (𝑝𝑖𝑐𝑘𝑙𝑒). Obviously, under both methods, 𝜋1 converges towards

𝑐𝑒𝑟𝑒𝑎𝑙 , but the decentralized critic makes the update direction less

variable and much more deterministic in favor of 𝑐𝑒𝑟𝑒𝑎𝑙 .

5.2 Multi-Observation Variance (MOV)
In the partially observable case, another source of variance in local

value Var[𝐺 (ℎ𝑖 , 𝑎𝑖 )] comes from factored observations. More con-

cretely, for an agent in a particular local trajectory ℎ𝑖 , other agents’

experiences ℎ 𝑗 ∈ H𝑗 may vary, over which the decentralized agent

has to average. A decentralized critic is designed to average over

this observation variance and provide and single expected value

for each local trajectory 𝑄𝑖 (ℎ𝑖 , 𝑎𝑖 ). The centralized critic, on the

other hand, is able to distinguish each combination of trajectories

⟨ℎ𝑖 , ℎ 𝑗 ⟩, but when used for a decentralized policy at ℎ𝑖 , teammate

history ℎ 𝑗 can be considered to be sampled from Pr(ℎ 𝑗 | ℎ𝑖 ), and
we expect the mean estimated return during the update process to

be Eℎ 𝑗
𝑄 (ℎ𝑖 , ℎ 𝑗 , 𝒂).

We use a thought experiment
5
as an example. Consider a one-

step task where two agents have binary actions and are individually

rewarded 𝑟 if the action matches the other’s randomly given binary

observations and −𝑟 for a mismatch; that is, 𝑅(ℎ𝑖 , ℎ 𝑗 , 𝑎𝑖 ) = 𝑟 when

ℎ 𝑗 = 𝑎𝑖 and −𝑟 otherwise. With any policy, assuming converged

value functions, a decentralized critic would estimate 𝑄 (ℎ𝑖 , 𝑎𝑖 ) = 0

with zero variance. On the other hand, a centralized critic with

a global scope is able to recognize whether the current situation

⟨ℎ𝑖 , ℎ 𝑗 , 𝑎𝑖 ⟩ would result in a return of 1 or 0, hence estimates 𝑟 with

probability 0.5 (when ℎ 𝑗 = 𝑎𝑖 by definition) and −𝑟 with probability

0.5 (when ℎ 𝑗 ≠ 𝑎𝑖 ), resulting in a variance of 𝑟2. In this example, we

see that a centralized critic produces returns estimates with more

significant variance when agents have varying observations.

6 DISCUSSION
In this section, we discuss the anticipated trade-off in practice. We

look at the practical aspects of a centralized critic and address the

unrealistic true value function assumption. We note that, although

both types of critics have the same expected gradient for policy

updates, they have different amount of actual bias in practice. We

also discuss how and why the way of handling variance is different

for IAC and IACC. We conclude that we do not expect one method

to dominate the other in terms of performance in general.

6.1 Value Function Learning
So far, in terms of theory, we have only considered value functions

that are assumed to be correct. However, in practice, value functions

5
We also propose a toy domain called Guess Game based on this thought experiment,

which we elaborate and show empirical results in Appendix C.
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are difficult to learn. We argue that it is generally more so with

decentralized value functions.

In MARL, the on-policy value function is non-stationary since

the return distributions heavily depend on the current joint policy.

When policies update and change, the value function is partially

obsolete and is biased towards the historical policy-induced re-

turn distribution. Bootstrapping from outdated values creates bias.

Compounding bias can cause learning instability depending on the

learning rate and how drastically the policy changes.

The non-stationarity applies for both types of critics since they

are both on-policy estimates. However, centralized value function

learning is generally better equipped in the face of non-stationarity

because it has no variance in the update targets. Therefore, the

bootstrapping may be more stable in the case of a centralized critic.

As a result, in a cooperative environment with a moderate number

of agents (as discussed later), we expect a centralized critic would

learn more stably and be less biased, perhaps counteracting the

effect of having larger variance in the policy gradient.

