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ABSTRACT 

In this paper, a new approach to syllable-based modeling of F0 
contour, duration and energy for isolated Mandarin words is 
proposed. The syllable F0 contour model considers three major 
affecting factors, including lexical tone, syllable position in a word 
and inter-syllable coarticulation effect; while both the duration and 
energy models additionally consider one more affecting factor of 
base syllable type. Experimental results on a large single-speaker 
database showed that the method performed very well. Based on 
the prosodic model, a learning system for Mandarin word prosody 
pronunciation is designed and implemented for nonnative speakers. 

Index Terms— Prosody modeling, inter-syllable coarticulation 
effect, Mandarin word prosody pronunciation 

1. INTRODUCTION 

Prosody modeling is an important research topic in text-to-speech 
(TTS). A well-designed prosodic model is the key to synthesize 
natural and pleasant speech. Currently, there are three major 
approaches of prosody modeling: rule-based, neural network-based 
and statistical model-based. The rule-based approach tries to 
generalize human’s prosody pronunciation rules from the linguistic 
point of view [1]. But, the rules are often too complicated to be 
exploited. The neural network-based approach imitates the learning 
and memorizing function of human brain. It progressively updates 
its network to learn the linguistics-prosody relationship [2]. It is 
criticized as a black box which is hard to analysis. The statistical 
model-based approach learns a model from a large corpus to build 
the relation between linguistic features and prosodic features [3]. 
In this paper, we adopt the statistical model-based approach to 
learn the prosody generation mechanism of isolated Mandarin 
words.  

The paper is organized as follows. In Section 2, the proposed 
prosody modeling method is presented. In Section 3, experimental 
results are discussed. Some conclusions are given in Section 4. 

2. THE PROPOSED PROSODY MODELING METHOD 

In this study, we consider the modeling of three types of prosodic 
features including syllable log-F0 contour sp, syllable duration sd  
and syllable energy level (maximum energy of final) se. These 
three prosodic features are assumed to be independent of each 
other and their variation is controlled by four main affecting 
factors: lexical tone t , base syllable type s , syllable position in a 
word w  and coarticulation state c . The model can be generally 
expressed by 
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where ( | , , , )P sp t s w c , ( | , , , )P sd t s w c  and ( | , , , )P se t s w c  are 
syllable log-F0 contour, duration and energy models, respectively.  

 
2.1. Syllable F0 contour model 
We assume that the F0 contour of the n-th syllable (current syllable) 
in an isolated spoken word is mainly controlled by three affecting 
factors including the current lexical tone nt , the current syllable 
position in a word nw , and the coarticulations from the two nearest 
neighboring tones, 1nt −  and 1nt + , conditioned respectively on the 
coarticulation states, -1nc  and nc , of the syllable junctures on both 
sides. Here, coarticulation state nc  represents the degree of 
coupling between the n-th and (n+1)-th syllables in a word and is 
treated as hidden to be labeled. Specifically, the syllable F0 
contour is represented by 
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is the observed log-F0 contour of the n-th syllable of an N-syllable 
word and is represented by the first four orthogonally-transformed 
parameters [4]; -1 -1( , )n

n n nc c c=  is the coarticulation state of syllable 

junctures on both sides; 1
-1 -1 1( , , )n

n n n nt t t t+
+=  are tone triple; r

nsp  is the 
normalized (or residual) version of nsp ; 

nt
is the affecting pattern 

(AP) of tone (1, ,5)nt ∈ ; 
nw  represents the AP of syllable 

position-in-word {( , ) | 1 ~ 8, }nw i j i j i∈ = ≤  with ( , )i j standing for 

the j-th syllable of an i-syllable word; 
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f
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 and ,n n

b
c tp  are the 

APs of forward (carryover) and backward (anticipatory) 
coarticulations contributed from syllable n-1 and syllable n+1, 
respectively; ntp  is tone pair 1

+1( , )n
n n nt t t+ = ; and p  is the AP of 

global mean. For taking care of word boundaries, two special APs 
of coarticulation, 

1 0 0,
f f
t c tp=  and ,N N N

b b
t c tp= , are adopted to 

represent the effects of word onset and offset, respectively. Fig. 1 
displays the relationship between the APs considered and the 
observed syllable log-F0 contour. By assuming that r

nsp  is zero-

mean and normally distributed, i.e. ( ; , )r
nN sp 0 R , we have  
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Fig.1: The relationship between the APs considered and the 
observed syllable F0 contour. 

2.2. Syllable duration and energy models 
Similar to the syllable F0 contour model, the proposed duration 
and energy models are expressed by 
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where nsd  and nse are the observed duration and energy level of 
the n-th syllable in a word, respectively; xγ  and xα  represent the 
APs of affecting factor x for syllable duration and energy level, 
respectively; and (1, ,411)ns ∈  is the base-syllable type.  
 
2.3. Training of the proposed model 
To estimate the parameters of the model, we first define a log-
likelihood function for each isolated word by  
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A total log-likelihood L  is then calculated by summing over all 
wL  of training words. Then a sequential optimization procedure 

based on ML criterion is employed to update the APs and label 
coarticulation state of each syllable juncture so as to maximize L  
until a convergence is reached. The sequential optimization 
procedure is divided into two main parts: initialization and 
iteration. 
 
