

Graft-Versus-Host Disease: Mechanism of Disease

Presentation Overview

Graft-Versus-Host Disease (GVHD) Overview

SECTION 2 Acute GVHD

SECTION 3 Chronic GVHD

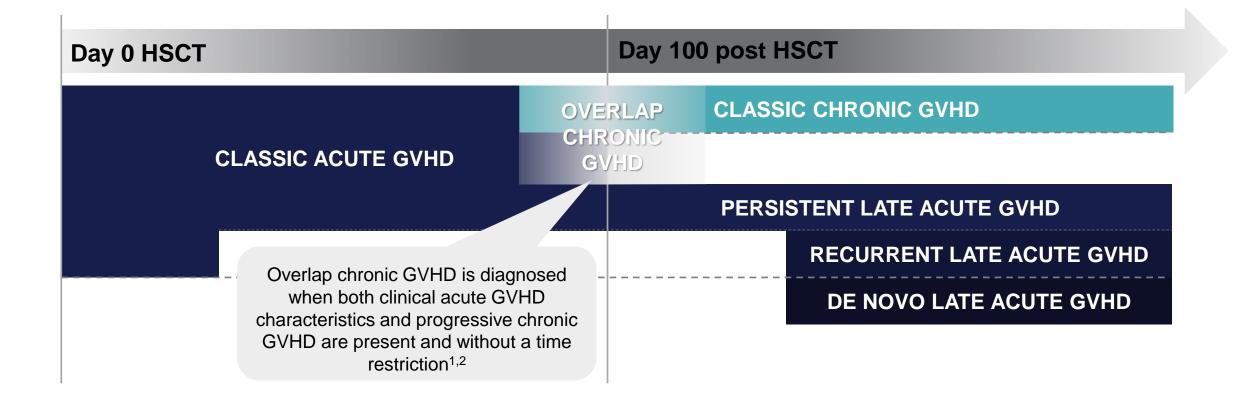
SECTION 4 Appendix

Click the section tab of interest to be taken to the corresponding portion of the presentation

GVHD Overview

GVHD Results From Immunologic Attack on Recipients' Target Organs or Tissues by Donor Allogeneic T Cells¹

aGVHD


- Activated donor T cells damage host epithelial cells and mucous membranes after an increase in inflammation following the conditioning regimen for HSCT^{2,3}
- Organs affected: primarily skin, gut, and liver³

cGVHD

- Complex immune-mediated pathology of cGVHD involves T cells, B cells, macrophages, and fibroblasts^{4,5}
- Displays more autoimmune and fibrotic features than aGVHD^{4,5}
- Organs affected: primarily oral and ocular mucosal surfaces; may also affect the skin, gut, liver, lungs, and kidneys^{2,5}
- Loss of central tolerance, autoantibody production, and fibrosis in cGVHD are thought to distinguish cGVHD from aGVHD^{5,6}
- "Overlap cGVHD" is characterized by clinical features of both aGVHD and cGVHD^{5,7}

Classification of GVHD

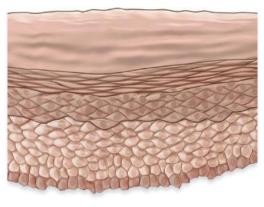
Acute and chronic GVHD are considered distinct clinical syndromes without a time restriction¹

Acute GVHD

Mechanism of Disease

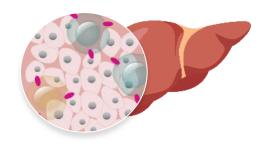
Clinical Manifestations of aGVHD

- In aGVHD, the conditioning regimen causes tissue damage, which activates T cells¹
- Activated T cells expand and differentiate into cytotoxic effector T cells¹
- Effector T cells migrate from lymphoid tissues to cause organ damage¹


Gut

Colonic mucosa may develop withered and necrotic crypts.
Large deep ulcers are seen with mucosal sloughing and loss of epithelium²

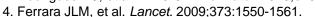
Diarrhea


Skin

Cutaneous manifestations in aGVHD can affect the skin causing erythematous maculopapular rashes on the face, ears, palms and soles¹

Rash

Liver



Bile duct damage may occur in hepatic GVHD. The epithelial cells of the bile duct may show eosinophilic cytoplasm and variable nuclear hyperchromasia with crowding³

Hyperbilirubinemia

Most common symptoms⁴

1. Rodrigues KS, et al. Am J Clin Dermatol. 2018;e19:33-50. 2. Naymagon S, et al. Nat Rev Gastroenterol Hepatol. 2017;14:711-726. 3. Stueck AE, et al. Mod Pathol. 2018;31:442-451.

aGVHD: Epidemiology and Significance

Serious complications of allo-HSCT with significant morbidity and mortality^{1,2}

- Incidence of acute GVHD varies by donor type and prophylaxis regimen
 - MSD: approximately 30% to 40%³
 - MUD or mismatched relative: approximately 20% to 50%⁴⁻⁵
 - Standard prophylaxis (CNI+MTX/MFF±ATG): ranges from 30% to 60%^{6,7}
- In recent studies, death due to complications of aGVHD was reported in 16% to >30% of patients⁸⁻¹⁰

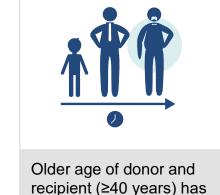
Immunosuppression with corticosteroids is first-line therapy but is insufficient for most patients^{11,12}

Less than 50% of patients with aGVHD experience clinically relevant responses to first-line therapy¹¹

May rapidly progress to steroid-refractory disease¹³

Steroid-refractory aGVHD has been reported to have a mortality rate of approximately 35%9

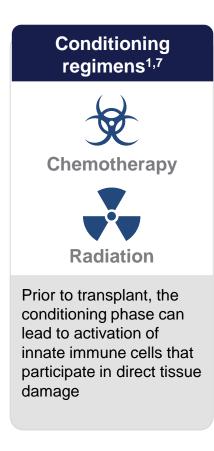
allo-HSCT, allogeneic hematopoietic stem cell transplantation; ATG, antithymocyte globulin; CNI, calcineurin inhibitor; MMF, mycophenolate mofetil; MSD, matched sibling donor; MTX, methotrexate; MUD, matched unrelated donor.

