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ABSTRACT

State-of-the-art automatic speech recognition systems typically adopt
the feature set containing Mel-frequency cepstral coefficients (MFCC)
and their time derivatives. The noise vulnerability of MFCC sig-
nificantly degrades the recognition performance of such systems in
noisy conditions. This paper describes a noise-robust feature extrac-
tion method. A set of new MFCC features is derived from the dy-
namic spectrum instead of the static spectrum as in the conventional
MFCC feature extraction. It is shown that the dynamic spectrum
preserves the spectral envelope information and, at the same time, is
more noise resistant than the static spectrum. Experiments on Au-
rora 2 database show the noise robustness of the proposed features
and it is preferable to replace MFCC with the new features in the
state-of-the-art feature set.

Index Terms— Speech recognition, dynamic spectrum, noise
robustness, MFCC

1. INTRODUCTION

Cepstral coefficients have been widely accepted as the representative
acoustic features in state-of-the-art speech recognition systems. The
cepstral coefficients, by definition, are obtained by inverse Fourier
transform the logarithm of the magnitude spectrum of speech. The
well known MFCC features can attain high recognition accuracy
in controlled environments [1]. The performance in real-world ap-
plications, however, tends to degrade significantly because of the
mismatch between distorted input speech and the pre-trained acous-
tic models. The most common types of distortion include additive
noise contamination and convolutive noise distortion caused by mi-
crophones and transmission channels. This study focuses on extract-
ing robust features to alleviate the additive noise problem.

Approaches to robust feature extraction include: applying noise
suppression techniques to increase signal-to-noise ratio (SNR) of in-
put speech [2], cepstral mean normalization [3], use of dynamic cep-
stral coefficients [4] and vector Taylor series [5], etc. The computa-
tion of dynamic cepstral coefficients, e.g., ΔMFCC, is equivalent to
a spectral filtering process in the log-spectral domain. Theoretically
it serves to remove convolutive noise. Yang [6] demonstrated that
ΔMFCC is more robust to additive noise than MFCC. On the other
hand, spectral filtering in the linear spectral domain, i.e., magnitude
or power spectral domain, can reduce additive noise, if speech and
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noise are uncorrelated. Feature extraction with spectral filtering in
linear spectral domain was reported in Hirsch [7] and Xu [8]. Her-
mansky proposed the RASTA technique, in which the noisy speech
spectrum is filtered either in the linear spectral domain or in the log-
spectral domain, depending on the SNR estimated [9].

To achieve the best recognition performance, state-of-the-art sys-
tems typically combine MFCC and ΔMFCC (and sometimes also
ΔΔMFCC) to form the feature vector. Given that MFCC is noise
vulnerable, the combined feature vector is not noise resistant, espe-
cially when the noise level is high. It is desirable to derive a set of
new features that can attain as good performance as MFCC in clean
conditions and, at the same time, is robust to noise distortion.

In this study, we describe and evaluate a feature extraction tech-
nique that generates noise-resistant cepstral coefficients. Unlike the
computation of conventional MFCC, which is derived from the static
spectrum, we propose to compute the cepstral coefficients from dy-
namic spectrum (the dynamic spectrum in linear spectral domain).
It is observed that the dynamic spectrum has similar envelope to the
static spectrum and thus contains useful information for phonetics
classification. Furthermore, the dynamic spectrum is expected to be
more noise resistant than the static spectrum, provided that noise
and speech are additive and that noise changes slowly as compared
to speech. The effectiveness of the proposed features is evaluated in
a set of experiments carried out on the Aurora 2 database.

2. DYNAMIC SPECTRUM OF SPEECH

Let S(ω), N(ω) and SN (ω) be the frequency spectra of speech,
noise and noise corrupted speech signals, respectively. Assuming
that noise is additive, we have,

SN (ω) = S(ω) + N(ω) (1)

The power spectral density of noisy speech can be computed as,

|SN (ω)|2 = [S(ω)+N(ω)][S∗(ω)+N∗(ω)]

= |S(ω)|2 + |N(ω)|2 +2|S(ω)||N(ω)| cos(α−β) (2)

where α and β are the phase angles of S(ω) and N(ω), respectively.
Both α and β are not known. There are two special cases as de-
scribed below:

Case 1: α − β = 0, we have

|SN (ω)| = |S(ω)| + |N(ω)| (3)

Case 2: α − β = π/2, we have

|SN (ω)|2 = |S(ω)|2 + |N(ω)|2 (4)
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Fig. 1. The static and dynamic spectra of clean and noisy speeches.
From top to bottom are the speech waveforms, static spectra of clean
and noisy speeches, and the dynamic spectra of clean and noisy
speeches, respectively.

