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ABSTRACT
It is an established fact in behavioral economics that in lab experi-
ments of auctions, human subjects do not adhere to the risk-neutral
Bayesian Nash equilibria of such games. Several attempts at explain-
ing this Overbidding Puzzle focus on the bidders’ psychology and
suggest they may have parametrized utility functions that differ
from the risk-neutral payoff. However, analytical equilibria of the
resulting modified games are generally not available. Consequently,
it has been difficult to identify the specific parameters and assess
the merits of these proposed modifications in explaining empirical
observations.

With recent advances in equilibrium learning, it has become
tractable to compute approximations of Bayesian Nash equilibria.
Building on these advances and Bayesian optimization, we propose
a novel regression framework to infer unobserved parameters of
Bayesian games from behavioral data. We apply our method to two
data sets of human bidding behavior in all-pay auctions. For the first
time, this makes it possible to directly compare the goodness-of-fit
of several proposed qualitative explanations of overbidding.
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1 INTRODUCTION
A standard assumption in economic theory is that market partici-
pants are utility-maximizing, rational agents, and thus, they should
behave according to the market’s equilibrium. However, experimen-
tal studies in behavioral economics have repeatedly shown that
human subjects do not conform to this assumption. A prominent ex-
ample is the phenomenon of overbidding in auctions. Particularly in
all-pay auctions, where all bidders have to pay their bid, not just the
winner, this behavior extends to a bimodal bidding pattern, where
low-valued bidders underbid, and high-valued bidders overbid the
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risk-neutral Bayesian Nash Equilibrium (BNE) [7, 15]. Due to the
variety of practical applications of this auction [8], understanding
the reasons for this bimodal behavior is essential and has been the
subject of research in behavioral economics and psychology.

This Overbidding Puzzle has previously been approached by
questioning the risk-neutrality of bidders and instead investigated
psychological factors expressed by parametrized utility functions
that might influence the bidder’s behavior [6, 7, 11]. Nonetheless, it
is yet unclear what factors explain overbidding because there does
not exist a unified approach for estimating the parameters of such
utility functions across several behavioral models and making their
goodness-of-fit comparable on experimental data. A key difficulty to
this has been the computational complexity of computing equilibria
in these parametrized auctions. Most recently, however, there has
been made progress in approximating equilibria of such games via
numerical techniques based on multi-agent learning [2, 4, 10].

In this study, we propose a novel estimation framework using
Bayesian Optimization (BO) and equilibrium learning techniques
that, for the first time, allows a quantitative analysis of the goodness-
of-fit to experimental data of various behavioral explanation at-
tempts to the Overbidding Puzzle. We apply our method to sym-
metric all-pay auctions and the concepts of risk-aversion and an-
ticipated regret. Our empirical findings coincide with established
results in the empirical literature in those aspects where quanti-
tative results were previously available. As our framework is not
restricted to either a specific auction mechanism, type of utility
function, or equilibrium oracle, future work may apply it to other
problems in behavioral economics and behavioral psychology.

2 ESTIMATION FRAMEWORK
An auction is a continuous-type-and-action Bayesian Game 𝐺𝜃 =

(𝑁,V,A, 𝐹 ,𝑢𝜃 ). 𝑁 players participate in this game, where each
agent 𝑖 draws her type 𝑣𝑖 , i.e. her valuations of the item(s) to be
auctioned, from the set of possible type profiles V = V1 × · · · × V𝑛

with some joint prior probability distribution 𝐹 that is common
knowledge among the bidders. Given these types, players must then
choose a 𝑏𝑖 from the set of available actions A𝑖 . We assume they
make this choice according to some (pure) strategy 𝛽𝑖 : V𝑖 → A𝑖 .
𝑢𝜃 is the vector of individual utility functions 𝑢𝜃

𝑖
: V𝑖 × A → R

that describes the outcomes of the game, which depends on pa-
rameter(s) 𝜃 that characterize the underlying behavioral model.
We restrict ourselves to symmetric utility functions with a shared
parameter among all participants. Finally, this framework aims at

Extended Abstract AAMAS 2022, May 9–13, 2022, Online

1586



0.000

0.025

0.050

0.075

2P
Full

Feedback

2P
Partial

Feedback

4P
Full

Feedback
Setting

RM
SE

Model

CRRA 1

CRRA 2

Regret

(a) Results of the regression evaluation method

0.0

0.2

0.4

0.6

2P
Full

Feedback

2P
Partial

Feedback

4P
Full

Feedback
Setting

R2

Model

CRRA 1

CRRA 2

Regret

(b) Results of the 𝑅2 evaluation method

Figure 1: The average model performances for all behavioral models per loss function.

estimating this parameter 𝜃 such that the resulting equilibrium
strategy describes the experimental data sufficiently accurately.