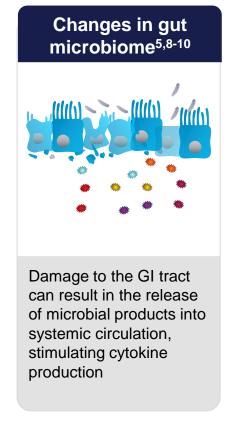

1. Jagasia M, et al. *Blood*. 2012;119:296-307. 2. Jacobsohn DA, Vogelsang GB. *Orphanet J Rare Dis*. 2007;2:35. 3. Nagler A, et al. *Transplant Cell Ther*. 2022;28(2):86.e1-86.e8. 4. Nagler A, et al. *Clin Cancer Res*. 2021;27(3):843-851. 5. Luznik L, at al. *J Clin Oncol*. 2022;40(4):356-368. 6. Jamy O, et al. *Blood*. 2023;142(12):1037-1046. 7. Malard F, et al. *Nat Rev Dis Primers*. 2023;9(1):27. 7. Yu J, et al. *Curr Med Res Opin*. 2019;35:983-988. 8. Yu J, et al. *Biol Blood Marrow Transplant*. 2020;26:600-605. 9. Ramdial JL, et al. *Bone Marrow Transplant*. 2021;56:2005-2012. 10. Garnett C, et al. *Ther Adv Hematol*. 2013;4:366-378. 11. Magenau J, et al. *Br J Haematol*. 2016;173:190-205. 12. Schoemans HM, et al. *Bone Marrow Transplant*. 2018;53:1401-1415.

Risk Factors for Development of aGVHD

Chromosome 6 Class II DB DQ DR BC A

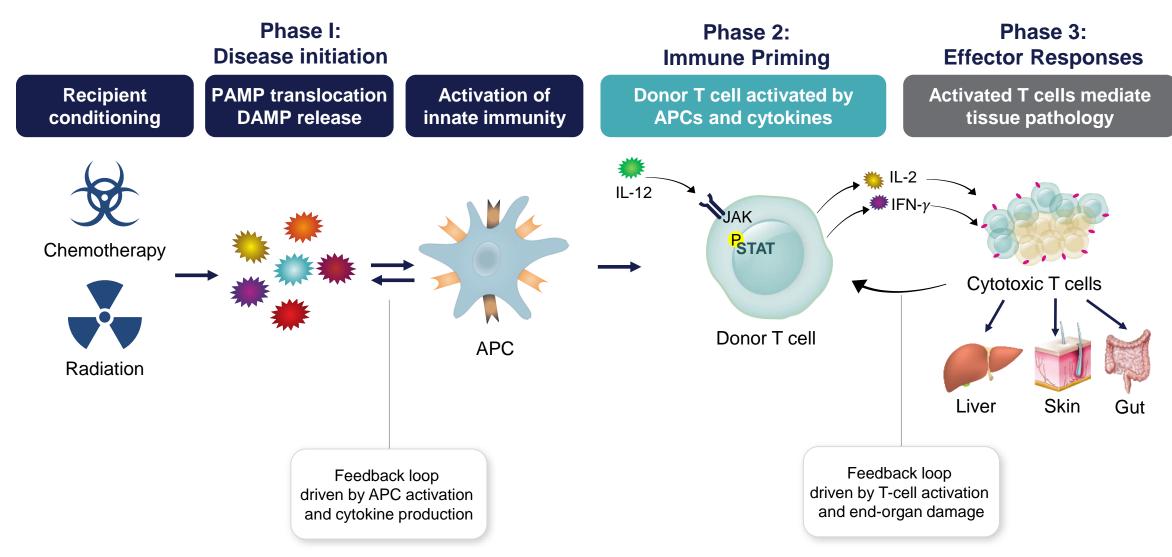
impacted by HLA




been associated with

higher risk of aGVHD

Age⁴⁻⁶



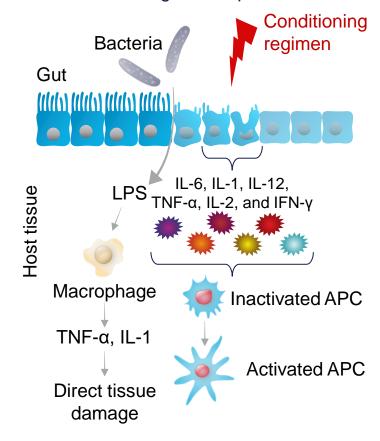
GI, gastrointestinal; HLA, human leukocyte antigen.

1. Ferrara JLM, et al. *Lancet*. 2009;373:1550-1561. 2. Loiseau P, et al. *Biol Blood Marrow Transplant*. 2007;13:965-974. 3. Flowers MED, et al. *Blood*. 2011;117:3214-3219. 4. Nash RA, et al. *Blood*. 1992;80:1838-1845. 5. Nassereddine S, et al. *Anticancer Res*. 2017;37:1547-1555. 6. Cutler C. *Hematology*. 2008;3(part 1):1-12. 7. Blazar BR, et al. *Nat Rev Immunol*. 2012;12:443-458. 8. Whangbo J, et al. *Bone Marrow Transplant*. 2017;52:183-190. 9. Taur Y, et al. *Blood*. 2014;124;1174-1182. 10. Jenq RR, et al. *J Exp Med*. 2012;209:903-911. FOR MEDICAL INFORMATION PURPOSES ONLY. NOT FOR PROMOTIONAL USE. DO NOT COPY, DISTRIBUTE, OR OTHERWISE REPRODUCE.

Overview of aGVHD Pathophysiology

APC, antigen presenting cell; DAMP, damage-associated molecular pattern; IFN, interferon; IL, interleukin; JAK, Janus kinase; P, phosphorylated; PAMP, pathogen-associated molecular pattern; STAT, signal transducer and activator of transcription.