Assuming that the noise signal is stationary, for the τ -th frame,
(3) can be rewritten as

|SN (ω, τ)| = |S(ω, τ)| + |N(ω)| (5)

The dynamic magnitude spectrum of the τ -th frame is computed us-
ing a regression formula, as commonly adopted in calculating the
dynamic cepstral coefficients [4], i.e.,

Δ|S(ω, τ)| =

∑k=K
k=−K k|S(ω, τ + k)|

2
∑k=K

k=−K k2
(6)

where K defines the window size within which the dynamic infor-
mation is concerned. From (5) and (6), we have

Δ|SN (ω, τ)| =

∑k=K
k=−K k{|S(ω, τ + k)| + |N(ω)|}

2
∑k=K

k=−K k2

=

∑k=K
k=−K k|S(ω, τ + k)|

2
∑k=K

k=−K k2
(7)

That is, Δ|SN (ω, τ)| = Δ|S(ω, τ)|. Similarly, for Case 2, we
have the same relation for dynamic power spectra of noisy and clean
speech: Δ|SN (ω, τ)|2 = Δ|S(ω, τ)|2.

Although the two assumptions in Case 1 and 2 are usually not
exactly the real case, it is found that the dynamic spectrum of the
noisy speech does approximate the clean one well, under the station-
ary noise assumption. Fig. 1 shows the logarithm of the static and
dynamic magnitude spectra of three clean speech frames in an utter-
ance and their noisy counterparts. The SNR is 10 dB in this case. It
can be seen that, for clean speech, the envelopes of the static spectra
and the dynamic spectra are very similar. Thus the dynamic spec-
trum is expected to be as effective as the static spectrum in speech
recognition. For noisy speech, it is clear that the dynamic spectra
are relatively less affected by the additive noise than the static ones,
especially when the SNR is low (e.g., τ = 5 and τ = 22 in Fig. 1).
We have similar observations on dynamic power spectra.

3. NOISE-ROBUST PARAMETERS: MFCCΔS

3.1. Feature extraction

To generate cepstral coefficients from the dynamic spectrum, we
follow the same procedure as conventional MFCC feature extrac-
tion. The only difference is that the subband magnitude spectrum
SB(Bi, τ) is replaced by its time derivative ΔSB(Bi, τ).

1) Short-time Fourier transform is applied every 10 ms with a 30
ms Hamming window.

2) The spectrum is warped with a Mel-scale filter bank that con-
sists of 26 filters. The magnitude of each filter output SB(Bi, τ)
is calculated.

3) Calculate ΔSB(Bi, τ) by (6).

4) Discrete cosine transform is applied to log |ΔSB(Bi, τ)|. The
first 13 cepstral coefficients constitute a new feature vector,
noted as MFCCΔS .

3.2. Relation among MFCC, MFCCΔS and ΔMFCC

Cepstrum is defined as the inverse Fourier transform of the log-
spectrum, i.e.,

c(m, τ) =

∫ 2π

0

log |S(ω, τ)|ejωmdω (8)

And we have the following relations for Δc(m, τ) and cΔS(m, τ)

Δc(m, τ) =

∫ 2π

0

Δlog |S(ω, τ)|ejωmdω (9)

cΔS(m, τ) =

∫ 2π

0

log |Δ|S(ω, τ)||ejωmdω (10)

That is, c(m, τ), Δc(m, τ) and cΔS(m, τ) are derived from the
static spectrum, the dynamic log-spectrum and the log dynamic-
spectrum, respectively. Similarly, MFCC, MFCCΔS and ΔMFCC
characterize the subband spectra and the subband spectral dynamics
in the magnitude and the log-magnitude spectral domains, respec-
tively. Yang [6] demonstrated that ΔMFCC is more robust to noise
than MFCC. According to the analysis in Section 2, MFCCΔS is
expected to be more noise robust than MFCC.