Assuming the existence of an equilibrium oracle 𝐸𝑂 : 𝜃 → AV

that, for a given parameter 𝜃 computes an estimate 𝛽 of a BNE in
𝐺𝜃 , we can define goodness-of-fit in terms of some regression loss
function ℓ (𝑏, 𝑏) that compares the estimated bids 𝑏 = 𝛽 (𝑣), to those
observed in the behavioral data 𝑏. We will consider two choices
of loss functions: If the assumption of a specific trajectory of the
BNE is warranted, one can estimate an equally-shaped regression
model and determine the distance between this surrogate and the
estimation of the equilibrium oracle via the root mean squared
error. This is beneficial in settings where the experimental data is
summarized as such amodel, or when additional information should
be considered during the estimation. Otherwise, one may compare
the estimated bid function directly with the experimental data using
a coefficient of determination 𝑅2 = 1 − ∑

𝑘 (𝑏𝑘−𝑏𝑘 )2/∑𝑘 (𝑏𝑘−𝑏)2, where
𝑏 indicates the average bid of all lab subjects 𝑘 .

The BayesianOptimization scheme consists of two stages that are
applied alternatingly at each time step 𝑡 : In the evaluation stage, the
goodness-of-fit of 𝜃𝑡 is evaluated via a call to the equilibrium oracle
𝛽=𝐸𝑂 (𝜃𝑡 ), computing the estimated equilibrium bids𝑏𝑘=𝛽 (𝑣𝑘 ) that
subjects 𝑘 should have bid in the experiment if they were following
𝛽 , and then evaluating the resulting loss ℓ (𝑏, 𝑏). In the estimation
stage, the algorithm fits a stochastic model of the loss function over
the entire domain Θ of the parameters to be inferred, relying on
the history of all previously seen samples and their corresponding
losses, to select a "promising" next sample 𝜃𝑡+1. Specifically, we use
a Gaussian Process model, as it is sufficiently expressive, provides
a measure of output uncertainty over its domain, is suitable for
iterative refitting when adding new data points, and is inexpensive
to evaluate [3, 16]. Given this model, the next sample to be evaluated
is chosen according to some acquisition criterion that should strike
a balance between exploitation and exploration. Here, we choose
the expected improvement criterion, which is a common choice in
the BO literature [5, 16].

3 EXPERIMENTS
To test this estimation framework empirically, we apply it to three
behavioral utility functions in all-pay auctions using real-world
experimental data. These utilities describe commonly assumed be-
havioral models, namely, anticipated regret as defined by [11] and

risk-aversion using two different constant relative risk aversion
(CRRA) models [9, 13]. The underlying experimental data have
been made available to us by the corresponding authors and consist
of two- [11] and four-player [1] settings, where the former is further
split into full- and partial feedback environments. We compare the
goodness-of-fit of the utilities under both loss functions discussed
above. Initial experiments using the recent equilibrium learning
method NPGA that represents strategies via neural networks and
provably learns local pure-strategy BNE via evolutionary strategy
gradient approximation [2, 10] imply a quadratic trajectory of the
optimal bid function, independently of the used behavioral model.
Thus, we fit a quadratic Tobit model [17] for the regression loss.

Figure 1 shows that the experiments yield sufficient goodness-of-
fit measures for all behavioral models and both loss functions, which
indicates that the considered behavioral models are reasonable can-
didates for explaining overbidding. Although the differences be-
tween the measures are marginal, the concept of risk-averse bidders
is more suitable than anticipated regret in the two-player, but vice
versa in the four-player settings. The findings of the individual anal-
ysis of the models coincide with earlier observations made in the
literature: For instance, as in [9, 14], the estimation of both CRRA
models yields similar risk measures in all settings. Additionally,
bidders in our study tend to be more risk-neutral in scenarios with
a larger number of competitors or with less information about the
winning bid, which is compatible with findings in [11, 12].

Overall, the results show that our estimation framework serves
as a tool for measuring and comparing assumptions about bidder’s
behavior that are not directly observable but can be expressed via
utility functions. Nonetheless, an extensive analysis of the psycho-
logical factors that cause overbidding requires considering further
experiments and the definition of more complex models combining
multiple assumptions. Even though the regret experiments con-
firmed the observation that equilibrium learning techniques like
NPGA can sufficiently approximate the analytical BNE [2, 10], it is
still unclear in which type of Bayesian games this is feasible, and
thus, the success of our framework strongly depends on develop-
ments in this research area.
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