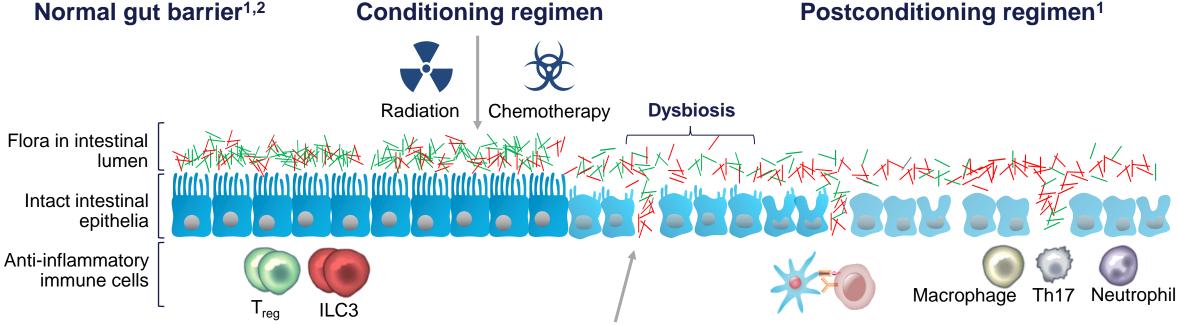
Hill GR, et al. *Ann Rev Immunol.* 2021;39:19-49.


Disease Initiation: Damage to Host Tissue Activates Donor and Host APCs

- Occurs due to HLA mismatch, conditioning, and/or other factors^{1,2}
- Conditioning enables host recipients to receive immunocompetent T cells^{3,4}
- Conditioning-mediated tissue injury to host mucosa, skin, and liver leads to cytokine release and innate immune activation, initiating GVHD^{3,5-8}
- Activated donor and host APCs then release their own cytokines, resulting in a positive feedback loop^{2,4}

Disease initiation caused by recipient conditioning and other factors^{1,8-10}

Allo-antigens are produced

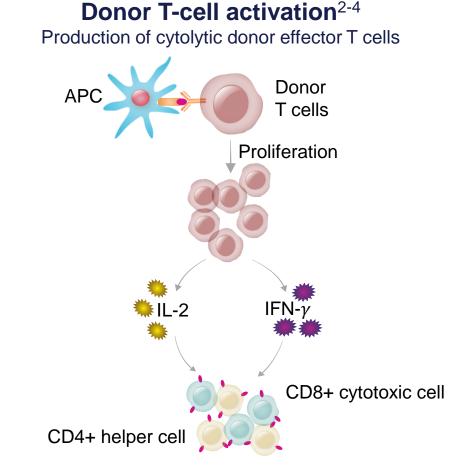

LPS, lipopolysaccharide; TNF, tumor necrosis factor.

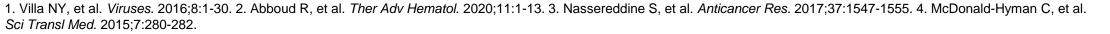
^{1.} Nassereddine S, et al. *Anticancer Res.* 2017;37:1547-1555. 2. McDonald-Hyman C, et al. *Sci Transl Med.* 2015;7:280-282. 3. Ferrara JL, et al. *Stem Cells.* 1996;14:473-489. 4. Blazar BR, et al. *Nat Rev Immunol.* 2012;12:443-458. 5. Toubai T, et al. *Front Immunol.* 2016;7:539. 6. Markey KA, et al. *Blood.* 2014;124:354-362. 7. Zeiser R, Blazar BR. *N Engl J Med.* 2017;377:2167-2179. 8. Abboud R, et al. *Ther Adv Hematol.* 2020;11:1-13. 9. Schroeder MA, DiPersio JF. *Dis Model Mech.* 2011;4:318-333. 10. Ferrara JLM, et al. *Lancet.* 2009;373:1550.

Disease Initiation: Changes in Gut Microbiome Contribute to aGVHD

- Commensal bacteria
- Pathogenic bacteria

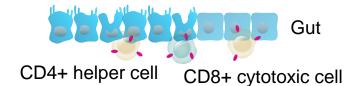
Bacterial translocation leads to the activation of APCs in a process that involves STAT signaling³ APCs recognize pathogenic bacteria and prime donor T cells²

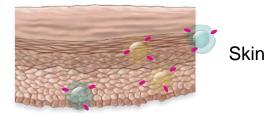

JAK/STAT and PI3K signaling in macrophages causes damage to target tissues via nitric oxide production³


Donor T-Cell Activation and Expansion

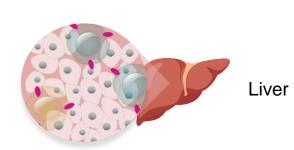
- T-cell receptors and co-stimulatory molecules (eg, CD28) on donor T cells interact with ligands on the surface of the activated APCs, leading to donor T-cell activation¹
- Inflammatory cytokines produced in response to these activation signals subsequently stimulate T-cell expansion and differentiation^{1,2}
- Signaling through the IFN-γ receptor and the JAK/STAT pathway results in increased T-cell trafficking to the gut, liver, and skin²

CD, cluster of differentiation.


End-Organ Damage Potentiates aGVHD



- Donor T-cell trafficking to target organs is mediated by chemokines, chemokine receptors, and adhesion molecules¹⁻³
- Recruited T cells from lymphoid tissues⁴⁻⁶
 - Proliferate and differentiate into effector T cells
 - Migrate to target organs
 - Release additional cytokines and other immune effectors to cause inflammation, organ damage, and apoptosis
- Sustained end-organ tissue damage potentiates aGVHD through cytokine-mediated feedback loops and maintenance of inflammation²


End-organ damage^{4,7}

Cytolytic donor cells cause end-organ damage and perpetuate pathway propagation

^{1.} Ferrara JLM, et al. *Lancet*. 2009;373:1550-1561. 2. McDonald-Hyman C, et al. *Sci Transl Med*. 2015;7:280-282. 3. Schroeder MA, et al. *Biol Blood Marrow Transplant*. 2018;24:1125-1134. 4. Villa NY, et al. *Viruses*. 2016;8:1-30. 5. Blazar BR, et al. *Nat Rev Immunol*. 2012;12:443-458. 6. Ball LM, et al. *Bone Marrow Transplant*. 2008;41(suppl 2):S58-S64. 7. Nassereddine S. et al. *Anticancer Res*. 2017;37:1547-1555.

