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ABSTRACT 

Speech is bimodal in nature and includes the audio 

and visual modalities. In addition to acoustic 

speech perception, speech can be also perceived 

using visual information provided by the 

mouth/face (i.e., automatic lipreading). In this 

study, the visual speech production in noisy 

environments is investigated. The authors show 

that the Lombard effect plays an important role not 

only in audio speech but also in visual speech 

production. Experimental results show that when 

visual speech is produced in noisy environments, 

the visual parameters of the mouth/face change. As 

a result, the performance of a visual speech 

recognizer decreases. 

Keywords: speech, noisy environments, Lombard 

effect, lipreading 

1. INTRODUCTION 

In noisy environments, the talker increases the 

intelligibility of his/her speech [5], and, during this 

process, several characteristics of speech change 

(the Lombard effect) [1]. As a result, the 

performance of an automatic speech recognizer 

operating in a noisy environment decreases not 

only because of the noise contamination but also 

because of these modifications [3]. 

Although many studies have addressed the 

problem of the Lombard reflex in audio-only 

automatic speech recognition, only a few studies 

have addressed this issue with reference to 

automatic visual speech recognition. In [4], 

audiovisual speech recognition experiments using 

noisy and Lombard data were presented. In this 

study, it was also briefly mentioned that the 

Lombard effect is present not only in the audio 

channel but also in the visual channel, and a few 

results were also presented. In [2], the changes that 

occur in the visual correlates of speech articulation 

when speech is produced in noisy environments 

were considered. In this study, results were 

presented showing visual differences in the 

lip/mouth sector when speech was produced in a 

noisy environment or when Lombard speech was 

used. However, in this study, analysis and 

experimental results related to visual speech 

recognition were not reported. 

In this study, the authors comprehensively 

analysed the visual Lombard effect phenomenon 

with respect to automatic visual speech recognition 

and showed significant progress compared to the 

previously limited studies. Specifically, continuous 

phoneme recognition experiments were conducted 

in Japanese, using data from several speakers. 

Further, a method based on adaptation was applied 

in order to address the problem of the Lombard 

effect in visual speech recognition. 

2. ACOUSTIC LOMBARD REFLEX 

When speech is produced in noisy environments, 

the speech production process is modified, leading 

to the Lombard reflex. Specifically, due to the 

reduced auditory feedback, the talker attempts to 

increase the intelligibility of his/her speech. During 

this process, several characteristics of speech 

change. In particular, the intensity of speech 

increases, the fundamental frequency (F0) and 

formants shift, the durations of vowels in- crease, 

and the spectral tilt changes. Because of these 

modifications, the performance of a speech 

recognizer decreases. 

One way to investigate the effect of the 

Lombard reflex is to analyze clean speech uttered 

while the speaker is listening to noise through 

headphones or earphones (i.e., Lombard speech). 

Even though Lombard speech does not contain any 

noise components, modifications in speech 

characteristics can be realized. 

Figure 1 shows the power spectrum of a normal 

clean word and a Lombard word recorded while 

listening to office noise through headphones at 75 
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dB(A). The example clearly illustrates the 

modifications leading to the Lombard reflex: 

power is increased, formants are shifted, and 

spectral tilt is changed. These differences in the 

spectra cause feature distortions (e.g., distortions in 

the Mel-Frequency Cepstral Coefficients 

[MFCC]), and therefore, acoustic models trained 

using clean speech fail to correctly match the 

speech affected by the Lombard reflex. 

Figure 1: Power spectrum of a normal clean and a 

Lombard utterance. 

 

3. METHODOLOGY 

3.1. Data and statistical modeling 

For the experiments, three speakers (one male and 

two females) were instructed to read out sentences 

from the JNAS database. To obtain Lombard 

speech, the speakers listened to babble noises at 

70, 75, and 80 dB(A) while uttering the sentences 

(i.e., Lombard data). 

The data used were 400 continuous Japanese 

sentences [i.e., 250 clean utterances, 50 Lombard 

utterances with 70 dB(A), 50 Lombard utterances 

with 75 dB(A), and 50 Lombard utterances with 80 

dB(A)]. Forty-three context-independent, hidden 

Markov models (HMMs) [6] trained using data 

from each speaker. Each HMM state was modeled 

with a mixture of 16 Gaussian components. The 

number of Gaussians was selected experimentally 

to obtain the highest accuracy. For training clean 

HMMs (i.e., trained with speech recorded in the 

clean environment), 15,706 phonemes were used, 

whereas 2,806 phonemes from each speaker of 

each noise level were used for testing. The acoustic 

parameter vectors were of length 36 (12 MFCC, 12 

∆ MFCC, and 12 ∆∆ MFCC). 

3.2. Visual parameter extraction 

For lip-parameter extraction, the OKAO Vision 

commercial tool of the OMRON Corporation was 

used. Details concerning the methods applied for 

using the specific tool can be found in the study 

[8]. The OKAO Vision system carries out real-

time detection and tracking of the face, mouth, and 

eyes, and each time frame provides the x-y 

coordinates of 38 points at a rate of 30 Hz. Using 

the 38 points provided, six lip parameters —along  

with their first- and second-order derivatives— 

were computed as follows: width (W), outer 

perimeter (C1), inner perimeter (C2), area (A), 

outer height (h1), and inner height (h2). Figure 2 

shows the lip parameters used in this study.  

