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The ability to manipulate neural activity with precision is an asset in uncovering neural circuits for decision-making. Diverse tools for
manipulating neurons are available for mice, but their feasibility remains unclear, especially when decisions require accumulating visual
evidence. For example, whether mice’ decisions reflect leaky accumulation is unknown, as are the relevant/irrelevant factors that influ-
ence decisions. Further, causal circuits for visual evidence accumulation are poorly understood. To address this, we measured decisions
in mice judging the fluctuating rate of a flash sequence. An initial analysis (�500,000 trials, 29 male and female mice) demonstrated that
information throughout the 1000 ms trial influenced choice, with early information most influential. This suggests that information
persists in neural circuits for �1000 ms with minimal accumulation leak. Next, in a subset of animals, we probed strategy more exten-
sively and found that although animals were influenced by stimulus rate, they were unable to entirely suppress the influence of stimulus
brightness. Finally, we identified anteromedial (AM) visual area via retinotopic mapping and optogenetically inhibited it using JAWS.
Light activation biased choices in both injected and uninjected animals, demonstrating that light alone influences behavior. By varying
stimulus–response contingency while holding stimulated hemisphere constant, we surmounted this obstacle to demonstrate that AM
suppression biases decisions. By leveraging a large dataset to quantitatively characterize decision-making behavior, we establish mice as
suitable for neural circuit manipulation studies. Further, by demonstrating that mice accumulate visual evidence, we demonstrate that
this strategy for reducing uncertainty in decision-making is used by animals with diverse visual systems.
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Introduction
Rodents have emerged as a powerful model organism for probing
the neural circuits underlying decision-making (Carandini and

Churchland, 2013). Mice are an ideal model for studying neural
circuits because of the tools for accessing and probing genetically
defined cell types (Madisen et al., 2010, 2012, 2015; Taniguchi et
al., 2011). Despite these advantages, other species are more com-
monly used in perceptual decision-making studies that involve
temporal accumulation of sensory evidence, perhaps due to the
assumption that such tasks are too difficult for mice. However,
mice have been trained on numerous sensory perception tasks
(Andermann et al., 2010; Busse et al., 2011; Sanders and Kepecs,
2012; Glickfeld et al., 2013; Z.V. Guo et al., 2014; Funamizu et al.,
2016; Goard et al., 2016; Marbach and Zador, 2016; Burgess et al.,
2017; Song et al., 2017). This suggests that they might be suitable
for visual evidence accumulation tasks, and several studies report
promising performance in mice on such tasks (Douglas et al.,
2006; Morcos and Harvey, 2016; Stirman et al., 2016).
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Significance Statement

To connect behaviors to their underlying neural mechanism, a deep understanding of behavioral strategy is needed. This under-
standing is incomplete for mice. To surmount this, we measured the outcome of �500,000 decisions made by 29 mice trained to
judge visual stimuli and performed behavioral/optogenetic manipulations in smaller subsets. Our analyses offer new insights into
mice’ decision-making strategies and compares them with those of other species. We then disrupted neural activity in a candidate
neural structure and examined the effect on decisions. Our findings establish mice as suitable for visual accumulation of evidence
decisions. Further, the results highlight similarities in decision-making strategies across very different species.
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Two major gaps in our understanding of evidence accumula-
tion decisions are apparent: a precise characterization of the time
course of accumulation, and an understanding of how relevant
and irrelevant factors jointly shape decisions. Recent work sug-
gested that a sequence of visual cues collectively influence an
eventual decision (Morcos and Harvey, 2016). These data consti-
tute an essential first step in establishing mice as a suitable
decision-making model, but outstanding questions remain. First,
a large-scale study with many subjects and large trial counts is
needed. This benefits a number of analyses, including those that
evaluate the influence on the final decision of stimuli arriving at
different times. Such analyses require many trials to achieve the
level of precision that is required to fully characterize the evidence
accumulation time course. Further, many animals are required to
distinguish idiosyncratic strategies from the overall tendency of
the species. For instance, in existing work (Morcos and Harvey,
2016), the use of five mice hinted that the most common strategy
is to weight early evidence over late evidence, but the small animal
number and the variability in strategy made a firm conclusion
difficult. Closing these gaps in our understanding of accumula-
tion decisions is essential, especially for interpreting causal ma-
nipulations (Krakauer et al., 2017).

