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Abstract 
The HMM-based Text-to-Speech System can produce high 
quality synthetic speech with flexible modeling of spectral and 
prosodic parameters. However, the prosodic features, like F0 
and duration trajectories, generated by HMM-based speech 
synthesis are often excessively smoothed and lack prosodic 
variance. In HMM-based TTS durations are typically modeled 
statistically using state duration probability distributions and 
duration prediction for unseen contexts without high-level 
linguistic knowledge. And F0 trajectory is generated by the 
MSD-HMMs as a weighted bias term. In this approach, 
discrete distributions are used for modeling the VU decision 
and continuous Gaussian distributions are used for F0 
modeling within the voiced regions. Due to this assumption of 
undefined F0 values in unvoiced regions and the special 
structure of MSD-HMM, the generated F0 values are limited 
in accuracy. In this paper, in order to improve the prosodic 
features generation against the standard HMM framework, an 
F0 generation process model is used to re-estimate F0 values in 
the regions of pitch tracking errors, as well as in unvoiced 
regions. A prior knowledge of VU is imposed in each 
Mandarin phoneme and they are used for VU decision. Also 
we design a set of syntax features to improve Mandarin 
phoneme duration prediction. 
Index Terms: Mandarin speech synthesis, F0 generation, 
Duration modeling, generation process model, HMM-based 
TTS 

1. Introduction 
Recently the HMM-based speech synthesis has been 
demonstrated to be very effective in synthesizing acceptable 
speech, in which short term spectra, fundamental frequency 
(F0) and duration are simultaneously modeled by the 
corresponding HMMs. It has compact and flexible 
representation of voice characteristics and has been 
successfully applied to Text-To-Speech system in many 
different languages, e.g., Japanese, English and Mandarin [1]. 
Compared with the unit selection based speech synthesis 
which based on large corpus, HMM-based synthesis is 
statistically oriented and model based. The speech generated 
by the HMMs is fairly smooth and exhibits no concatenation 
glitches occur in unit-selection synthesis. To change the 
segmental or supra-segmental quality of generated speech, we 
can modify HMM parameters flexibly [2, 3]. 
    The speech generated from it is fairly smooth and exhibits 
no apparent glitches. However, overly-smoothed parameter 
trajectories tend to make synthesized speech sound less lively 
than natural. In HMM-based synthesis, the voice quality 
degrades when acoustic features used in training are noisy or 
flawed. Among them, pitch tracking errors and companion 
flawed voiced or unvoiced decisions are key causes of voice 
quality degradation. Different approaches have been proposed 

