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ABSTRACT 

Intra and inter-speaker variability is studied as a 

way to better understand how voice can be used as 

biometric data. Formant values from 328,016 

exemplars of the 10 French oral vowels uttered by 

111 speakers were compared to estimate their 

speaker discrimination power. The vowels /œ/, /ɛ/ 

and /a/ appear to convey more idiosyncratic 

information than other oral vowels. A more 

comprehensive phonetic analysis is carried out for 

each speaker on 2 samples leading to either high or 

low discrimination performance when used in the 

Alize/spkDet SVS. However, no direct explanation 

can be drawn from phonetic measures to predict 

performance level. 

Keywords: speaker verification, formant analysis, 

inter-speaker variability, intra-speaker variability 

1. INTRODUCTION 

Intra and inter-speaker variability in speech is an 

important issue in phonetics. For language 

description, its effects are often minimized by 

normalization [9]. On the contrary, inter-speaker 

variability is the basis of speakers’ discrimination, 

which constitutes the focus of this article.  

On the one hand, relationships between 

acoustic parameters and perceptual speaker 

discrimination have been studied over the last 

century [17]. According to [1], nasal vowels are 

more discriminant than oral vowels. A large inter-

speaker variability in formant transitions was 

found by [16]. Analysis of F0 (means [18] and 

contours [7]), though not always discriminant, may 

improve speaker discrimination.  

On the other hand, automatic speaker 

recognition systems have reached a rather high 

level of performance as shown by National 

Institute of Standards and Technology (NIST) 

evaluation campaigns [14]. However, system 

performance varies depending on different factors 

beginning with speech sample duration [8]. As 

automatic systems are mainly founded on 

stochastic methods, linking performance variations 

to acoustic descriptors of speech is not a 

straightforward task. Speech excerpts are 

parameterized by cepstral coefficients after 

automatic silence removal and parameter 

normalization [19]. Cepstral coefficient values 

provide information on phoneme spectral 

characteristics, while first order (delta) and second 

order (delta-delta) derivatives reflect short-term 

dynamic information. Longer-term information 

such as prosody and phoneme pronunciation order 

is not captured by cepstral coefficients. Although 

some systems [11] combine these statistical 

methods with sub-systems based on information 

such as prosody, nasality-related measurements or 

pauses, this information is not directly integrated 

in the modeling. 

This paper focuses on the inter- and intra-

speaker variability of French vowels, and its 

impact on automatic speaker verification systems. 

First, French vowel formants are analyzed in order 

to both try to predict the more relevant oral vowels 

for speaker discrimination and to measure the 

related intra-speaker variability. Second, the 

impact of intra-speaker variability on a speaker 

verification system is studied. A discussion 

concludes this paper. 

2. EXPERIMENT 1 

2.1. Formant analysis 

Sentences read by French native speakers (64 

female, 47 male) were selected from the BREF 120 

corpus [12]. BREF sentences come from French 
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newspapers and maximize phonetic coverage. A 

forced phonetic alignment was obtained using the 

open-source toolbox Speeral [13] and a manual 

adaptation of the phonetized lexicon to match 

actual realizations in the corpus. The resulting 

phonetic labeling associated each 10 ms frame 

with one of the 32 French phonemes.  

In order to identify the oral vowels with the 

most idiosyncratic information, the first four 

formants were measured at the middle of the vowel 

for the 10 oral vowels of standard French /i, y, u, e, 

ø, o, ɛ, œ, ɔ, a/, adapting the LPC order according 

to the phoneme. All the measures were estimated 

with Praat [2]. 154,288 and 173,728 vowels were 

analyzed for male and female speakers 

respectively. Table 1 summarizes the number of 

occurrences of each vowel. 

Table 1: Number of vowels analyzed from the BREF corpus, F1 to F4 values for the 10 oral vowels of standard French, and 

η2 values for each vowel and speaker gender. Figures in formant values cells: bold=mean; normal=inter-speaker standard 

deviation; italics=intra-speaker standard deviation. Multivariate η² values indicate the magnitude of the speaker effect (ratio 

of explained variance) for MANOVA. All p-values are below 10-9. 