Indeed, the causal circuits for visual evidence accumulation
are not established in mice although inactivations have demon-
strated a role for cortical and subcortical structures in other kinds
of mouse decisions. For instance, suppressing the posterior pari-
etal cortex (PPC) in mice impairs memory-guided decisions
(Harvey et al., 2012; Funamizu et al., 2016; Goard et al., 2016).
These studies suggest a role for cortical circuits in decision-
making and visually guided behavior. However, the role of these
structures in visual evidence accumulation is unknown. The im-
portance of establishing a causal role for a putative neural struc-
ture is underscored by recent results that even areas strongly
modulated during behavior might not be part of the causal circuit
(Erlich et al., 2015; Katz et al., 2016).

Overall, mice have potential as an animal model for decision-
making, but have been held back because of lack of detailed
knowledge about behavior and little insight into the contribution
of cortical circuitry. Here, we begin to close those gaps. First, we
report that mice accumulate evidence for visual decisions. Our
large dataset and use of stochastic stimuli allow precise charac-
terization of how information presented at different times influ-
ences decisions. Next, we report that mice’ decisions are jointly
shaped by stimulus rate, brightness and the outcome of previous
trials. Two independent experiments demonstrated that the in-
fluence of brightness was larger in rats compared with mice. Fi-
nally, we report that suppressing activity in the anteromedial
visual area (AM) biases decisions, highlighting the role of cortex
in evidence accumulation. Together, these findings establish
mice as a suitable organism for visual accumulation-of-evidence
decisions. Further, the results highlight similarities in decision-
making strategies across very different species.

Materials and Methods
Animal subjects. The Cold Spring Harbor Laboratory Animal Care and
Use Committee approved all animal procedures and experiments and all
experimental procedures were in accordance with the National Institutes
of Health’s Guide for the Care and Use of Laboratory Animals. Experi-
ments were conducted with female or male mice between the ages of
6 –25 weeks. All mouse strains were of C57BL/6J background and pur-
chased from The Jackson Laboratory. Ten GCaMP6f transgenic mice
(Ai93 /Emx1-cre /CaMKII�-tTA) of both sexes were used for retinotopic
mapping and area AM photoinhibition experiments. Two male Long–
Evans rats (6 weeks; Taconic) were also used for behavior experiments to

facilitate a comparison to other studies (Raposo et al., 2012; Brunton et
al., 2013; Sheppard et al., 2013).

Behavioral training. Before behavioral training, mice were gradually
water restricted over the course of 1 week. Mice were weighed daily and
checked for signs of dehydration throughout training period (Z. Guo et
al., 2014). Mice that weighed �80% of their original pretraining weight
were supplemented with additional water. Behavioral training sessions
lasted 1–2 h during which mice typically harvested at least 1 ml of water.
Mice rested on the weekends. Mice who failed to harvest at least 0.4 ml on
2 consecutive days were supplemented with additional water.

Animal training took place in a sound isolation chamber containing a
three-port setup described previously (Raposo et al., 2012). Mice poked their
snouts into the center port to initiate trials and trigger sensory stimuli. Ani-
mals reported choices by moving to a left- or right-side port. In the first
training stage, mice learned to wait for at least 1100 ms at the center port
before reporting their decision. We shaped the behavior by rewarding the
mice at the center port (0.5 �l) and gradually increasing the minimum wait
duration from 25 to 1100 ms over the course of 1–2 behavioral sessions.
Without center reward, this stage typically took 10–12 sessions to learn.

During the first stage, mice were not rewarded for making the correct
association between the stimulus and response port; rather, on each trial, a
random port (left or right) was chosen as the reward port and a liquid reward
(2–4 �l) was delivered to the port. Trials in which the mouse waited the
minimum required duration at the center port are referred to as completed
trials.

In the second stage of training, mice learned to associate high-rate flash
sequences (13–20 flashes/s) with the right port and low-rate flashes (1–11
flashes/s) with the left port. Trials with 12 flashes/s were randomly rewarded.
For some mice, the contingency was reversed, such that high-rate flashes
were rewarded at the left-hand port and low-rate flashes were rewarded at the
right-hand port. Mice received a liquid reward for correct responses. They
were punished for incorrect responses or for withdrawing early with a time-
out period (2–4 s), during which they could not initiate a trial.

