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ABSTRACT
Many real-world applications require an agent to make robust and
deliberate decisions with multimodal information (e.g., robots with
multi-sensory inputs). However, it is very challenging to train the
agent via reinforcement learning (RL) due to the heterogeneity
and dynamic importance of different modalities. Specifically, we
observe that these issues make conventional RL methods difficult
to learn a useful state representation in the end-to-end training
with multimodal information. To address this, we propose a novel
multimodal RL approach that can do multimodal alignment and im-
portance enhancement according to their similarity and importance
in terms of RL tasks respectively. By doing so, we are able to learn
an effective state representation and consequentially improve the
RL training process. We test our approach on several multimodal
RL domains, showing that it outperforms state-of-the-art methods
in terms of learning speed and policy quality.
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1 INTRODUCTION
Deep reinforcement learning has made significant progress recently
in many tasks [5, 9, 11, 14, 17, 20], which can train in the end-to-end
fashion with raw sensory inputs. Cognitive and psychology studies
[18] reveal humans are able to use multiple sources of information
(e.g., vision, audio, and tactile) to build a better understanding of
the physical world and make decisions. Generally, it is believed
that multimodal information is crucial for agents to make robust
and deliberate decisions. Multimodal RL becomes an active RL
topic and many applications based on it [3, 4, 10, 13, 21] have been
successfully developed.

Although multimodal information is indeed beneficial for agents
to make decisions, it also brings several challenges to RL algorithms.
Firstly, the heterogeneity nature of multiple modalities makes it dif-
ficult to form a consistent representation in deep neural networks
[2]. This issue is especially challenging for multimodal RL because
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the states (i.e. representation goals) are usually hidden and must
be learned implicitly from reward signals instead of directly from
supervised labels. Secondly, modalities may play different impor-
tance for decision making in different situations. Therefore, an
agent should be able to dynamically bias towards more informative
modalities and enhance the importance of themselves.

Against this background, we propose a novel multimodal RL
with effective state representation learning, targeting at the modal
heterogeneity and dynamic importance issues. Respectively, our ap-
proach consists of two main modules, i.e., modality alignment and
importance enhancement. By combining these twomodules together,
we are able to learn an effective state representation, which is the
key to the performance of RL given multimodal information.

2 THE METHOD
Here, we propose our multimodal RL (named MAIE, which stands
for Modality Alignment and Importance Enhancement) with effec-
tive state representation learning. As aforementioned, state repre-
sentation is challenging in multimodal RL due to modal heterogene-
ity and dynamic importance of different modalities. Respectively,
we devise the modality alignment and importance enhancement
modules to address these issues. We put them together to learn an
effective state representation that can be used by deep RL methods
(e.g., A2C). Specifically, we introduce a novel technique to produce
a better state vector that can be used by the value or policy network
training in an end-to-end manner with multimodal information.

Modality Alignment: To begin with, we use CNN and LSTM
to extract high-dimensional and temporal features of each modality.
Then, we put them together to learn an effective state representa-
tion. Due to modal heterogeneity, different modalities are usually
distributed inconsistently by the feature extractors. Therefore, sim-
ply concatenating the vectors of all modalities may not be helpful
for the RL training. Intuitively, it would be helpful if we can find
relationships and correspondences between sub-components of
instances from two or more heterogeneous modalities. To achieve
this, we use a similarity measurement (e.g., Euclidean, cosine, and
KL distance), which are commonly used in multimodal machine
learning [1], to do multimodal alignment through a loss. Specifi-
cally, let 𝑓 𝑖 and 𝑓 𝑗 be two vector representations of modalities 𝑖
and 𝑗 that need to be aligned in the feature space. Given this, we
define the loss function as follow: L𝑠𝑖𝑚 (𝜙) = ∑𝑚

𝑖=1
∑

𝑗≠𝑖 𝜓 [𝑓 𝑖 | 𝑓 𝑗 ],
where𝜓 [𝑓 𝑖 | 𝑓 𝑗 ] is a distance function for vectors 𝑓 𝑖 and 𝑓 𝑗 .

Multimodal alignment based on similarity is particularly useful
when all the modalities are informative and corresponding to the
underlying state. Note that RL is a sequential decision-making
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Figure 1: Illustration and training curves for the Mining.

problem. When one of the modalities is totally not informative or
even purely noisy, forcing other modalities to align with it will
reduce their temporal discrimination and make them less and less
sensitive. Therefore, we expect that the feature vectors of identical
modalities are discriminative in the time scale. To this end, temporal
discrimination is introduced for increasing the difference between
the feature vectors of each modal at different moments with the loss
function defined as: L𝑡𝑑 (𝜙) = −∑𝑚

𝑖=1
∑𝑇−1
𝑡=1 𝜓 [𝑓 𝑖𝑡 | 𝑓 𝑖

𝑡+1]. To put
the loss functions above together, we have the overall loss function
for the state representation learning: L𝑆𝑅𝐿 (𝜙) = 𝑐𝑠𝑖𝑚L𝑠𝑖𝑚 (𝜙) +
𝑐𝑡𝑑L𝑡𝑑 (𝜙), where 𝑐𝑠𝑖𝑚, 𝑐𝑡𝑑 are scaling constants.