Chronic GVHD

Mechanism of Disease

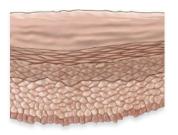
Liver

Clinical Manifestations of cGVHD

- cGVHD is the most common long-term complication of allo-HSCT¹
- Among patients receiving allo-HSCT, 30% to 50% experience cGVHD²⁻⁵
- cGVHD has a median onset of 4 to 6 months after allo-HSCT^{6,7}

cGVHD of the eye can have characteristic

hypervasculature⁸


Dry eyes

Eyes

Inflammatory cellular infiltrates may occur in the bile duct of a patient with cGVHD⁸

Jaundice

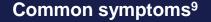
Skin

Localized sclerosis of the skin occurs in cGVHD⁸

Dyspigmentation

Lung

Mouth



Pronounced fibrotic changes can be seen in the lungs of a patient with cGVHD⁸

Oral cGVHD is characterized by reduced and sclerotic gingiva⁸

Bronchiolitis

Dry mouth

1. Lee SJ. *Blood.* 2017;129:30-37. 2. Kitco CL, et al. *Transplant Cell Ther.* 2021;27(7):545-557. 3. Im A, et al. *Biol Blood Marrow Transplant.* 2020;26(8):1459-1468. 4. Arai S, et al. *Biol Blood Marrow Transplant.* 2015;21(2):266-274. 5. Arora M, et al. *Biol Blood Marrow Transplant.* 2016;22(3):449-455. 6. Lee SJ. *Best Pract Res Clin Haematol.* 2010;23:529-535. 7. Garnett C, et al. *Ther Adv Hematol.* 2013;4:366-378. 8. Zeiser R, Blazer BR. *N Engl J Med.* 2017;377:2565-2579. 9. Ferrara JLM, et al. *Lancet.* 2009;373:1550.

cGVHD: Epidemiology and Significance

cGVHD is associated with significant morbidity¹⁻⁴

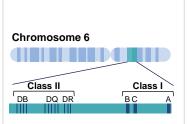
- Many patients require ongoing immunosuppressive therapy years after diagnosis of cGVHD
 - A large proportion of patients may need immunosuppressive therapy years after diagnosis depending on severity of disease^{5,6}
- cGVHD is associated with frequent and severe infections^{2,4,7}
- cGVHD leads to debilitating fibrotic organ damage that can be irreversible⁸

cGVHD is associated with worse patient-reported outcomes compared with healthy individuals, including^{1,9-11}

- Significantly lower health-related quality of life
- Decreased functional status
- Inability to work or resume social roles

Among patients who are disease-free after allo-HSCT, cGVHD is a leading cause of NRM^{1,12,13}

- 60% to 80% 2-year OS and RFS rates^{3,a}
- cGVHD-associated NRM increases over time and is associated with organ failure and infection¹³


^{1.} Lee SJ. Blood. 2017;129:30-37. 2. Blazar BR, et al. Nat Rev Immunol. 2012;12:443-458. 3. Lee SJ. Best Pract Res Clin Haematol. 2010;23:529-535. 4. Garnett C, et al. Ther Adv Hematol. 2013;4:366-378. 5. Stewart BL, et al. Blood. 2004;104:3501-3506. 6. Curtis LM, et al. Biol Blood Marrow Transplant. 2017;23:1980-1988. 7. Socie G, Ritz J. Blood. 2014;124:374-384. 8. Hill GR, et al. Annu Rev Immunol. 2021 Apr 26;39:19-49. 9. Pidala J, et al. Blood. 2011;117:4651-4657. 10. Lee SJ, et al. Haematologica. 2018;103:1535-1541. 11. Kurosawa S, et al. Biol Blood Marrow Transplant. 2019;25:1851-1858. 12. Wingard JR, et al. J Clin Oncol. 2011;29:2230-2239. 13. DeFilipp Z, et al. Blood Adv. 2021;5(20):4278-4284.

^a Two-year survival outcomes are based on data from the Fred Hutchinson Cancer Research Center.³ NRM, non-relapse mortality; OS, overall survival; RFS, relapse-free survival.

Risk Factors for Development of cGVHD

HLA mismatch¹⁻⁵

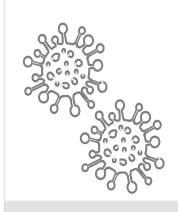
HLA mismatch between donor and recipient is a significant risk factor influencing the development of cGVHD

Conditioning regimens¹⁻³

Higher intensity conditioning causes more tissue damage, enhancing cytokine release and immune activation

Radiation

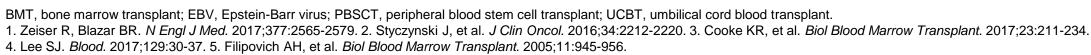
Prior aGVHD^{1,3-5}


Prior tissue damage from aGVHD, especially to the thymus, may persist and contribute to cGVHD initiation