We used several anti-bias methods to correct the side bias, which often
occurred when mice began stage two. Anti-bias strategies included: phys-
ically obstructing access to the biased port, changing the reward size, and
modifying the proportion of left versus right trials.

Training was considered complete when mice waited at least 1100 ms
at the center port, performed �80% correct on the easiest flash rates (Fig.
1 B, C), and experienced at least eight or more flash rates. This required
�2 months, with one daily session 5 d per week.

Stimulus presentation, reward delivery, and data collection were per-
formed through a MATLAB interface and Arduino-powered device
(BPod, Sanworks).

Visual stimuli. Stimuli were sequences of 20 ms pulses of light from a
LED panel (Ala Scientific). The interpulse intervals were randomly se-
lected from a discrete exponential distribution (Brunton et al., 2013).
This distribution was selected because it offers a major advantage over
previous methods (Raposo et al., 2012; Sheppard et al., 2013), which is
the independence of stimuli in each time bin. This greatly simplifies the
process of computing psychophysical kernels. For the exponential inter-
val stimulus, the minimum interpulse interval was 20 ms, and the num-
ber of flashes for a given stimulus determined the maximum interval. 4 to
20 flashes/s were presented on each trial, always over the course of 1000
ms. The stimulus was created using 25 fixed time bins each 20 ms in
duration. A coin flip determined whether an event (flash) would occur in
each bin. An empty 20 ms time bin followed each flash. This 1000 ms
period was followed by a 100 ms delay, leading to a total time in the port
of 1100 ms. The highest stimulus rates (20 Hz) have been shown to elicit
reliable, steady-state flicker responses in retinal ERG (Krishna et al.,
2002; Shirato et al., 2008; Tanimoto et al., 2015). Mice were presented
with all rates from 4 to 20 Hz on each session in most cases. Some
behavioral manipulations, such as the brightness manipulation and op-
togenetic stimulation, were especially challenging for the animals and
tended to lower their overall reward rate. For those manipulations, we
therefore omitted some of the more difficult stimuli to keep overall re-
ward rate at a level that maintained the animals’ motivation to work.

Each 20 ms flash pulse was generated by a half-wave rectified sinusoi-
dal signal thresholded at the peaks and with a base frequency of 200 Hz.
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This approach effectively controls the total LED on-time or the “density”
of the 20 ms pulses. It is similar to pulse-width modulation technique
used to control LED brightness. During normal sessions, the base fre-
quency is multiplied by a brightness factor, which is kept constant across
sessions.

Brightness manipulation. For the brightness manipulation experi-
ments, the 20 ms flash duration was held constant, so that the subjects
could not use the flash duration as a cue for the correct stimulus category.
In the uniform brightness manipulation experiment, the normal bright-
ness factor was either halved or doubled to produce the “dimmer” and
“brighter” conditions. In the uncorrelated brightness manipulation ex-
periment, we varied the LED on-time within the flash duration such that

the brightness factor was inversely scaled with the flash rate. Because the
lowest number of flashes presented was 4 flashes/s, and we did not change
the flash duration, we normalized all flash sequences such that the total
LED on-time was equal to 4 flashes/s. All brightness manipulations were
randomly introduced on 5% of all trials.

Head bar implantation and skull preparation. For retinotopic mapping
experiments, mice were implanted with a custom titanium head bar.
Mice were anesthetized with isoflurane (2%) mixed with oxygen and
secured onto a stereotaxic apparatus. Body temperature was maintained
at 37°C with a rectal temperature probe. The eyes were lubricated with
Puralube ointment before the start of the surgery, followed by subcuta-
neous injection of analgesia (Meloxicam, 2 mg/kg) and antibiotic (Enro-