to improve the pitch tracking performance. Many HMM-based 
systems use STRAIGHT [4], a high quality speech analysis-
synthesis system, to extract acoustic parameters for HMM 
training. In [5], a voting method, which combines the IFAS [6] 
algorithm, a fixed-point analysis called TEMPO [7] and ESPS 
robust pitch tracking (RAPT) algorithm [8], is used to alleviate 
F0 extraction errors such as F0 halving and doubling, and 
voiced/unvoiced swapping. But still as we look into pitch 
tracking of Mandarin syllables, the tracking errors occur more 
often in vowels of Tone 3 and Tone 4 for their pitch contours 
change greatly. Sometimes the Tone 3 creates creaky sounds 
at the turning point of the pitch contour. The speaker may 
reach lower end of her/his modal register during such a tone, 
and to even more lower F0, has to go into laryngealization.  
Thus the synthesized vowels sound very dry and hoarse, which 
greatly hurt the overall quality of synthesized speech. 
    Furthermore, even though the pitch tracking errors are 
manually checked before training which requires lots of work 
and time, there still can be VU decision errors in synthesized 
speech. In HMM-based synthesis, the modeling of F0 is 
difficult due to the discontinuity of F0 across voiced and 
unvoiced region. The multi-space distribution HMM (MSD-
HMM) provides a solution to this problem by using a 
combination of discrete and continuous distributions [9] and it 
is now the default modeling approach in state-of-the-art HMM 
synthesis systems. However, although good performance can 
be achieved using MSDHMMs, this type of mixed distribution 
F0 modeling has some issues arising from the discontinuities at 
the boundaries of unvoiced regions, and has the need to keep 
the discrete and continuous density regions distinct. Therefore, 
the use of MSDHMMs makes it more difficult to exploit 
standard techniques for HMM modeling, such as adaptation, 
which cannot be readily applied to the mixed discrete or 
continuous F0 distributions.  
    On the other hand, accurate prediction of phone durations is 
essential for high quality TTS. The use of unsuitable phoneme 
durations can deteriorate synthesis quality by decreasing the 
perceived speech naturalness. In some F0 generation systems 
[10], segmental duration of phonemes is first predicted and 
then used for the prediction of F0-related parameters. So the 
precision of duration prediction is essential for the whole F0 
generation process. However, the current HMMs cannot 
predict duration information very accurately and the resultant 
supra-segmental quality of synthesized speech suffers. The 
state duration of a standard HMM is explicitly modeled with a 
single Gaussian distribution which is estimated by using state 
occupancy counts in the Baum-Welch re-estimation procedure. 
And duration prediction for unseen contexts does not include 
high-level linguistic knowledge. Thus it is necessary to predict 
segmental durations according to syntax information from the 
text. Firstly, this will help generation of prosody automatically 
at the backend in a system. Secondly, from the view of human 
speech production, underlying and surface syntax 
representation of the utterance is the step before phonetic 
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representation in human speech production process [11]. 
Syntax information might provide important cues for 
segmental duration prediction. 
    From these considerations, we have developed a corpus-
based method of synthesizing F0 contours in the framework of 
the generation process model, which represents continues 
sentence F0 contours as a superposition of tone components on 
phrase components [12]. The generation model is based on the 
physiological and physical properties of the vocal fold and the 
laryngeal structure involving laryngeal muscles. By applying 
this model, F0 contours can be smoothed and re-estimated 
from the extracted parameters, and also give us a possible way 
for interpolation of F0 in the unvoiced region [13]. Usually 
initials can be divided as voiced or unvoiced consonant, and 
all medials and finals are voiced in Mandarin. We can use the 
phoneme duration boundaries for VU switches in synthesizing 
F0 contours. Segmental duration prediction is realized by a 
data-driven approach mainly through establishing duration 
models, which build a mapping relationship between the 
information extracted from the text and the segmental duration. 
We used two kinds of decision tree models, CART models and 
M5’ tree model, to model a phoneme in context. 

2. Pitch Tracking Methods and 
Conventional methods for F0 and Duration 

Modelling in HMM-based TTS 
In recent HMM-based synthesis, which needs a large corpus 
for training, an automatic pitch tracking method is needed. 
And a common assumption is that F0 has a continuous value in 
voiced regions and no value in unvoiced regions.  
     Firstly, ESPS RAPT algorithm is successful in automatic 
pitch tracking, and can alleviate F0 extraction errors such as F0 
halving and doubling, and voiced/unvoiced swapping. But still 
as we look into pitch tracking of Mandarin syllables, the 
tracking errors occur more often in vowels of Tone 3 and Tone 
4, for their pitch contours change greatly. Sometimes the third 
tone creates creaky sounds at the turning point of the pitch 
contour, and this may lead to the VU decision errors at this 
point.  
 

 
   Figure 1: An example of F0 contours of Mandarin syllable 
“zou3”. From top to bottom: original wave, F0 by manually 
check, F0 calculated by RAPT algorithm. 
 
    Figure 1 shows comparison of target F0 and F0 extracted by 
ESPS RAPT algorithm. At the end of diphthong “ou” in T3, 
pitch detection algorithm fails to find F0 in voiced region. And 
Figure 2 shows a typical F0 halving and doubling errors in the 
Mandarin vowel “i” in T4 calculated by STRAIGHT 
algorithm. Thus these fails in F0 tracking of phonemes will 
lead to a shorter duration of the vowel and sometimes noisy 

sound inside a vowel when re-synthesis. And more unvoiced 
utterances will occur in the synthesized speech from a HMM-
based TTS which leads to unnatural sound.  
 

 
  Figure 2: A typical F0 halving and doubling error (in circle) 
of Mandarin syllable “shi4” calculated by STRAIGHT 
algorithm. 
 