Importance Enhancement: Now, we proceed to our impor-
tance enhancement module, which is inspired by work [6]. We
first normalize feature vector 𝑓𝑚 of each modality 𝑚 as follow:
𝑓𝑚 = (𝑓𝑚−𝜇𝑚)/

√
𝜎𝑚 + 𝜖 where 𝜇𝑚, 𝜎𝑚 are the mean and variance

computed by soft-update. Noting that both the mean and variance
are regarded as additional parameters saved in the network when
training and retrieved during inference.

Here, we consider the normalized features 𝑓𝑚 is more informa-
tive if the feature deviates further from its mean since it occurs with
a lower probability and often provides more information [7]. Based
on this property, we use softmax to calculate the importance coeffi-
cient 𝜆𝑚 for each modality𝑚 as follow: 𝜆𝑚[𝑙 ] = 𝑒

|𝑓𝑚[𝑙 ] |/∑ |M |
𝑖=1 𝑒

|𝑓 𝑖[𝑙 ] |

where 𝑓𝑚[𝑙 ] is 𝑙-dimensional of feature 𝑓𝑚 and |M| denotes the set
of modalities. During forward inference, we perform the inner-
product of 𝜆𝑚 and 𝑓𝑚 to get the weighted features: 𝑓𝑚 = 𝜆𝑚 · 𝑓𝑚 .
Finally, we concatenate the weighted features, 𝑓 = [ ˜𝑓 1, ˜𝑓 2, ..., ˜𝑓𝑚],
as a state representation for the standard RL.

3 EXPERIMENTS
We conduct our experiments in two benchmark domains: Mining
and autonomous driving. The Mining domain is challenging be-
cause the agent needs to make full use of multiple modalities and
the modality importance will change during the task. In addition,
we performed a case study in a more challenging and realistic do-
main: self-driving car control, which aims to show the potential
and usefulness of our approach in real-world RL applications.

Mining Domain: This domain is originally introduced by the
CASL paper [16] for testing multimodal RL. As shown in Figure
1(a), an agent wants to mine either gold or iron ore. Specifically, it
must determine the type of ores based on their unique audio cue
and then pick the right tool for mining. Here, visual input is useful

Table 1: Results of Self-Driving Car Control.

Method Average Worst-Case

MAIE 2611.25 ± 556.99 920.18
CASL 2144.52 ± 660.24 158.82

Image-Lidar 2457.21 ± 876.57 397.75
Image-Only 1997.12 ± 749.67 202.89
Lidar-Only 2153.20 ± 642.75 508.53

for navigation, and the audio is necessary when deciding which
tool to be picked. We then compared our approach with several
methods, including: 1)V+A [4]; 2) TIRG [19]; 3)MRN [8]; 4)CASL
[16]; 5) Decision-fusion[15].

As shown in Figure 1(b), our method substantially outperformed
all the compared methods, both in the speed of convergence, the sta-
bility of learning, and the quality of policy. Again, this confirms that
our method can effectively align the modalities and dynamically en-
hancement them based on their importance. The reason why these
state-of-the-art machine learning methods (i.e. TIRG andMRN)
did not achieve good results in this environment is that modalities
may play different importance at some periods in dynamic envi-
ronments. The competitive performance of CASL shows that the
attention mechanism is indeed useful in this domain. However, the
training of the attention mechanism requires a large number of
samples. Therefore, CASL converged much slowly than ours. All
in all, we advances the state-of-the-art with a more effective and
efficient multimodal RL approach.

Self-Driving Car Control: To test our methods in more realistic
environments, we use a simulator for self-driving car control [12],
which is developed for research on RL agent with multi-sensory
inputs (i,e, camera image and lidar data). Our results are summa-
rized in Table 1. As expected, the average reward of Image-Lidar
(i.e., simply concating image and lidar data) has a higher value of
2457.21 than Image-Only (1997.12) and Lidar-Only (2153.20), which
confirms the benefit of multimodal learning. However, directly com-
bining image and lidar data (i.e., Image-Lidar (397.75)) makes even
worse than Lidar-Only (508.53) in some situation, i.e., a sudden
lane change may cause a collision if the agent cannot attention the
approaching vehicles behind. As aforementioned, this is because
learning state representation from multimodal inputs directly is
challenging for RL.

Our method substantially outperformed all the compared meth-
ods, and achieved the best average reward (2611.25), the lowest
deviation (556.99), and the best reward in worst case (920.18). Most
importantly, our method is 80.9% higher than Lidar-Only in worst
case. CASL did not achieve good results in the case study, due to
the attention mechanism has more complex structure and requires
a large number of samples to train. These results show the potential
of our method to improve the safty issues of self-driving car when
controlled by RL agent with multi-sensory inputs, thanks to our
modality alignment and importance enhancement modules.
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