A B
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E

Figure 1. A dataset of over half a million trials demonstrates mice can be trained to make stable and reliable decisions about visual stimuli. A, Task schematic and trial structure of the three-port
choice task. The mouse initiated trials and stimulus delivery by poking its nose into the center port. Mice reported whether stimuli were low-rate (left port) or high-rate (right port). Mice waited at
the center port for at least 1100 ms, with the stimulus delivered after a variable delay (10 –100 ms). At the end of the 1000 ms stimulus period, an auditory “Go” tone was played. Correct choices to
the left or right were rewarded with a small drop of water (2 �l), incorrect choices were followed by a 2–3 s timeout. B, Percentage correct on easiest stimulus conditions (4 and 20 flashes/s) plotted
across total trials experienced by the mouse. Individual mice: gray traces and average: black trace, 29 mice. Colors arbitrarily selected to facilitate distinguishing subjects. C, Psychometric function
fit for individual mouse from single session (494 trials; Error bars indicate Wilson binomial confidence intervals), and (D) data from 29 mice averaged across multiple sessions (537,288 trials).
Individual mice, Colored traces; average, black trace. E, Parameter values from the model fit for each mouse in the cohort. Error bars indicate SEM calculated via bootstrapping (Palamedes Toolbox).
Blue points indicate the 11 animals that were used for additional manipulations (11/11 were used for optogenetic or control experiments and 10/11 were used for the brightness manipulation).
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floxacin, 2 mg/kg). Fur on the scalp was removed with hair clippers and
Nair (Sensitive Formula with Green Tea), followed by betadine (5%)
swab. Lidocaine (100 �l) was injected underneath the scalp before re-
moving the scalp. The skull was cleaned with saline and allowed to dry. A
generous amount of Vetbond tissue glue (3M) was then applied to seal
the skull. Once the Vetbond was dry, the head bar was secured with
Metabond (Parkwell) and dental acrylic. Postsurgical analgesia was ap-
plied. Mice were allowed 3 d to recover in their home cage before begin-
ning the habituation process for retinotopic mapping.

Retinotopic mapping. To map visual area AM and surrounding cortical
visual areas, we performed wide-field fluorescence retinotopic imaging
in awake head-restrained mice (Garrett et al., 2014; Juavinett et al., 2017;
Zhuang et al., 2017).

Mice were presented with a visual stimulus on one of two 27 inch
monitors (Asus Design MX279H) rotated 90°. The monitor was placed in
the visual hemifield contralateral to the imaging hemisphere and posi-
tioned at an angle of 77° (azimuth) from the midline of the mouse and at
a distance of 15 cm from the eye. The mouse was positioned along the
midline of the elevation axis. Retinotopic maps were generated by peri-
odically sweeping a bar across the four cardinal directions of the monitor
(Kalatsky and Stryker, 2003). The narrow bar (10°) contained a flickering
black-and-white checkerboard pattern. The checkerboard squares alter-
nated between black and white at 5 Hz. A trial repetition consisted of 11
sweeps of the bar during a 22 s period in one of the four cardinal direc-
tions. Each trial was repeated 15 times for each direction. The first cycle
was discarded because it introduced stimulus onset transients. We used
custom MATLAB and Psychtoolbox scripts for visual stimulus presenta-
tion and camera image acquisition during retinotopic mapping. During
retinotopic mapping, mice were free to run on a custom 3D-printed
wheel (4 inch diameter; Shapeways) sprayed with rubber coating (Plas-
ticDip). Inclusion of a running wheel was selected because it tends to
reduce stress. Running movements are known to modulate neural re-
sponses to visual stimuli, but likely not in a way that would systematically
distort the borders between visual areas. Mice were habituated to head
restraint on the wheel for at least four sessions across 2 d (15–30 min
long) before retinotopic mapping sessions.

Wide-field imaging macroscope. We used a custom wide-field epifluo-
rescence macroscope to acquire fluorescence images of the exposed skull
during retinotopic mapping. Images were acquired at 20 frames/s with an
sCMOS camera (pco.edge 5.5). A green emission filter (525/50 nm band-
pass; Edmund Optics, 86-963) was positioned in front of the camera. Our
macroscope setup consisted of two macro lenses coupled face-to-face in
a tandem lens configuration (Ratzlaff and Grinvald, 1991). The focal
length of the first lens after the camera was 105 mm (B&H, NI1052DAF),
the second lens had 85 mm (B&H, RO8514S), resulting in a magnifica-
tion of 1.24�. Between both lenses was a dichroic mirror (Chroma
T495LPXR), to couple blue light from a side-mounted LED (Thorlabs,
M470L3) into the excitation light path. The light from the LED was
passed through an excitation filter (470/40 nm bandpass, Chroma
ET470/40�). Before retinotopic mapping, a focused image of the surface
vasculature from the skull was acquired. The focal plane was subse-
quently moved �400 �m (relative to the pial surface) into cortex during
retinotopic mapping, likely targeting responses in �layer 4. To increase
optical clarity, a thin layer of mineral oil (Sigma-Aldrich) was applied as
needed to the surface of the skull.