Graft characteristics¹⁻⁵

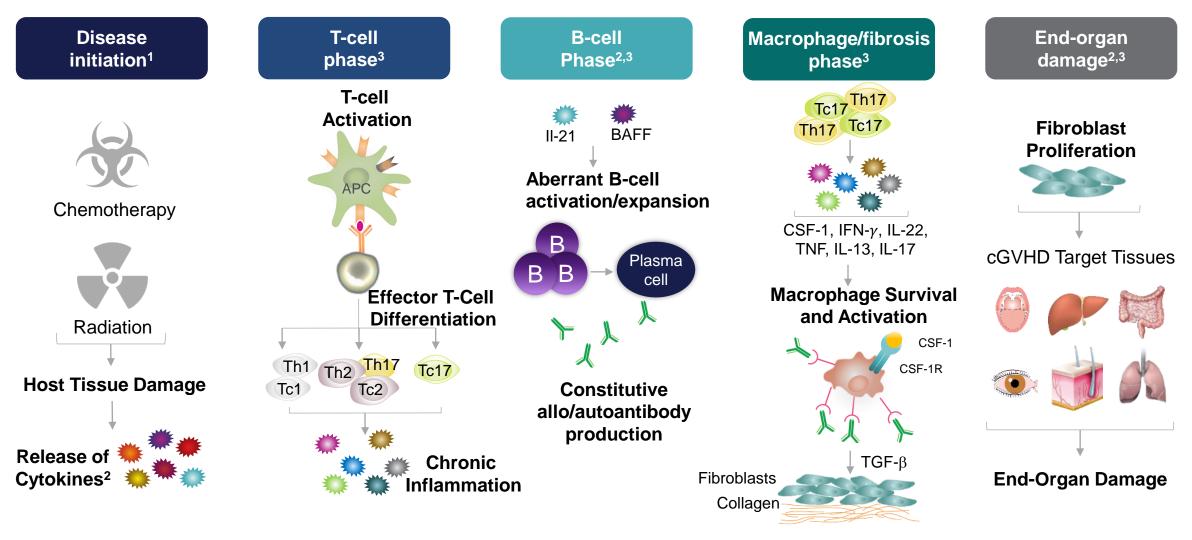
PBSCT is associated with greater risk of cGVHD compared with BMT or UCBT

Prior EBV infection¹⁻³



Seropositivity of herpes viruses, including EBV, suggests a mechanism that could exacerbate or initiate cGVHD

Post-HSCT treatments¹⁻⁵



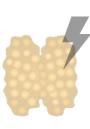
Treatments involving
T-cell depletion or post
transplantation
cyclophosphamide
may decrease
incidence and severity
of cGVHD

Review of cGVHD Pathophysiology

Disease Initiation: Damage to the Host Tissue

Response to conditioning regimen-induced tissue damage

Conditioning enables host recipients to receive immunocompetent T cells^{1,2}

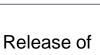

Radiation Chemotherapy

Damage

Conditioning regimens may comprise a combination of chemotherapy, radiation, and/or immunosuppressive drugs

Most tissue damage

Damage to the thymus from the conditioning regimen or other causes^a results in impaired negative selection, leading to the development of host-derived donor reactive T cells²⁻⁴



Thymus

3 Cytokine release and acute inflammation

Donor reactive T cells

cytokines

Damage to host tissues causes release of cytokines, leading to^{3,5}

- Donor T-cell differentiation into Th1/Tc1, Th2/Tc2, and Th17 effector cells^{6,7}
- Recruitment of donor T cells into the target tissue^{6,7}

Conditioning-mediated damage to host mucosa and skin initiates GVHD⁵

Mouth

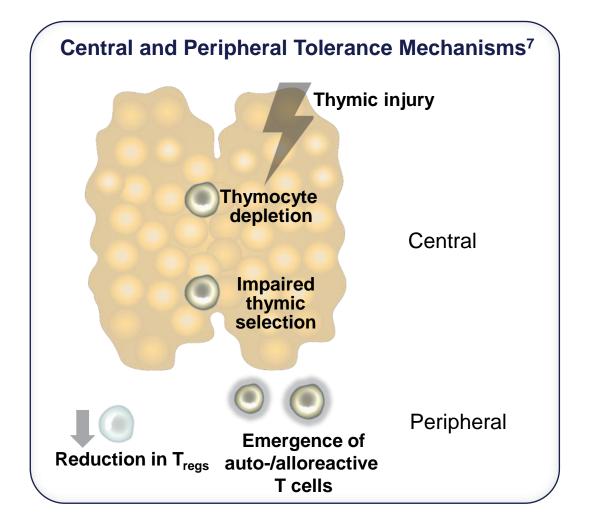
Skin

Liver

yes

Lungs

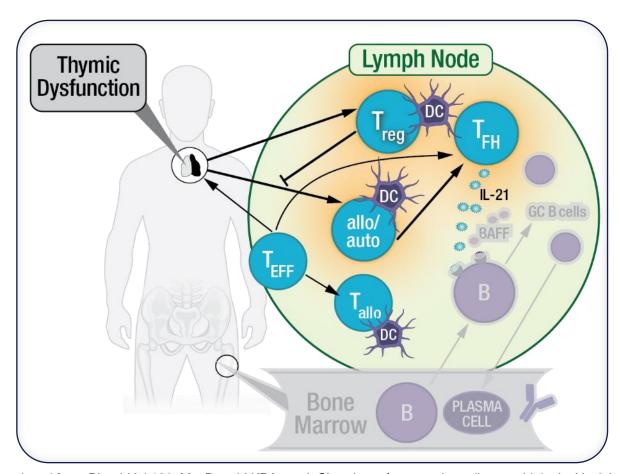
- ^a Other causes of thymic injury include prophylaxis with calcineurin inhibitors, alloreactive T cells, low serum thymic hormone levels, and immunoglobulin deposition.³
- 1. Ferrara JL, et al. Stem Cells.1996;14:473-489. 2. Blazar BR, et al. Nat Rev Immunol. 2012;12:443-458. 3. Zeiser R, Blazar BR. N Engl J Med. 2017;377:2565-2579.
- 4. Soares MV, et al. Front Immunol. 2019;10:334. 5. Toubai T, et al. Front Immunol. 2016;7:539. 6. Cooke KR, et al. Biol Blood Marrow Transplant. 2017;23:211-234. 7. Schroeder MA, DiPersio JF. Dis Model Mech. 2011;4:318-333.