Figure 2: Lip parameters used as features in the 

statistical modeling. 

 

Figure 3: Normalized outer height in the case of a 

clean and a Lombard word. 

 

To correct for the speaker–camera distance and 

the pose of the head, the lip features were 

normalized by dividing them with the Euclidean 

distance computed from the midpoint between the 

eyes and the upper lip, which does not move much 

during speech production. The visual signal was 

recorded at the rate of 30 Hz, in synchrony with 

the audio signal. A 25-ms window that shifted 

every 10 ms was used for extraction of the acoustic 

parameters. To obtain the same number of visual 

and audio samples, the visual samples were also 

interpolated before fusion was carried out. 
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4. EXPERIMENTS 

4.1. Analysis of the visual parameters 

Figure 3 shows the normalized outer height in the 

case of a Lombard utterance and a clean Japanese 

utterance. As is shown, in the case of the Lombard 

sentence, larger values are observed. Since these 

values are used as features in the statistical 

modeling, it is expected that differences in 

recognition rates will occur. 

Figure 4 shows the density function of the outer 

height computed by the Kernel density estimation 

using the fast Fourier transform [7, 9] in the case 

of the Japanese male speaker.  The figure clearly 

shows the differences when using clean speech, 

Lombard speech at the 70 dB(A) noise level, and 

Lombard speech at the 80 dB(A) noise level. By 

increasing the noise level, the probability of 

observing higher values in the outer height further 

increases. 

Figure 4: Density functions in the clean and Lombard 

cases. 

 

Table 1: Mean values of the visual parameters in the 

case of clean and Lombard speech. 

Parameter Visual Speech Data 

Clean 70dB(A) 80dB(A) 

Outer height 0.474 0.488 0.492 

Inner height 0.076 0.093 0.100 

Width 0.753 0.773 0.777 

Area 0.207 0.224 0.230 

Outer perimeter 1.699 1.759 1.779 

Inner perimeter 1.528 1.582 1.596 

Table 1 shows the mean values of the 

normalized lip features over all test data in the case 

of Japanese clean speech and Lombard speech. In 

all cases, the parameters increase while using 

Lombard speech. The results also show that, as the 

noise level increases, larger differences can be 

observed. 

4.2. Visual speech automatic recognition 

Figure 5 shows the results obtained when Japanese 

multi-speaker automatic visual experiments were 

conducted. In this case, all the training data of the 

three speakers were used to train a common HMM 

set. The figure shows the effect of the Lombard 

reflex in visual speech recognition in Japanese 

continuous phoneme recognition. Using clean test 

data, the phoneme accuracy was 44.5%. When the 

test data comprised Lombard speech of 70 dB(A), 

the phoneme accuracy de- creased to 39.2%. The 

phoneme accuracy was further decreased upon 

increasing the noise level. Using the test Lombard 

speech of 80 dB(A), the phoneme accuracy was 

only 34.4%. The results show that, as the noise 

level increases, the phoneme accuracy further 

decreases. 

Figure 5: Visual speech automatic recognition using 

clean HMMs and adapted HMMs. 

 

To deal with the decreases of the phoneme 

accuracy due of the visual Lombard effect, the 

clean visual HMMs were adapted to the Lombard 

effect using Maximum Likelihood Linear 

Regression (MLLR) adaptation. MLLR is a 

method for speaker adaptation. In this study, 

however, MLLR was used to adapt the clean visual 

models to visual Lombard models. Specifically, 50 

sentences from each speaker recorded at 75 dB(A) 

babble noise (i.e., different from the noise level of 

the Lombard test sets) were used as adaptation 

data, and MLLR was performed. Figure 5 also 

shows the results after MLLR was applied. As is 

shown, after model adaptation, the phoneme 

accuracies using Lombard data increased. 
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5. DISCUSSION 

The current study focuses on the phenomenon of 

the Lombard effect with respect to automatic 

speech recognition. Although, speech cannot be 

perceived completely using visual information 

from mouth/lips alone, automatic visual speech 

recognition has applications in audiovisual speech 

recognition and in lip synthesis. It is important, 

therefore, to analyze the behaviour of automatic 

lip-reading also in adverse environments. In many 

audiovisual systems, audio speech is recorded in 

laboratory environments under relatively clean 

conditions. To better match the noisy testing 

conditions, artificially noisy training data are 

created by superimposing noise onto the clean 

training data and re-training the system. This is 

reasonable when artificial data are used for testing. 

In real applications, however, Lombard effect also 

appears. For robust audiovisual speech recognition 

in real environments the visual Lombard effect 

should also be considered. 

6. CONCLUSIONS 

In this study, the results obtained show that 

recognition rates decrease when visual speech 

recorded in a noisy environment (i.e. Lombard 

visual speech) is tested. In the case of a visual 

speech recognition system operating in a real noisy 

environment, further improvements in the 

recognition rates are achieved if the visual 

Lombard effect is also considered in the statistical 

model training. 
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