    Furthermore, in HMM-based speech synthesis system, the 
Voiced/Unvoiced (VU) decision of each state is independently 
made based on the multi-space distribution of F0 parameters of 
that state. The MSD of F0 parameters of one state is estimated 
by traversing the decision tree by the contextual features till a 
leaf node. Due to some pitch tracking errors or some bad 
pronounced vowels, one leaf of the state belong to a vowel 
may contain more unvoiced occurrences than voiced 
occurrences.  Thus, if choosing that leaf, the state will be 
decided as an unvoiced. Then the voice quality degrades not 
only because of the error pitch tracking, but also of the error 
VU decisions in HMM training.     
     In order to simultaneously model the discrete VU decision 
and the continuous F0 trajectory variables, multi-space 
distribution HMMs (MSDHMM) are commonly used [9]. The 
state output distribution in an MSDHMM is  
 

         (1) 

                                                (2) 
 
     where o is the observation at state θ, cv and cuv are the 
probabilities of voiced and unvoiced regions, μθ and σθ are the 
means and variances of Gaussian distribution of F0 in the 
voiced regions. This MSDHMM framework results in some 
inherent limitations. Since bθ (o) represents a continuous 
density in voiced regions and a discrete probability mass in 
unvoiced regions, each observation can only be either voiced 
or unvoiced, but not both at the same time. Consequently, 
during the forward-backward calculation for any F0 stream in 
training, the state posterior occupancy will always be wholly 
assigned to one of the two components depending on the 
voicing condition of the observation. This hard assignment 
limits the ability of the unvoiced component to learn from 
voiced data and vice versa, and it prevents any possibility of 
using a soft assignment to reduce the effect of F0 estimation 
errors and cause VU decision errors.   
    The duration of a phoneme is typically modeled through 
HMM state durations: each context-dependent phoneme is 
modeled as a sequence of states and the duration of the states 
is modeled. A state transition probability denoting a 
probability of moving from one state to another is determined. 
Typically, left-to-right models with no state skips are used, 
hence the transition probability for the transitions to other 
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states except for the following state and the state itself are set 
to zero. 
     To model the state durations for synthesis, duration 
probability distribution for each state is determined. In HMM-
TTS duration modeling the distributions are formed based on 
the statistics from HMM parameter re-estimation. Each state 
duration probability distribution is regarded as a single 
Gaussian with a certain mean and variance. The mean and 
variance are extracted based on the average of all possible 
durations, each of them weighted with the corresponding state 
occupancy probability (i.e. probability of occupying the given 
state during the given time interval). 
     It’s also hard for this state-of-art HMM-based TTS to 
handle prosodic features especially at the phrase or sentence 
level. In this method, both segmental and prosodic features of 
speech are processed together in a frame-by-frame manner. 
Prosodic features cover a wider time span than segmental 
features, and should be treated differently. In speech 
production, durations of a short unit like state is actually 
regulated by the durations of longer units, e.g., phone, syllable 
and word, etc. The duration assignment of different units is 
actually done in a highly regulated, hierarchical manner. And 
the syntax features are useful supplement for prosodic features 
for Mandarin. 

3. A Model for the Generation Process of 
F0 contours of Mandarin utterances 

The generation process model is a command-response model 
that describes F0 contours in the logarithmic scale as the 
super-position of phrase components, accent components (or 
tone components for tonal languages, like Mandarin) and a 
baseline level Fb. The exact relationships between these 
components of an F0 contour and the underlying linguistic 
information have been formulated by Fujisaki and his 
coworkers [12]. The model diagram for Mandarin is shown in 
Figure 3, where the phrase commands (impulses) produce 
phrase components through the phrase control mechanism, 
giving the global shape of the F0 contour at sentence level, 
while the tone commands generate tone components through 
the tone control mechanism, characterizing the local F0 
changes. Both mechanisms are assumed to be critically-
damped second-order linear systems.  
 

  
     Figure 3: A Functional model for the process of generating 
F0 contours. 
     
     The model consists of the following parameters:  Api and 
T0i denote the magnitude and time of the ith phrase command 
respectively, while Aaj, T1j and T2j denote the amplitude, onset 
time and offset time of the jth tone command respectively. The 
constants α, β and γ are set at their respective default values 
3.0 (1/s), 20.0 (1/s) and 0.9 respectively in the current study. 
Figure 4 shows an example of F0 contours of a Mandarin 
utterance that are generated by extracted tone and phrase 
parameters.  
    Then we can use this model to smooth F0 contours as well 
as interpolation of voiceless consonants, short pauses and the 
region with F0 tracking errors. The continuous F0 contour can 

be re-estimated by the tone and phrase components using this 
model. A prior knowledge of VU or UV switch in Mandarin is 
that, each syllable has the phonemic structure of a single 
vowel or a consonant followed by a vowel. So there will be no 
more than one VU or UV switch during one syllable period and 
no VU or UV switch during one phoneme period. The 
phonemes can be defined as either voiced or unvoiced so the 
phonemes boundaries can be used as the VU switch point. 
 