2.3.1 Initialization 
Since the coarticulation state of each syllable juncture is treated as 
a hidden variable to be labeled in the training process, a proper 
initial determination of coarticulation state for each inter-syllable 
juncture should be performed prior to the determination of APs. 
The initialization step is hence divided into two parts: (a) 
determination of coarticulation state and (b) initialization of APs. 
(a) Determination of coarticulation state  

In this study, the type of coarticulation state is empirically set 
to be three, i.e. (c1,c2,c3)nc ∈  where c1, c2 and c3 represent 
“strong”, “medium” and “weak” couplings between consecutive 
syllables on syllable juncture, respectively. We first determine c1 
junctures by the following rule: a syllable juncture is labeled as c1 
if the F0 contours of the two successive syllables are continuous 
across the juncture. We then use the vector quantization (VQ) 
technique to divide all other junctures into two classes of c2 and c3. 
Here, energy-dip level (minimum energy) on syllable juncture is 
chosen as the feature of VQ so that c2 and c3 are featured as higher 
and lower energy-dip levels, respectively. 
(b) Initialization of APs 

Since the observed syllable log-F0 contour, duration and 
energy level are assumed to be the superimpositions of several APs, 
the estimation of an AP may be interfered by the existence of the 
APs of other types. We hence adopt a progressive estimation 
strategy to first determine the initial APs which can be estimated 
most reliably and then eliminate their affections from the surface 
pitch contours for the estimations of the remaining APs. In this 
study, the order of initial AP estimation is listed as follows: global 
mean { p , dμ , eμ }, five tones { t , tγ , tα }, coarticulation { ,

f
c tp , 

,
b
c tp , ,

f
c tpγ , ,

b
c tpγ , ,

f
c tpα , ,

b
c tpα }, syllable position in a word 

{ w , wγ wα }, and base syllable type { sγ , sα }. Lastly, the 

covariance matrixes { pR , dR , eR } can be obtained via ML 
estimation. 
 
2.3.2 Iteration 
The iteration is a multi-step iterative procedure listed below: 
1. Update the APs of five tones. 
2. Update the APs of coarticulation. 
3. Update the APs of syllable position-in-word. 
4. Update the APs of 411 base syllables 
5. Update covariance matrixes. 
6. Re-label the coarticulation state sequence of each word -1

1
Nc  by 

the Viterbi search algorithm so as to maximize wL . 
7. Repeat 1 to 6 until a convergence of L is reached. 
 
2.3.3 Decision tree for coarticulation state prediction 
Lastly, a binary decision tree for predicting coarticulation states of 
syllable junctures from the input word in the testing phase is 
constructed using the training set with all coarticulation states 
being properly labeled. The CART algorithm is adopted to train the 
tree. 
 

3. EXPERIMENTAL RESULTS 

The performance of the proposed prosody modeling method was 
evaluated using a read isolated Mandarin word speech corpus of a 
single female professional announcer. The corpus consists of 
107,936 words with 277,218 syllables selected from the NCTU 
Speech Lab Dictionary. Nine tenth of the corpus was used for 
training and the remaining for testing. The training process 
converged after 48 iterations. The variance of the observed data 
and the MSE of prosody modeling for the inside and outside tests 
are displayed in Table 1. Notice that the coarticulation states were 
determined by the Viterbi algorithm for the inside test, while they 
were determined by the binary decision tree for the outside test. 
 
Table 1: The performance of the prosody modeling 

 
 
3.1. An analysis of APs: some findings 

Fig. 2 displays the APs of F0 for five lexical tones. As shown 
in the figure that the APs of the first four tones matched well with 
the well-known standard tone patterns discovered by Chao [5]. As 
for the APs of syllable duration for five tones, it is found that Tone 
2 is the longest and Tone 5 is much shorter than all others. For APs 
of energy, Tone 1 is the largest and Tone 5 is again the smallest. 
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Fig. 3 displays the coarticulation APs, ,
f
c tp  and ,

b
c tp , of F0. 

Generally, it can be found from the figure that the APs of c3 were 
close to flat lines to show its characteristic of “weak” coupling, 
while most APs of c1 were bent more seriously in the beginning or 
ending parts to compensate the mismatch of connecting two F0 
patterns across “tightly” coupled juncture. We also find that 
forward coarticulation APs were generally more seriously bended 
than backward coarticulation ones. This conforms with the findings 
of [6]. Moreover, we find that the well-known 3-3 tone sandhi rule 
was properly learned by the proposed model. As shown in Fig. 3(b), 
the backward coarticulation APs of (3,3) were upward bended 
drastically. This can make the reconstructed F0 pattern of the first 
tone-3 in (3,3) resemble the standard tone-2 pattern. As for the 
coarticulation APs of duration and energy, they were all small and 
less influential. 

 
Fig. 2: The lexical tone APs of F0. 