 /a/ /ɛ/ /o/ /e/ /ø/ /i/ /œ/ /ɔ/ /u/ /y/ 

M 

# 31,128 19,585 7,371 23,151 21,260 23,822 2,915 9,126 6,575 9,353 

F1 
602 

39-94 

498 
28-90 

509 
75-115 

434 
33-114 

487 
97-142 

384 
31-113 

509 
37-60 

521 
54-93 

434 
38-113 

412 
35-126 

F2 
1476 

49-189 
1759 

62-138 
1334 

225-310 
1951 

77-125 
1575 

97-237 
2363 

84-207 
1474 

58-135 
1312 

87-239 
1070 

40-187 
2223 

64-187 

F3 
2540 

113-132 
2595 

98-132 
2707 

144-222 
2694 

82-144 
2592 

117-192 
3040 

78-187 
2509 

102-123 
2572 

118-172 
2052 

89-188 
2890 

99-223 

F4 
3680 

163-178 
3686 

157-189 
3667 

124-228 
3709 

150-183 
3570 

121-207 
3662 

92-191 
3547 

144-153 
3580 

122-180 
2806 

80-198 
3542 

91-181 

Multivariate η2 30% 30% 25% 29% 23% 16% 30% 26% 13% 15% 

F 

# 40,683 26,422 8,599 30,380 26,403 31,423 3,803 12,744 8,427 12,186 

F1 
708 

45-98 
571 

29-82 
505 

30-87 
481 

29-79 
471 

27-72 
383 

29-90 
587 

35-54 
551 

32-78 
443 

33-100 
422 

29-113 

F2 
1705 

85-227 
2021 

94-181 
1227 

49-224 
2229 

101-173 
1676 

67-227 
2409 

80-130 
1676 

84-144 
1382 

59-222 
1086 

41-186 
2260 

63-193 

F3 
2833 

147-184 
2911 

131-162 
2860 

141-160 
3006 

120-151 
2808 

126-174 
3021 

70-169 
2843 

148-138 
2846 

153-155 
1886 

68-217 
2876 

58-176 

F4 
3940 

212-266 
4004 

220-265 
3949 

144-181 
4050 

192-242 
3882 

135-221 
3620 

73-191 
3948 

172-201 
3939 

151-195 
2826 

72-150 
3597 

70-183 

Multivariate η2 28% 29% 27% 26% 21% 15% 37% 28% 11% 10,00% 

 

2.2. Inter- and intra-speaker variability 

Mean values of formants 1 to 4 for each vowel, for 

male and female speakers, are also summarized in 

table 1 with inter- and intra-speaker standard 

deviation. Mean values match classical formant 

values for French oral vowels [5]. As shown by 

figure 1, inter-speaker variation depends on the 

vowel: while the inter-speaker standard deviation 

of F1 on /i/ is only 30 Hz, /ø/ has inter-speaker 

standard deviations of F1 close to 100 Hz. 

Analyses of variance (ANOVA) with the 

speaker as fixed factor were run for each speaker 

gender and each oral vowel under consideration. 

The ANOVA allows us to compare the variability 

in formant values that can be attributed to inter-

speaker vs. intra-speaker variation. Indeed, the 

distribution of Fisher’s F function used in ANOVA 

represents the ratio of intra- and inter- variability 

for the factor of interest. In our analyses, a high F 

value therefore indicates a better discrimination 

among speakers. Since F and p-values cannot be 

directly compared, the discrimination power of 

different vowels is estimated by the size estimator 

η², which can be interpreted as the ratio of variance 

explained by the factor of interest [6].  

Figure 1: Mean locations of the 173,728 exemplars of 

the 10 French oral vowels produced by female 

speakers. Ellipses represent inter-speaker standard 

deviation. 
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Vowels are firstly analyzed globally by using 

formants 1 to 4 as dependent variables in a 

multivariate ANOVA design (with Wilk’s lambda 

criterion) with the speaker as fixed factor, for each 

vowel and each speaker gender. Though the 

speaker factor explains 21% to 37% of the 

variance for other oral vowels, which can be 

interpreted as a large effect [6], the effect of the 

speaker is weakest for the focal vowels /i/, /u/ and 

/y/. Overall, the mid vowels /œ/ and /ɛ/ and the low 

vowel /a/ appear to have the highest inter-speaker 

discrimination power. All Multivariate η
2
 are 

presented in table 1. 

Univariate variance analyses (performed on the 

same data subsets) using the speaker as fixed 

factor indicate that, for most vowels, effects are 

slightly stronger on F3 and F4 compared to F1 and 

F2. Focal vowels appear as the least variable 

among speakers for every formant, with an 

exception on F2 of /i/, especially for female 

speakers. However, this discrepancy should be 

interpreted with caution. Since F2 on /i/ is known 

to be weak, its automatic detection is more error-

prone than for other oral vowels. 