 
     Figure 4: An example of F0 contour of Chinese utterance 
"ta1 yi1 jiu3 san1 er4 nian2 si4 yue4 chan1 jia1 zhong1 guo2 
gong1 nong2 hong2 jun1 (He joined the Chinese Workers’ and 
Peasants’ Red Army in April 1932.)." 

4. Syntax features 
In previous Mandarin duration prediction researches, prosodic 
features, which include contextual and structural 
characteristics of a speech segment, are used most often. 
Syntax features are much less frequently utilized in predicting 
durations. In addition to the prosodic and phonetic features, we 
extract syntax feature-sets to improve phoneme duration 
prediction. 
    The syntax features are useful supplement for prosodic 
features. For example, in the sentence below: 
       

#1 #2 . 
      (He joined the Chinese Workers’ and Peasants’ Red Army) 
 #1 and #2 are both prosodic phrases boundaries. But #1 is also 
the subject-predicate boundary. #2 is time modifier boundary. 
A major pause is more likely to appear at #1. 
 
Table 1: Stanford Parser output example. The translation of 
each word is added. 
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Table 2: Syntax feature-set selected for phone duration 
prediction. 

Feature description Parser output resource 
Predicate in a 

subject-predicate structure 
nsubj 
xsubj 

nsubjpass 
Modifier in a 

modification structure 
*mod 
assm 

Object in a predicate-object 
structure 

dobj 
pobj 
lobj 

A location/person name or 
quantitative word 

NR 
CD 

Regular Accent – 
Syntax depth of the current 

word 
Syntax tree 

 
    The parser we use is Stanford Parser version 1.6.2, whose 
performance is close to the best published figures for Chinese 
parsing [14]. For each input Chinese sentence the parser could 
output word segmentation, POS tagging, the phrase structure 
tree and grammatical relations (typed dependencies) of the 
sentence. Table 1 shows an output example. 
     Here we will use syntax features to predict the regular 
accent and then add this accent information to phone duration 
predictor. There are many well-known rules for determining 
regular accent, such as predicate being the regular accent in 
Subject-predicate structure, object being the regular accent in 
Predicate-object phrase and modifier being the regular accent 
in Modifier-object phrase. Also, the more information 
conveyed by a word, the more likely it will be a regular accent 
[15] [16]. These four rules have been experimentally verified 
by [16]. Therefore, the first four features of the feature-set 
(Table 2) are chosen according to these four rules respectively. 
Then another binary feature (Regular Accent) is used to 
indicate if a word is regular accented or not, according to the 
above four rules. The depth of a word in the syntax tree 
(syntax depth) is also added to the feature-set. 

5. Our approach for Prosodic Features 
Prediction in HMM-based TTS 

5.1. F0 modeling using Generation Process Model 
The previous sections highlighted the Generation Process 
Model which can generate continuous F0 contours; the 
problems encountered in HMM-based TTS were successfully 
solved. In the model that we proposed in this section, we used 
Generation Process Model to generate continuous F0 contours 
and assumed to exist in unvoiced regions, together with the 
VU decision of phoneme information.  

 
Figure 5: Mandarin basic phonetic structure 
     
    In Mandarin, there is a clear set of constraints on the 
phonetic structure of each character.  Traditional Chinese 
philology defines Mandarin phonetics in terms of initials, and 

finals. The correspondence of Mandarin's initial and final 
designations (from [17]) is shown in Figure 5. Initials may be 
consonants or vowels, and finals are vowels or nasals. In some 
respects, the phonemic structure of Mandarin is quite simple. 
It’s either a consonant-vowel (CV) structure or single vowel 
(V) structure. Mandarin contains 21 consonants, 5 semi-vowels, 
4 diphthong vowels, and 14 mono-phthong vowels. Here we 
defined Mandarin phonemes with either voiced or unvoiced as 
show in Table 1. We can define them either voiced or 
unvoiced depending on the pervious knowledge of their 
waveforms.      
 