Gut

Dysregulated T-Cell Immunity: Thymic Dysfunction Contributes to cGVHD

T-cell phase

- Thymic injury, caused by the conditioning regimen, alloreactive T cells, or prior aGVHD, leads to¹⁻⁶
 - Emergence of alloreactive and autoreactive
 T cells due to impaired thymic selection
 - Thymocyte depletion resulting in the loss of T_{regs}, further facilitating escape of auto- and alloreactive T cells into the periphery
- Disrupted immune regulation leads to activation of autoreactive and alloreactive T cells, further propagating cGVHD pathology^{2,5-7}



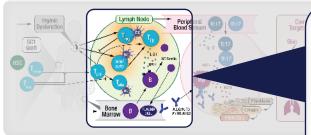
Dysregulated T-Cell Immunity: An Imbalance Between Effector Cells and T_{regs}

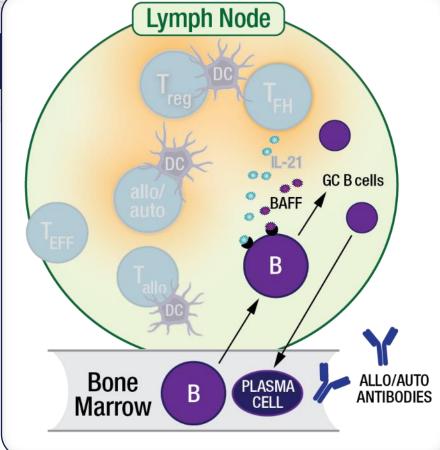
T-cell phase

- Dysregulation of immune mechanisms via¹⁻⁵
 - Donor T-cell activation
 - Autoreactive T-cell proliferation
 - Reduced T_{reas}
- Activation of donor lymphocytes leads to differentiation into effector populations^{1,3,5}
- Cytolytic attack by effector T cells leads to further recruitment of immune cells¹
- Proinflammatory cytokines and an imbalance in effector and regulatory populations promote chronic inflammation, leading to widespread tissue fibrosis and exacerbating cGVHD¹⁻⁷

Reproduced from *Blood*, Vol 129, MacDonald KPA, et al. Chronic graft-versus-host disease: biological insights from preclinical and clinical studies, Pages 13-21, Copyright (2017), with permission from Elsevier.

DC, dendritic cell; T_{FFF}. effector T cell; T_{FH}, T follicular helper cell.


- 1. Cooke KR, et al. Biol Blood Marrow Transplant. 2017;23:211-234. 2. Blazar BR, et al. Nat Rev Immunol. 2012;12:443-458. 3. Zeiser R, Blazar BR. N Engl J Med. 2017;377:2565-2579.
- 4. MacDonald KPA, et al. Blood. 2017;129:13-21. 5. Schroeder MA, DiPersio JF. Dis Model Mech. 2011;4:318-333. 6. MacDonald KPA, et al. J Clin Invest. 2017;127:2452-2463.
- 7. McDonald-Hymen C, et al. Sci Transl Med. 2015;7:280-282.



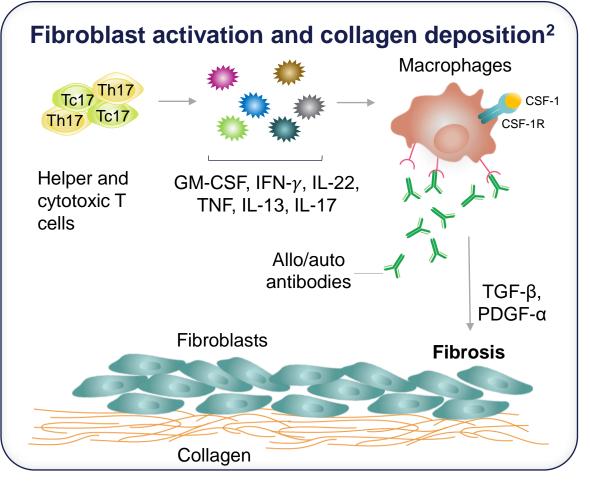
Aberrant B-Cell Activation and Expansion

B-cell phase

- Aberrant B-cell activation and expansion occurs due to
 - Impaired B-cell reconstitution after HSCT¹⁻³
 - Elevated expression of BAFF^{1,3}
 - Interactions with donor T cells^{3,4}
- Activated B cells capable of constitutive allo/autoantibody production contribute to the inflammatory response and target tissue damage¹⁻⁷

Reproduced from *Blood*, Vol 129, MacDonald KPA, et al. Chronic graft-versus-host disease: biological insights from preclinical and clinical studies, Pages 13-21, Copyright (2017), with permission from Elsevier.

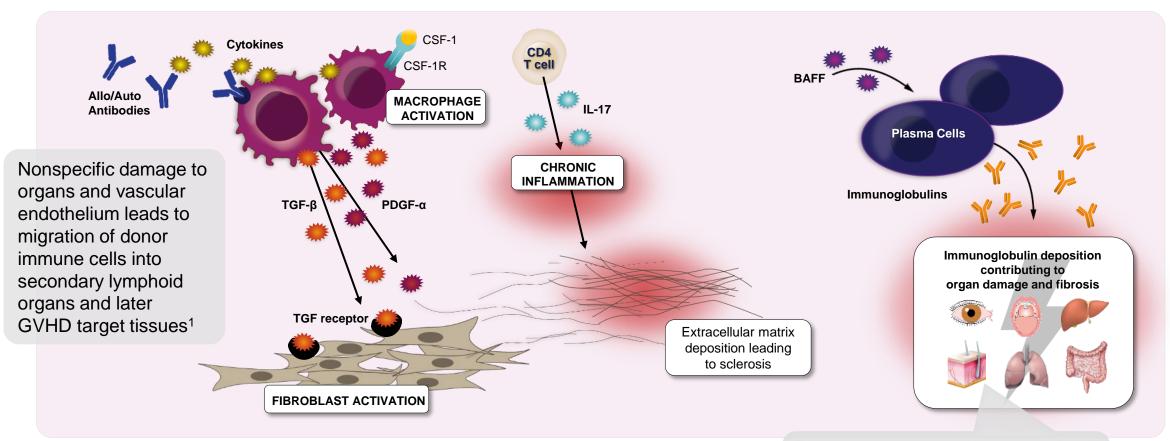
GC, germinal center.