The intra-speaker variability is defined for each 

oral vowel and speaker gender as the mean of the 

standard deviations for each speaker. Intra-speaker 

standard deviation values are quite large. Their 

values fluctuate, for men, from 60Hz (/œ/) to 

126Hz (/y/) on F1, and for F2 from 124 Hz (/e/) to 

309 Hz (/o/). 

3. EXPERIMENT 2 

3.1. Methodology 

3.1.1. Choice of the training excerpts 

Using the Alize/SpkDet speaker verification 

system [10, 15] selected two samples of the same 

duration for each speaker of the BREF database: 

the one leading to the best performance (Min) and 

the one leading to the worst performance (Max) 

when the sample is used to build a speaker model. 

The performance is evaluated in term of Equal 

Error Rate [14], which represents the point where 

False Alarms ratio is equal to False Rejection ratio. 

Substantial intra-speaker variability was observed 

in system performance: from 0.9% of EER in Min 

set to 33% of EER in Max set. 

3.1.2. Analyzed features  

Based on the literature, a set of features known to 

be linked with idiosyncratic information were 

selected [7, 16]. For Min and Max sets, the features 

were extracted using the Praat software [2]. The 

studied feature set is composed of segmental 

information (phoneme numbers and trigrams of 

phonemes), formant values of the oral vowels and 

measures strongly influenced by co-articulation 

(area of the vocalic space [4], loci values [20]), F0, 

shimmer and jitter. Regarding the loci measures, 

the correlation a between the F2 value at 10% of 

the vowel and the F2 value at 50% of the vowel is 

measured as an estimation of co-articulation. These 

measures are computed for every oral vowel in 

bilabial, coronal or dorsal context. F0, shimmer 

and jitter values are analyzed for every oral vowel. 

The features values extracted from Min and Max 

sets are compared by paired t-tests for each vowel. 

3.2. Results 

3.2.1. Phoneme counts 

Only the nasal consonants for female speakers 

(p=0.025) and the voiced fricatives (p=0.037) are 

significantly different in quantity between the two 

sets. No significant difference in the distribution of 

trigrams is found between Min and Max sets. Since 

samples are phonologically balanced, these results 

suggest that system performance variability might 

be better explained by differences in the intrinsic 

acoustic quality of speech segments. 

3.2.2. Vowel quality 

Only the /ɛ/ uttered by female speakers have F1 

significantly different between Min and Max 

(p<0.05). Only the /e/ uttered by male speakers 

have F2 significantly different between both sets. 

No significant difference is found for F3. F4 are 

significantly different for /œ/ (p<0.05), /u/ 

(p<0.05) and /y/ (p<0.05) for female speakers. For 

male speakers, only F4 of /e/ are significantly 

different. No significant difference in vocalic 

triangle area is found (p=0.7766 for males, 

p=0.9172 for females). No significant difference in 

loci is found whatever the context (p>0.07). 

3.2.3. F0 information 

The mean F0 are not significantly different for 

female speakers (p=0.790) and slightly 

significantly different for male speakers (p<0.01). 

Similarly, the jitter values are not significantly 

different whatever the phonemes 

(0.07612<p<0.9219 for male speakers and 

0.05083<p<0.9718 for female speakers). For 

shimmer values, only the /i/ shows slightly 
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significant differences (p<0.05) for female 

speakers when no significant difference is 

observed for male speakers (0.1348<p<0.9796). 

It appears that the performance difference 

observed between Min and Max is not explained 

by suprasegmental and voice quality information. 

4. DISCUSSION 

In this paper, we tried to better understand the 

localization of speaker information in the speech 

signal. The analysis of inter- and intra-speaker 

variability constitutes a first step in this direction. 

Both inter- and intra-speaker variability are found 

to be large in the 328,016 French oral vowels 

analyzed. The comparison of speaker effect on 

formant values for oral vowels shows that, in 

French, vowels /a/, /ɛ/ and /œ/ convey more 

idiosynchratic information than the other oral 

vowels. Intra-speaker variability is an important 

factor for speaker verification systems. The 

formant values, the co-articulation information or 

the F0 were not able to explain this variability. 

However, [10] showed that the main difference 

between best and worst (training) speech excerpts 

is found on the cepstral values for all the phonemes 

except /v/. These differences, found on the cepstral 

level, are not explained by the analysis presented 

in this paper. Defining a confidence measure on 

automatic speaker verification results from the 

phonetic analysis of excerpts used as models 

therefore remains a challenge. The identification of 

relevant features for the modeling of 

idiosynchrasic information, and the evaluation of 

their impact on speaker verification is essential in 

voice biometric area, including forensic 

applications. Indeed, the ability to explain how the 

system makes the decision becomes crucial when 

important consequences are bound to this decision, 

as underlined in [3]. 
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