 

 
Fig. 3: The (a) forward and (b) backward coarticulation APs of F0 
for 16 tone pairs and 3 coarticulation states. c1: solid line, c2: dash 
line and c3: dotted line;. tpn=(i,j): tone pair. 

 
Fig. 4 displays the syllable position-in-word AP of F0. It can 

be clearly observed from Fig. 4(a)~(d) that the syllable pitch level 
in all four types of polysyllabic word decreased to show the 
declination effect. We also find that the dynamic range of syllable 
pitch level increased as the word length increased. Moreover, we 
find that the patterns of APs for the first two syllables in 3- to 5-
syllable words had similar shape with that of bi-syllabic word. 

 
Fig. 4: The syllable position-in-word APs of F0 for (a)-(d) 2- to 5-
syllabic words; and (e)/(f) comparisons of APs for the first/last 
syllables in polysyllabic words. (i,j) means the j-th syllable of i-
syllabic word. 
 

Fig. 5 displays the syllable position-in-word APs of duration 
and energy. It is found from Fig. 5(a) that the ending syllables in 
all four types of polysyllabic words were much longer than others 
to show the well-known lengthening effect. We also find from Fig. 
5(b) that the syllable energy level of all four types of word tended 
to decline straightly to show the declination effect. 

 
Fig. 5: The syllable position-in-word APs of (a) duration and (b) 
energy model. 
 

We then analyzed the base syllable APs, sγ and sα , of 
duration and energy by CART. Some interesting phenomena were 
found: syllables with initial in {b,d,g} are shorter; syllables with 
nasal ending are longer; syllables pronounced by opening mouth 
have larger energy; syllables with single vowel have smaller 
energy; etc. These results match with the prior linguistic 
knowledge. 

Table 2 displays the total residual error (TRE) defined as the 
ratio of sum-squared values of residual and observed features. It is 
found that TRE reduced as more APs were considered. Besides, it 
is found that lexical tone, position-in-word and base syllable had 
the most significant APs for the three models of syllable log-F0 
contour, duration and energy, respectively. 
 
Table 2: The performance (total residual errors, TRE) of the 
proposed prosody modeling method. 
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3.2. Some examples of prosody prediction 
Figs. 6 and 7 display some outside-test examples. It can be found 
from these two figures that most reconstructed features matched 
reasonably well with their original counterparts. This reveals that 
the proposed models are effective.  

 

 
Fig. 6: Some examples of the observed (dots) and predicted (line) 
F0 contours. The text is “yue4 yuan2, xi4 yu3, chang2 yuan3 xing4, 
ji2 jiu4 xiang1, wen2 ji1 qi3 wu3”. 
 

 
Fig. 7: Some examples of the observed and predicted (a) duration 
and (b) energy. The text is the same as that of Fig. 6 
 

3.3 An application: A prosody pronunciation learning system  
To illustrate the usefulness of the prosodic models learned, a 
learning system for Mandarin word prosody pronunciation is 
designed and implemented for nonnative speakers. Fig. 8 displays 
the interface of the system. It is generally acknowledged that to 
speak Mandarin with correct prosody is one of the major barriers to 
the learning of speaking Mandarin. In our system, the user can first 
input a Chinese word. The system will then generate the 
corresponding synthesized Mandarin speech. The target values of 
the three prosodic features (i.e., F0 contour, duration and energy) 
of all syllables will be displayed. The user can learn to speak 
Mandarin word via imitating the synthesized speech. The system 
will record the user’s speech and on-line extract its prosodic 
features for display. The system can then generate a new 
synthesized speech by modifying the user’s speech with all 
prosodic features except pitch level being changed to match the 
target values. So the user can hear his/her own voice with correct 
prosody. Lastly, we implement a new function to add a random 
value corresponding to the modeling error (i.e. the residual 
variance) to each target prosodic feature for increasing the variety 
of the synthesized speech. 

It is worth to note that the prosodic model is used in the unit 
selection of the TTS system. The cost function of a candidate 
syllable is designed as the sum of squared errors between its 
prosodic features and the target values. The formulation is realized 
using the APs of our prosodic model. A finer synthesis unit can 
hence be found because both the coarticulation effect and the 
position-in-word are taken into consideration. Computational 
efficiency is another advantage of the method. 

The performance of the system was informally evaluated by 
listening tests. Most synthesized speech sounded fluently and 

naturally for native mandarin speakers. Further evaluation by 
nonnative speakers will be done in the future. 

 
Fig. 8: The interface of the learning system for Mandarin word 
prosody pronunciation. The prosodic features of both targeted and 
recorded speech are shown on the screen. 
 

4. CONCLUSIONS 

In this paper, a syllable-based prosody modeling method of log-F0 
contour, duration and energy for isolated Mandarin words is 
proposed. Four major APs, including lexical tone, inter-syllable 
coarticulation effect, syllable position in a word and base syllable 
type are considered. Experimental results on a large corpus 
confirmed the effectiveness of the proposed method. A learning 
system for Mandarin word prosody pronunciation is accordingly 
constructed for nonnative speaker. Improvement of the learning 
system is worthy doing in the future. 
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