1. Sarantopoulos S, et al. *Biol Blood Marrow Transplant*. 2015;21:16-23. 2. Shimabukuro-Vornhagen A, et al. *Blood*. 2009;114:4919-4927. 3. Cooke KR, et al. *Biol Blood Marrow Transplant*. 2017;23:211-234. 4. Schroeder MA, DiPersio JF. *Dis Model Mech*. 2011;4:318-333. 5. MacDonald KPA, et al. *Blood*. 2017;129:13-21. 6. Zeiser R, Blazar BR. *N Engl J Med*. 2017;377:2565-2579. 7. McDonald-Hyman C, et al. *Sci Transl Med*. 2015;7:280rv2.

Activated Macrophages Produce Inflammatory Cytokines and Growth Factors That Drive Fibrosis

- Effector cell—produced proinflammatory cytokines and B-cell—derived allo/ autoantibodies promote macrophage activation¹⁻⁴
- Donor-derived macrophages are dependent on CSF-1R signaling for proliferation, differentiation, and migration⁵⁻¹¹
- CSF-1R-dependent activated macrophages mediate production of TGF-β, which contributes to intestinal pathology, epidermal inflammation, and subcutaneous and cutaneous fibrosis in cGVHD¹²⁻¹³

Used with permission of the American Society for Clinical Investigation from *The Journal of Clinical Investigation*, Vol 127, MacDonald KPA, et al. Cytokine mediators of chronic graft-versus-host disease, Pages 2452–2463, Copyright (2017); permission conveyed through Copyright Clearance Center, Inc. GM-CSF, granulocyte-macrophage colony-stimulating factor; PDGF-α, platelet-derived growth factor alpha.


1. MacDonald KPA, et al. *Blood*. 2017;129:13-21. 2. MacDonald KPA, et al. *J Clin Invest*. 2017;127:2452-2463. 3. Cooke KR, et al. *Biol Blood Marrow Transplant*. 2017;23:211-234. 4. Schroeder MA, DiPersio JF. *Dis Model Mech*. 2011;4:318-333. 5. Hume DA, et al. *J Immunol*. 1988;141(10):3405-3409. 6. Hume DA and MacDonald KP. *Blood*. 2012;119(8):1810-1820. 7. Kelley TW, et al. *J Biol Chem*. 1999;274(37):26393-26398. 8. Mossadegh-Keller N, et al. *Nature*. 2013;497(7448):239-243. 9. Rieger MA, et al. *Science*. 2009;325(5937):217-218. 10. Stanley ER and Chitu V. *Cold Spring Harb Perspect Biol*. 2014;6(6):a021857. 11. Tushinski RJ and Stanley ER. *J Cell Physiol*. 1983;116(1):67-75. 12. Alexander KA, et al. *J Clin Invest*. 2014;124(10):4266-4280. 13. Banovic T, et al. *Blood*. 2005;106(6):2206-2214.

Aberrant Tissue Repair, Propagation of Fibrosis, and Progression of cGVHD¹

End-organ damage

Fibrosis of the skin and lungs can result in scleroderma-like changes and BOS, respectively¹⁻³

Image adapted from Zeiser R, Blazar BR. *N Engl J Med.* 2017;377:2565-2579. BOS, bronchiolitis obliterans syndrome.

^{1.} Cooke KR, et al. *Biol Blood Marrow Transplant*. 2017;23:211-234. 2. MacDonald KPA, et al. *J Clin Oncol*. 2017;127:2452-2463. 3. Kitko CL, et al. *Biol Blood Marrow Transplant*. 2012;18:S46-S52.

Appendix

Histologic Features of cGVHD

- Displays autoimmune and fibrotic features¹
- Inflammatory proteins and fibrotic changes cause diffuse, nonspecific damage to numerous organs and the vascular endothelium^{1,2}

End Organ/Site	Characteristic Histopathologic Findings ³
Liver	 Immune-mediated damage to small bile ducts and ductules Cholestatic and inflammatory changes
Skin	 Superficial interface dermatitis with vacuolar change in the basilar layer Lichenoid pattern of lymphocytic inflammation ± lymphocyte satellitosis
GI	 Destruction of basilar glands or crypts Mucosal denudation Enterocyte apoptosis
Mucosa (eg, oral cavity, eye)	 Exocytosis, apoptosis, and/or lichenoid interface inflammation characteristic of localized or generalized epithelial changes Conjunctival features include lymphocyte exocytosis, satellitosis, vacuolization of the basal epithelium, and epithelial cell necrosis
Lungs	 Constrictive bronchiolitis obliterans (cGVHD) Cryptogenic organizing pneumonia (aGVHD and cGVHD)

Note: Diagnosis of GVHD is not achieved by histopathology alone; histology results must be integrated into the context of clinical presentation.² GI, gastrointestinal.

^{1.} Blazar BR, et al. *Nat Rev Immunol.* 2012;12:443-458. 2. Cooke KR, et al. *Biol Blood Marrow Transplant*. 2017;23:211-234. 3. Shulman HM, et al. *Biol Blood Marrow Transplant*. 2015;21:589-603.

Potential Biomarkers for cGVHD

Biomarker	Biologic Function	Prognostic	Diagnostic	Predictive
BAFF	BAFF is a survival factor for B cells and controls normal B-cell maturation; however, it promotes survival of autoreactive B cells ^{1,2} ; increased levels of sBAFF correlate with onset of, and active cGVHD. Increased levels 1 month after ECP predicted response of skin cGVHD ^{3,4}		√	√
B cells	A breakdown in peripheral B-cell tolerance and altered B-cell homeostasis are components of cGVHD ¹ ; an imbalance of certain B-cell subsets is associated with the diagnosis and severity of cGVHD ^{4,5}	√	✓	✓
CD163	CD163 is a macrophage scavenger receptor regulated by inflammatory mediators ⁶ ; plasma CD163 associates with de novo–onset cGVHD ^{3,4}	✓		
CTLA-4 SNP	Association between position +49 guanine to guanine homozygote genotype in donors and higher risk of cGVHD ^{5,7}	✓		
CXCL9	T cell type 1 chemokine detected in the blood that attracts CXCR3+ T cells in cGVHD target organs ⁸ ; increased levels and up-regulated gene expression detected at diagnosis of cGVHD; increased levels at symptom onset associated with severe cGVHD ³⁻⁵	✓	✓	
CXCL10	Increased levels and up-regulated gene expression detected at diagnosis and in active cGVHD ³⁻⁵	✓	✓	
DKK3	Glycoprotein that regulates Wnt signaling, RYK and Ror28; increased levels at diagnosis associated with NRM3,4	√	✓	
IL-15	Homeostatic cytokine ⁵ ; low levels of IL-15 on day 7 after allo-HSCT associated with a 2.7-fold higher likelihood of developing cGVHD ^{4,9}	✓	✓	
IL-2Rα	Decrease in sIL-2Rα predicts response to the combination of ECP and ruxolitinib ⁵			✓
miRNAs	Play a regulatory role in immune response and autoimmunity; miR-155 strongly associated with onset and severity of cGVHD, and differentially expressed in patients with severe and mild cGVHD ⁵		✓	