6.2 Handling MAV and MOV
Learning a decentralized policy requires reasoning about local opti-

mality. That is, given local informationℎ𝑖 , agent 𝑖 needs to explicitly

or implicitly consider the distribution of global information: other

agents’ experiences and actions Pr(𝑎 𝑗 , ℎ 𝑗 | ℎ𝑖 ), through which

agent 𝑖 needs to take the expectation of global action-history val-

ues. Abstractly, the process of learning via sampling over the joint

space of 𝑎 𝑗 and ℎ 𝑗 thus generates MAV and MOV for agent 𝑖’s pol-

icy gradient. Interestingly, this process is inevitable but takes place

in different forms: during IAC and IACC training, this averaging

process is done by different entities. In IAC, those expectations are

implicitly taken by the decentralized critic and produce a single

expected value for the local history; this is precisely why decen-

tralized critic learning has unstable learning targets as discussed in

Section 6.1. On the other hand, in IACC, the expectation takes place

directly in the policy learning. Different samples of global value

estimates are used in policy updates for a local trajectory, hence

the higher policy gradient variance we discussed in Section 5. Thus,

for decentralized policy learning purposes, we expect decentralized

critics to give estimates with more bias and less variance, and the

centralized critic to give estimates with less bias and more variance.

Consequently, the trade-off largely depends on the domain; as we

shall see in the next section, certain domains favor a more stable

policy while others favor a more accurate critic.

6.3 Scalability
Another important consideration is the scale of the task. A central-

ized critic’s feature representation needs to scale linearly (in the

best case) or exponentially (in the worse case) with the system’s

number of agents. In contrast, a decentralized critic’s number of

features can remain constant, and in homogeneous-agent systems,

decentralized critics can even share parameters. Also, some envi-

ronments may not require much reasoning from other agents. For

example, in environments where agents’ decisions rarely depend

on other agents’ trajectories, the gain of learning value functions

jointly is likely to be minimal, and we expect decentralized critics

to perform better while having better sample efficiency in those

domains. We show this empirically in Section 7.4.

The impact of variance will also change as the number of agents

increases. In particular, when learning stochastic policies with a

centralized critic in IACC, the maximum potential variance in the

policy gradient also scales with the number of agents (see Theo-

rem 2). On the other hand, IAC’s decentralized critics potentially

have less stable learning targets in critic bootstrapping with in-

creasing numbers of agents, but the policy updates still have low

variance. Therefore, scalability may be an issue for both methods,

and the actual performance is likely to depend on the domain, func-

tion approximation setups, and other factors. However, we expect

that IAC should be a better starting point due to more stable policy

updates and potentially shared parameters.

6.4 The Overall Trade-off
Combining our discussions in Sections 6.1 and 6.2, we conclude that

whether to use critic centralization can be essentially considered a

bias-variance trade-off decision. More specifically, it is a trade-off

between variance in policy updates and bias in the value function:

a centralized critic should have a lower bias because it will have

more stable Q-values that can be updated straightforwardly when

policies change, but higher variance because the policy updates

need to be averaged over (potentially many) other agents. In other

words, the policies trained by centralized critics avoid more-biased

estimates usually produced by decentralized critics, but in return

suffer more variance in the training process. The optimal choice is

then largely dependent on the environment settings. Regardless,

the centralized critic likely faces more severe scalability issues in

not only critic learning but also in policy gradient variance. As a

result, we do not expect one method will always dominate the other

in terms of performance.

7 EXPERIMENTS AND ANALYSIS
In this section, we present experimental results comparing cen-

tralized and decentralized critics. We test on a variety of popular

research domains including (but not limited to) classical matrix

games, the StarCraft Multi-Agent Challenge [35], the Particle En-

vironments [25], and the MARL Environments Compilation [14].

Our hyperparameter tuning uses grid search. Each figure, if not

otherwise specified, shows the aggregation of 20 runs per method.