Wide-field imaging analysis. All imaging analysis was done in MATLAB
(2014b, MathWorks). Analysis of retinotopic maps followed methods
described in Zhuang et al. (2017). Briefly, the acquired image sequences
are averaged across trials (n � 15) for each of the four stimulus direc-
tions. The first cycle in each trial was discarded to avoid stimulus onset
transients. The fast Fourier transform was computed along the time axis
of the average image sequence for each direction. To cancel the delay
from the stimulus to response, the Fourier transforms corresponding to
image sequences acquired from the same stimuli traveling in opposite
directions (e.g., vertical bar traversing nasal-to-temporal and temporal-
to-nasal) were divided, which is equivalent to pixel-wise subtraction of
the image sequences in the time domain. To generate the azimuth and
elevation phase maps, we used the MATLAB function angle to extract the
phase of the Fourier transform at each pixel. The phase angles (in radi-

ans) were converted to degrees and normalized by the dimensions (in
degrees) of the stimulus monitor. These angles determine the colors on
azimuth and elevation maps. The azimuth and elevation phase maps
were combined to compute visual field sign maps (Sereno et al., 1994,
1995; Garrett et al., 2014) as described in detail by Garrett et al. (2014).
Briefly, we used the MATLAB function gradient to calculate the local
gradients for the azimuth and elevation maps individually. To obtain the
visual field sign map, we computed the sine of the difference of the angles
between the local gradients of both maps. The magnitude of this quantity
determines the color on visual field sign maps. Visual field sign maps
were generated for each mouse individually. Visual area borders were
determined from the visual field sign maps and drawn manually (Wek-
selblatt et al., 2016).

Viral injection and implant of optical fibers. For JAWS inhibition exper-
iments, mice were injected with AAV8-CaMKII-JAWS-KGC-GFP-ER2
(UNC Vector Core) into area AM identified by retinotopic mapping. AM
is a prominent candidate for decision-making as it appears to at least
partially overlap with the previously defined location of posterior parietal
cortex (Funamizu et al., 2016; Krumin et al., 2017). Indeed, recent work
suggests that AM may be at the more posterior end of PPC (defined at 2
mm posterior and 1.7 mm lateral to bregma (Driscoll et al., 2017, their
Fig. S1). AM has projections to frontal and motor areas. Similar projec-
tion patterns have been observed in primate lateral intraparietal area LIP
(Cavada and Goldman-Rakic, 1989a,b), an area routinely implicated in
perceptual decision-making studies (Gold and Shadlen, 2007; Hanks and
Summerfield, 2017).

To target AM, the visual field sign map was overlaid on the surface
vasculature image captured before retinotopic imaging. Blood vessel
landmarks located on or near area AM were used to guide the location of
a small craniotomy (�1 mm diameter) and subsequent virus injection
and optical fiber implantation. Viral injections were performed using
Drummond Nanoject III, which enables automated delivery of small
volumes of virus. To minimize virus spread, the Nanoject was pro-
grammed to inject slowly: six 30 nl boluses, 60 s apart, and each bolus
delivered at 10nl/s. Approximately 180 nl of virus was injected at multiple
depths (200 and 500 �m) below the brain surface. Following the virus
injection, 200 �m fiber (metal ferrule, Thorlabs) was implanted above
the injection site. The optical fiber was secured onto the skull with Vit-
rebond, Metabond, and dental acrylic. The animals were allowed at least
3 d to recover before behavioral training.

Optogenetic inactivation. A red 640 nm fiber-coupled laser (OptoEngine)
was used for inactivation. Experiments were conducted with multiple laser
power levels: 0.5, 1, and 2 mW (16, 32, and 64 mW/mm2). One power level
was used per session. On inactivation sessions, laser light was externally
triggered using a PulsePal (Sanworks) device. The laser stimulation pattern
was a square pulse (1 s) followed by a linear ramp (0.25 s), which began at the
offset of the stimulus. Stimulation occurred on 25% of trials during the
weekday sessions. Animals were not run on weekends; a systematic differ-
ence on performance before and after the weekend was not apparent.