Table 3. Mandarin Initial and Tonal Final units with 
Voiced/Unvoiced decision 

Unvoiced 
Initials 

  b, c, ch, d, f, g, h, j, k, p, q, s, sh, t, 
  x, z, zh 

Voiced Initials  l, m, n, r, u, y 

Voiced Tonal 
 Finals 

  a, ai, an, ang, ao, e, ei, en, eng, er, i, ia, 
ian, iang, iao, ie, ii, iii, in, ing, iong, o, 
ong, ou, u, ua, uai, uan, uang, uei, uen, 
uo, v, van, ve, vn 

      
     After labeling each phoneme with VU information, together 
with the F0 values estimated from an ESPS waves-based F0   
contours, Fujisaki parameters are extracted by a FujiPara 
Editor [18]. Then a continuous F0 contour can be re-estimated 
using Fujisaki parameters. Together with extracted spectral 
parameters, continuous F0 contours will be applied for the 
HMMs training. Here F0 is modeled in one single stream, and 
each state is modeled with a single Gaussian diagonal 
covariance output. In the synthesis stage, F0 trajectory is 
generated for a given state sequence in the maximum 
likelihood sense. And the VU decision will be made based on 
the phonemic information and white noise will be used as 
unvoiced excitation source to synthesize the unvoiced frames. 
    By making the continuous F0 using the generation process 
model, the problems in section 3 are effectively addressed. 
Since the miscalculated F0, either error VU decisions, or 
doubling and halving, can be fixed before training. Also there 
is only one single F0 stream, so there are no redundant 
component weights parameters.  

5.2. Segmental Duration Prediction 
Mandarin phones could generally be divided into two groups: 
initials and finals. The initials are consonants and the finals 
contain at least one vowel. As factors that influence initial 
duration are different from those for final duration, in our 
experiments, the initial and final durations are modeled 
separately. 

5.2.1. Baseline Feature sets 

For initial duration prediction, the baseline feature-set includes: 
initial name, initial category, final of the current syllable, final 
category of the current syllable, tone of the current syllable, 
tone of the syllable before and after the current syllable, 
prosodic boundary type of the boundary before and after the 
current syllable, syllable number of current word foot, syllable 
number of current prosodic word, syllable number of current 
prosodic phrase, syllable number of current breath group, POS 
of current word. 
    For final duration prediction, the baseline feature-set 
includes: final name, final category, initial of the current 
syllable, initial category of the current syllable, tone of the 
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current syllable, tone of the syllable before and after the 
current syllable, prosodic boundary type of the boundary 
before and after the current syllable, syllable number of 
current word foot, syllable number of current prosodic word, 
syllable number of current prosodic phrase, syllable number of 
current breath group, POS of current word. 

5.2.2. Decision tree models 

We use two kinds of decision tree models in our experiments. 
One is the well-known CART models [19]. We used Wagon, 
which is part of the Edinburgh Speech Tools Library. The 
other one is M5’ tree model [19]. The M5’ can be used as a 
regression tree (M5p-R) or as a model tree (M5p). If a leaf, in 
M5’ algorithm’s building process, is associated with an 
average output value of the instances sorted down to it, then 
the model is called regression tree [20]. If the tree concludes in 
its leaves to more complex regression functions of the input 
variables, then the model is called model tree [21]. In dealing 
with the continuous features or predicting continuous value, 
CART program builds regression trees that differ from 
decision trees only in having values rather than classes at the 
leaves. Because we want to precisely predict the exact values 
of durations of pauses, initials and finals durations. M5’ model, 
which aims at dealing with continuous classes, is expected to 
obtain better prediction results. 

6. Experiment Results and Discussion 
To evaluate the performance of our proposed method 
compared to the MSD-HMM, a manually checked female 
speaker’s corpus is used for both methods. Prof. Renhua 
Wang, from the University of Science and Technology of 
China provided us the Mandarin speech corpus which consists 
of 270 training and 30 testing sentences. The labels of 
unvoiced initials are used as the boundaries of VU switch. The 
input text to the system includes symbols on pronunciation and 
prosodic boundaries, which can be obtained from orthogonal 
text using a natural language processing system, developed at 
University of Science and Technology of China. 
      As for the HMM-based method, the HMM-based Speech 
Synthesis toolkit (HTS Ver.2.1) [22] is used. Five-state, left-
to-right HMM phone models are adopted. The MSD-HMM 
generates F0 together with 24-order mel-cepstrum coefficients. 
The ESPS RAPT algorithm is used for automatic F0 
extraction. Before training, we found that almost 22.37% 
syllables of the total have the VU decision errors. And among 
these errors, 33% failures are occurred in T4, 39% in T3, 11% 
in T0, 12% in T2 and 5% in T1. After training process of 
MSDHMM, the errors will increase. 