7.1 Variance in the Morning Game
As we can see in Figures 2a and 2b, the variance per rollout in

the policy gradient for both actions is zero for IAC and non-zero

for IACC, validating our theoretical variance analysis. Figure 2c

shows how the Q-values evolve for the optimal action 𝑎2 in both

methods. First, observe that both types of critics converged to the

correct value 3, which confirms our bias analysis. Second, the two

methods’ Q-value variance in fact comes from different sources.

For the decentralized critic, the variance comes from the critics

having different biases across trials. For centralized critics, there is

the additional variance that comes from incorporating other agent

actions, producing a high value when a teammate chooses 𝑚𝑖𝑙𝑘

and a low value when a teammate chooses 𝑣𝑜𝑑𝑘𝑎.
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(a) Per-rollout gradient variance for action
𝑝𝑖𝑐𝑘𝑙𝑒𝑠.

(b) Per-rollout gradient variance for action
𝑐𝑒𝑟𝑒𝑎𝑙 .

(c) Q values used for updating 𝜋 (𝑐𝑒𝑟𝑒𝑎𝑙) ;
see Figure 6 for clearer illustration.

Figure 2: Gradient updates of the Morning Game, shows 200 independent trials for each method.

Figure 3: Performance comparison in different domains: (a) Dec-Tiger, (b) Cleaner and (c) Move Box. Dec-Tiger and Cleaner
highlight instability resulting from high-variance actor updates employing a centralized critic; Move Box shows the central-
ized critic is not able to bias the actors towards the joint optimum (at 100).

7.2 Unstable Policies
7.2.1 Dec-Tiger. We test on the classic yet difficult Dec-Tiger do-

main [26], a multi-agent extension to the Tiger domain [16]. To end

an episode, each agent has a high-reward action (opening a door

with treasure inside) and a high-punishment action (opening a door

with tiger inside). The treasure and tiger are randomly initialized in

each episode, hence, a third action (listen) gathers noisy information

regarding which of the two doors is the rewarding one. The multi-

agent extension of Tiger requires two agents to open the correct

door simultaneously in order to gain maximum return. Conversely,

if the bad action is taken simultaneously, the agents take less pun-

ishment. Note that any fast-changing decentralized policies are less

likely to coordinate the simultaneous actions with high probability,

thus lowering return estimates for the critic and hindering joint

policy improvement. As expected, we see in Figure 3a that IACC

(with a centralized critic and higher policy gradient variance) does

not perform as well as IAC due. In the end, the IACC agent learns to

avoid high punishment (agents simultaneously open different doors,

−100) by not gathering any information (listen) and opening an

agreed-upon door on the first timestep. IACC gives up completely

on high returns (where both agents listen for some timesteps and

open the correct door at the same time, +20) because the unstable
policies make coordinating a high return of +20 extremely unlikely.

7.2.2 Cleaner. Weobserve similar policy degradation in the Cleaner

domain [14], a grid-world maze in which agents are rewarded for

stepping onto novel locations in the maze. The optimal policy is

to have the agents split up and cover as much ground as possible.

The maze has two non-colliding paths (refer to Appendix D.3 for

visualization) so that as soon as the agents split up, they can follow

a locally greedy policy to get an optimal return. However, with

a centralized critic (IACC), both agents start to take the longer

path with more locations to "clean." The performance is shown in

Figure 3b. When policy-shifting agents are not completely locally

greedy, the issue is that they cannot "clean" enough ground in their

paths. Subsequently, they discover that having both agents go for

the longer path (the lower path) yields a better return, converging

to a suboptimal solution. Again we see that in IACC with central-

ized critic, due to the high variance we discussed in Section 6.2,

the safer option is favored, resulting in both agents completely

ignoring the other path (performance shown in Figure 3b). Overall,

we see that high variance in the policy gradient (in the case of the

centralized critic) makes the policy more volatile and can result

in poor coordination performance in environments that require

coordinated series of actions to discover the optimal solution.