Fig. 2 compares the speech recognition accuracy obtained with
MFCC, MFCCΔS and ΔMFCC, respectively, on the Aurora 2 data-
base. Details on the experimental setup will be introduced in sec-
tion 4. From Fig. 2, it is clear that for noisy speech, the proposed
MFCCΔS outperforms the MFCC (e.g., 18% absolute accuracy im-
provement at SNR=15 dB). For clean speech, the accuracy given by
MFCCΔS is only slightly lower than MFCC. ΔMFCC outperforms
MFCC and MFCCΔS for both clean and noisy speech.

3.3. Comparison to RASTA filtering

RASTA processing has been demonstrated to be a very successful
technique for robust feature extraction for ASR [9]. The RASTA
processing essentially performs a filtering of the speech spectrum
and the transfer function of the RASTA filter is given by

H(z) = 0.1z4 ∗ 2 + z−1 − z−3 − 2z−4

1 − 0.94z−1
(11)

Similarly, the calculation of the dynamic spectrum as (6) (from now
on, noted as Delta processing), wiht K = 2, corresponds to a filter-
ing of the spectrum with the transfer function
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Fig. 2. Recognition accuracy by MFCC, MFCCΔS and ΔMFCC.
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Fig. 3. Comparison of the Delta processing and RASTA processing.

D(z) = 0.1z2 ∗ (2 + z−1 − z−3 − 2z−4) (12)

Since zeros at the origin do not affect the spectrum magnitude,
the only difference between RASTA and Delta filters is the extra
pole in (11), which results in a different pass band for the speech
modulation spectrum [10]. Hermansky proposed a lin-log RASTA
technique which filters the linear spectrum at low SNR frequency
bins where additive noise is dominant; and filters the log-spectrum
at high SNR bins where convolutive noise is dominant [9]. In this pa-
per, we compare the effectiveness of the two filters H(z) and D(z)
in generating the additive noise robust MFCC features, when the fil-
tering is on the linear and log-spectra, respectively. Fig.3 shows that
in linear spectrum, RASTA filtering results in higher recognition ac-
curacy than Delta processing at very low SNR cases, i.e., 0 and 5
dB; as SNR increases, the superiority of Delta processing comes to
be more noticeable. For the log-spectrum, on the other hand, Delta
processing always outperforms RASTA for all SNR cases.

For simplicity, in the following experiments, we only compare
MFCC with MFCCΔS , since RASTA processing only has superior-
ity over Delta processing at 0 and 5 dB SNR in the linear spectrum.

4. EXPERIMENTS

4.1. The Aurora 2 database

The Aurora 2 database has been widely used for development and
evaluation of noise-robust speech recognition systems [11]. The
database contains both clean and noisy speech data. The clean speech
is the 8 kHz downsampled TIDIGIT utterances. The noisy speech
data were obtained by artificially adding noise to the clean data, with
different types of noise at various SNRs.

The database contains both clean and multi-condition training
data. The clean training data consist of 8440 utterances. The multi-
condition training data consist of 20 subsets, 422 utterances per sub-
set. Four of the subsets contain clean data. The other 16 subsets
contain noise contaminated data. The noise types include: subway,
babble, car and exhibition, and the SNRs are 5, 10, 15 and 20 dB.

There are three sets of test data. Set A has the same noise types
as the multi-condition training data. Set B was contaminated by four
different types of noise: restaurant, street, airport, and train station.
Set C was first corrupted with a channel distortion and subsequently
contaminated by the subway and street noises [11]. The SNRs in all
sets are from -5 to 20 dB, plus the clean condition.

4.2. Experimental setup

The noise robustness of MFCC, MFCCΔS and ΔMFCC are com-
pared over the Aurora 2 database. In addition, systems with com-
bined features: MFCC+ΔMFCC, MFCCΔS+ΔMFCC, and that plus
the ΔΔMFCC are also evaluated to demonstrate the superiority of
MFCCΔS over MFCC in noise-robust speech recognition.

For each system, as in [11], 11 whole-word HMMs are trained to
model the English digits, “zero” to“nine”, plus “oh”. Each model has
16 states without state skipping. Each state’s output pdf is a mixture
of three Gaussians with diagonal covariance matrices. There are also
a three-state “silence” model and a single-state “short pause” model.