CTLA, cytotoxic T-lymphocyte antigen; CXCL, C-X-C Motif Chemokine Ligand; DKK, dickkopf; ECP, extracorporeal photophoresis; miRNAs, micro RNAs, NRM, nonrelapse mortality; Ror, receptor tyrosine kinase-like orphan receptor; RYK, receptor-like tyrosine kinase; sBAFF, soluble B-cell activating factor; SNP, single-nucleotide polymorphism; TRM, treatment-related mortality.

1. Sarantopoulos S, et al. *Blood*. 2009;113:3865-3874. 2. Liu Z, Davidson A. *Trends Immunol*. 2011;32:388-394. 3. Bidgoli A, et al. *Transpl Cel Ther*. 2022;28:657-666. 4. Milosevic E, et al. *Front Immunol*. 2022;13.1033263. doi: 10.3389/fimmu.2022.1033263. 5. Ji R, et al. *Crit Rev Oncol / Hematol*. 2023;186:103993. https://doi.org/10.1016/j.critrevonc.2023.103993. 6. Inamoto Y, et al. *Biol Blood Marrow Transplant*. 2017;23:1250-1256. 7. Wang Z, et al. *Hematol*. 2021;26(1):144-153. 8. Logan BR, et al. *J Clin Invest*. 2023;133(15):e168575. 9. Pratt LM, et al. *Bone Marr Tranpl*. 2013;48(5):722-728.

Potential Biomarkers for cGVHD (cont)

Biomarker	Biologic Function	Prognostic	Diagnostic	Predictive
ММР3	MMP family of proteins regulates the breakdown of extracellular matrix and tissue remodeling ¹ ; increased MMP3 levels in BOS patients ²		✓	
ММР9	MMP family of proteins regulates the breakdown of extracellular matrix and tissue remodeling ¹ ; Increased levels at BOS diagnosis associated with OS ²	✓		
NK/NK _{reg} cells	Play a key role in tissue fibrosis ³ ; along with an imbalance of other immune cell compartments, loss of NK _{reg} cells associates with the future development and severity of cGVHD ⁴ and different subpopulations may have potential in diagnosing organ-specific cGVHD ³	✓	✓	
Osteopontin	Osteopontin has broad biological functions, including biomineralization, bone remodeling, and inflammation ⁵ ; detection in plasma as part of a panel with ST2, CXCL9 and MMP3 can predict future cGVHD ⁶	✓	✓	
anti-PDGFR	Levels correlate with cGVHD diagnosis and severity; predictive of response to nilotinib for steroid-refractory or steroid-dependent cGVHD ^{3,7}	✓	✓	✓
PD-1	Inhibitory immune checkpoint receptor; maintains immune tolerance. ³ Levels of soluble PD-1 decreased in cGVHD patients; related to OS, DFS and TRM, and PD-1 expression in circulating CD4+ and CD8+ T cells may be predictive of response to abatacept ^{3,8}	✓	✓	
Reg3α	Peptide primarily found in Paneth cells of the intestines; increased levels associated with GI cGVHD; increased levels at GI cGVHD diagnosis associated with NRM ²	✓	✓	
anti-Ro52	Autoantibody against the Ro52 protein; levels found to be higher in patients with active cGVHD than without active cGVHD, and associated with severity of cGVHD; diagnostic potential for skin and liver cGVHD ^{3,9}	✓		
ST2	Interaction between ST2 and its ligand, IL-33, triggers inflammatory cytokine production and cell proliferation ¹⁰ ; ST2 levels declined after 2, 4, and 6-months of ECP ²			✓
Th17 cells	Increased plasma Th17 cells at cGVHD onset; higher levels in allografts predicts high treatment sensitivity ³		✓	✓
T _{reg} cells	T_{regs} establish tolerance between recipient tissues and donor-derived immunity; decreased T_{reg} in peripheral blood in cGVHD, but enriched in target tissues. ³ Predicts response to ECP in steroid-refractory cGVHD ³		✓	✓

DFS, disease-free survival; MMP, matrix metalloproteinase; NK_{reg}, regulatory natural killer cell; OS, overall survival; PD-1, programmed cell death protein-1; Reg3α, regenerating islet-derived 3α; ST2, suppression of tumorigenicity 2; TRM, treatment-related mortality.

^{1.} Wang X, Khalil RA. *Adv Pharmacol*. 2018;81:241-330. 2. Bidgoli A, et al. *Transpl Cel Ther*. 2022;28:657-666. 3. Ji R, et al. *Crit Rev Oncol / Hematol*. 2023;186:103993. https://doi.org/10.1016/j.critrevonc.2023.103993. 4. Schultz KR, et al. *Blood*. 2020;135:1287-1298. 5. Icer MA, Gezmen-Karadag M. *Clin Biochem*. 2018;59:17-24. 6. Logan BR, et al. *J Clin Invest*. 2023;133(15):e168575. 7. Chen GL, et al. *Biol Blood Marr Transpl*. 2018;24(2):373-380. 8. Kordelas L, et al. *Bone Marr Transpl*. 2021; 12:3799. 9. Yang K, et al. *Front Immunol*. 2020;11:1505. 10. Reichenbach DK, et al. *Blood*. 2015;125:3183-3192.