7.3 Shadowed Equilibrium
Move Box [14] is another commonly used domain, where grid-world

agents are rewarded by pushing a heavy box (requiring both agents)

onto any of the two destinations (see Appendix D.4 for details). The

farther destination gives +100 reward while the nearer destination

gives +10. Naturally, the optimal policy is for both agents to go for

+100, but if either of the agents is unwilling to do so, this optimal

option is "shadowed" and both agents will have to go for +10. We

see in Figure 3c that both methods fall for the shadowed equilibrium,

favoring the safe but less rewarding option.

Analogous to the Climb Game, even if the centralized critic is

able to learn the optimal values due to its unbiased on-policy nature

shown in Section 4.1, the on-policy return of the optimal option is

extremely low due to an uncooperative teammate policy; thus, the

optimal actions are rarely sampled when updating the policies. The
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Figure 4: Performance comparison of domains where IAC does better than IACC:, Find Treasure, Cross and Antipodal.

Figure 5: Performance comparison on capture target under various grid world sizes.

same applies to both agents, so the system reaches a suboptimal

equilibrium, even though IACC is trained in a centralized manner.

7.4 Robustness in Performance
Through tests onGoTogether [14],Merge [49], Predator and Prey [20],

Capture Target [30, 47], Small Box Pushing and SMAC [35] tasks

(see Appendices D, E, F, G, H, I, and J), we observe that the two

types of critics perform similarly in all these domains, with IACC

(with a centralized critic) being less stable in only a few other do-

mains shown in Figures 3 and 4. Since the performance of the two

critic types is similar in most results, we expect that it is due to

the fact that both are unbiased asymptotically (Lemmas 1, 2 and

Theorem 1). We observe that, although decentralized critics might

be more biased when considering finite training, it does not affect

real-world performance in a significant fashion in these domains.

In cooperative navigation domains Antipodal, Cross [25, 49], and

Find Treasure [14], we observe a more pronounced performance

difference among runs (Figure 4). In these cooperative navigation

domains (details in Appendices D.2 and E), there are no suboptimal

equilibria that trap the agents, and on most of the timesteps, the

optimal action aligns with the locally greedy action. Those tasks

only require agents to coordinate their actions for a few timesteps

to avoid collisions. It appears that those tasks are easy to solve, but

the observation space is continuous, thus causing large MOV in the

gradient updates for IACC. Observe that some IACC runs struggle to

reach the optimal solution robustly, while IAC robustly converges,

conforming to our scalability discussion regarding large MOV. A

centralized critic induces higher variance for policy updates, where

the shifting policies can become a drag on the value estimates which,

in turn, become a hindrance to improving the policies themselves.

The scalability issue can be better highlighted in environments

where we can increase the observation space. For example, in Cap-

ture Target [21] where agents are rewarded by simultaneously

catching a moving target in a grid world (details in Appendix G),

by increasing the grid size from 4 × 4 to 12 × 12, we see a no-

table comparative drop in overall performance for IACC (Figure 5).

Since an increase in observation space leads to an increase in Multi-

Observation Variance (MOV) and nothing else, it indicates that here

the policies of IACC do not handle MOV as well as the decentralized

critics in IAC. The result might imply that, for large environments,

decentralized critics scale better in the face of MOV due to the fact

that they do not involve MOV in policy learning.

8 CONCLUSION
In this paper, we present an examination of critic centralization

theoretically and empirically. The core takeaways are: 1) in theory,

centralized and decentralized critics are the same in expectation

for the purpose of updating decentralized policies; 2) in theory,

centralized critics will lead to higher variance in policy updates; 3) in

practice, there is a bias-variance trade-off due to potentially higher

bias with limited samples and less-correct value functions with

decentralized critics; 4) in practice, a decentralized critic regularly

gives more robust performance since stable policy gradients appear

to be more crucial than stable value functions in our domains.

Although IACC uses a centralized critic that is trained in a cen-

tralized manner, the method does not produce policies that exploit

centralized knowledge. Therefore, future work on IACC may ex-

plore feasible ways of biasing the decentralized policies towards a

better joint policy by exploiting the centralized information. Reduc-

ing variance in policy updates and other methods that make better

use of centralized training are promising future directions.
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