 
    Figure 6: An example of the continuous F0 contours for the 
Mandarin syllable “shi2+wu3+wan4+mu3”. From top to 
bottom: original wave, F0 calculated by RAPT algorithm, 
phoneme labels, F0 re-estimated by Generation Process Model 

     Figure 6 shows an example of F0 extracted by ESPS RAPT 
algorithm and the continuous F0 contour re-estimated by the 
tone and phrase components using generation process model. 
Here we can find that the ESPS RAPT algorithm is failed to 
find F0 values in the vowel “u” in Tone 3. In contrast our 
proposed method is successful to smooth the F0 contours, find 
F0 values in the VU decision error regions, and interpolate F0s 
in the unvoiced regions. Then all the syllables with VU 
decision errors are fixed before training. 
 

 

 
    Figure 7: An example of the F0 contours predicted by MSD 
and our method, along with corresponding original nature 
speech contours  
 
    Figure 7 shows examples of F0 contours generated by MSD-
HMM and our approach, compared and overlaid with 
corresponding original nature speech. In this example, there 
are 5 Mandarin syllables: “zhe3+ti2+chu1+le0+yi4”. Here the 
syllable “zhe3” in Tone 3 is difficult to synthesize for its pitch 
contours change greatly and sometimes sounds creaky.  The 
syllable “le0” in neutral tone is also hard to synthesize for its 
command pattern is depend on the context and usually have 
reduced amplitudes. As shown in Fig. 7, the MSD synthesizer 
has VU decision errors in “zhe3” and “le0” syllables and low 
accuracy of F0 contours while our method outperforms in both 
two syllables. And there are no VU decision errors in our 
approach. 
 
Table 4: Results of phone duration prediction using decision 
tree model and syntax feature sets. 

Model Initials Finals 

Corr. RMSE(ms) Corr. RMSE(ms) 

Wagon-B 0.94 13 0.73 29 

Wagon-B+S 0.95 13 0.76 27 

M5p-R-B 0.95 13 0.83 18 

M5p-R-B+S 0.97 12 0.84 16 
M5p-B 0.95 13 0.79 25 

M5p-B+S 0.97 12 0.81 24 
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    Table 4 summarizes results for prediction of phone 
durations using decision tree model and syntax feature sets. 
The baseline and syntax feature-set is referred to as B and S, 
respectively. i.e., M5p-R-B+S stands for M5p-R tree model 
using both baseline and syntax feature-sets while M5p-R-B 
stands for M5p-R tree model using only baseline feature-set. 
All models using syntax feature-set perform no worse than 
their baselines in terms of both correlation and RMSE. Also, 
M5p-R and M5p outperform Wagon in terms of both 
correlation and RMSE. In particular, M5p-R-B+S is the model 
with best performance in both initials and finals duration 
prediction tasks. 
    Table 5 shows the comparison of phone duration and F0 
prediction. The comparisons were carried out in three different 
categories: 1) MSD-HMM 2) Our HMM with continuous F0 
and 3) M5p-R-B+S. Here we use the average RMSE of initials 
and finals for M5p-R-B+S. After using continuous F0 in HMM 
training, the VU decision errors are significant solved. In other 
words the duration prediction is improved comparing to MSD-
HMM. Still the M5p-R-B+S method reaches the best 
performance comparing with the HMMs, improving by 50%.  
 
Table 5: Comparison of phone duration prediction with 
different methods 

 RMSE of Duration  RMSE of F0 
MSD-HMM 28 ms 52.8 Hz 
Our-HMM 24 ms 29.7 Hz 

M5p-R-B+S 14 ms -- 
 

7. Conclusions 
In this paper, we proposed a method to generate prosodic 
features for HMM-based speech synthesis system. Firstly we 
use the generation process model to improve F0 modeling. It 
can fix the F0 tracking errors and VU errors before training, 
and assume that F0 values are exist in unvoiced regions so 
there is only one single stream of F0 in HMM. Then there are 
no redundant component weights parameters. A prior 
linguistic knowledge of phonemes of Mandarin is used for the 
VU decision at the synthesis stage. Secondly, the syntax 
features extracted from Stanford parser output are used for 
duration prediction of Mandarin phones, as in conventional 
duration generation of HTS does not include any high-level 
linguistic knowledge. Hence a clear relationship is obtainable 
between generated prosodic features and their background 
linguistic information, enabling flexible control of prosodic 
features in HMM-based TTS. 
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