4.3. Recognition performance with clean training

The recognition performances with clean training are presented in
Fig. 4, which compares the word accuracy of different systems at
various SNRs and the clean condition. In each test set, for a spe-
cific SNR, the average accuracy of all noise types is given. It is
clear that for noisy speech, regardless of the noise types and SNRs,
MFCCΔS outperforms MFCC. For clean speech, the accuracy given
by MFCCΔS is only slightly lower than that by MFCC. ΔMFCC
outperforms both MFCC and MFCCΔS at all conditions. For the
two systems with combined features, it should be noted that although
combining MFCC and ΔMFCC results in a slightly improved per-
formance, compared with ΔMFCC only, for clean speech, includ-
ing MFCC usually degrades the performance for noisy speech due
to the noise vulnerability of MFCC. On the other hand, combining
MFCCΔS and ΔMFCC outperforms ΔMFCC for Set A and C, espe-
cially at low SNRs. For Set B, including MFCCΔS slightly degrades
the performances, but still outperforms that combining MFCC and
ΔMFCC. For clean speech, the two combining systems give nearly
the same accuracy for all sets. In a word, it is usually beneficial to
replace MFCC with MFCCΔS for robust speech recognition.

4.4. Recognition performance with multi-condition training

Fig. 5 illustrates the performances with multi-condition training. As
expected, all systems show noticeable performance improvements
compared with clean training. ΔMFCC outperforms both MFCC
and MFCCΔS for all noisy test data. Unlike in the clean training
cases, MFCC and MFCCΔS show different noise robustness in the
three sets. For Set A, MFCC outperforms MFCCΔS . For Set B,
comparative performances are obtained. For Set C, MFCCΔS out-
performs MFCC. As described in Section 4.1, from Set A to C, there
are increasing degree of mismatch between the multi-condition train-
ing data and the test data. The noise types in Set A are the same as
those in multi-condition training data. For Set B, the noise types
differ from the training data. Further mismatches exist for Set C
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Fig. 4. Word accuracy with clean training.

since the channel distortion is introduced. The results clearly tell
the superiority of MFCCΔS over MFCC in speech recognition with
mismatched training and test conditions. Fig. 5 shows that, in most
cases, it is preferable to combining MFCCΔS and ΔMFCC, instead
of combining MFCC and ΔMFCC, especially when there is signifi-
cant mismatch as in Set C tests.

4.5. Including the ΔΔMFCC

Besides ΔMFCC, the 2nd-order dynamic coefficients ΔΔMFCC
are also included as feature parameters in some recognition sys-
tems. Table 1 compares the average word accuracy for the three test
sets given by two feature sets: MFCC+ΔMFCC +ΔΔMFCC and
MFCCΔS+ΔMFCC +ΔΔMFCC. As illustrated, replacing MFCC
with MFCCΔS results in improved recognition performance for all
three test sets.

Table 1. Average word accuracy (in %) for Test Set A-C by two
feature sets (MFCC+ΔMFCC +ΔΔMFCC / MFCCΔS+ΔMFCC
+ΔΔMFCC)

Training model Test Set A Test Set B Test Set C

Clean 67.5 / 69.6 64.1 / 69.0 73.6 / 76.3
Multi-condition 88.3 / 88.7 88.1 / 88.4 86.8 / 87.8

5. CONCLUSIONS

The use of combined MFCC and ΔMFCC as feature parameters
have been widely adopted in speech recognition systems. However,
the noise vulnerability of MFCC makes the combined features not
robust to noise contamination. we propose to use the MFCCΔS ,
which is the MFCC parameters derived from the dynamic spectrum,
to replace the conventional MFCC. We demonstrate that the dy-
namic spectrum preserves the spectral envelope information and, at
the same time, is more noise resistant than the static spectrum, es-
pecially for low SNR speech. Speech recognition experiments on
the Aurora 2 database show that MFCCΔS significantly outperform
MFCC for noisy speech and performs comparatively to MFCC for
clean speech. In the state-of-the-art robust speech recognition sys-
tem, it is usually beneficial to replace MFCC with MFCCΔS .
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