Psychometric function. We fitted a four-parameter psychometric func-
tion to the responses of subjects that performed the visual flashes cate-
gorization task. The general form of the psychometric function defines
the probability ( pH) that the subject chooses the port associated with
high flash rate as follows:

pH � � � �1 � � � �� F� x; �, 	�, (1)

where � and � are the lower and upper asymptote of the psychometric
function, which parameterizes the guess rate and lapse rate, respectively;
F is a sigmoidal function, in our case a cumulative normal; x is the event
rate i.e., the number of flashes presented during the 1 s stimulus period;
� parameterizes the horizontal shift or bias of the psychometric function,
and 	 describes the slope or sensitivity. The psychometric function F(x;�,
	) for a cumulative normal distribution is defined as follows:

F� x; �, 	� �
	

�2
 �
	


x

exp� � 	2�x � ��2

2 �. (2)

The parameters of the psychometric function were estimated with the
Palamedes Toolbox (Prins and Kingdom, 2018).
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Choice history. We implemented a probabilistic choice history model to
evaluate the influence of prior choice(s) on the current choice of the subject.
This approach assessed whether success or failure on the most recent trial
influenced the performance on the current trial (Busse et al., 2011):

ln� pH

1 � pH
� � 	0 � 	EE�t� � 	SIsuccess�t � 1� � 	FIfailure�t � 1�,

(3)

where t indicates the current trial and E is the signed stimulus evidence of
the current trial. Evidence is computed as the difference between the flash
rate of the trial and the category boundary (12 flashes/s). Isuccess was
assigned a value of 1 or 	1 to reflect a success on the right or left on the
previous trial. Ifailure indicated failures on the left or right. The coeffi-
cients (	0, 	E, 	S, and 	F) were estimated with MATLAB glmfit. The
magnitude of evidence coefficient (	E) can be interpreted in absolute
terms in inverse units of stimulus magnitude, using signal detection the-
ory (DeCarlo, 1998); a stimulus weight of 0.5 means that the noise in
the animal’s internal estimate of the stimulus rate has a SD of �2 Hz. The
magnitude of the success and failure coefficients (	S, and 	F) can be
understood in relative terms to the stimulus weight; for instance, if the
stimulus weight is 0.5 and the previous reward weight is 0.25, then a unit
change in stimulus rate will affect the odds of going right twice as strongly
as a previous reward. The inclusion of additional parameters and inter-
action terms did not reliably improve the fit (assessed by stepwiseglm.m).
For example, interaction terms to evaluate whether the previous trial’s
level of difficulty affected its impact on subsequent trials were rarely
significant and had a much smaller influence on the choice compared
with the current stimulus or previous outcome.

Logistic regression reverse correlation. The logistic regression function
was used to estimate the weights associated with each moment of the
stimulus (the psychophysical kernel; Katz et al., 2016; Licata et al., 2017),
noting that these weights can reflect both sensory and decision-making
processes (Okazawa et al., 2018). This can be written as follows:

ln� pH

1 � pH
� � 	0 � xTw, (4)

where 	0 is a scalar bias term, x is a vector of the 25 successive time
windows over the trial, and w is a vector of the weights for each time
window. 	0 and weight vector w were estimated with the MATLAB func-
tion glmfit. To generate the average kernels across mice (Fig. 2B) and rats
(Fig. 2E), we pooled data from all animals and generated a single psycho-
physical kernel using all the data. Pooling together multiple generative
rates introduces an artefactual correlation between time bins. To remove
this correlation, we ran the regression with a reparametrized version of
Equation 4, which subtracted out the mean generative rate �k from each
bin and added it as a separate regressor, scaled by the number of time bins
T and its corresponding weight �w (Eq. 5):

ln� pH

1 � pH
� � 	0 � �

t�1

T

wtxt

� 	0�1� � �
t�1

T

wt� x�t � �k��
�k � �txt�k�
x�t � xt � �k

f�
t

x�t � 0, corr�x�t, x�j� � 0

� 	0�1� � �
t�1

T

�w�t � �w�� x�t � �k��
�w � �twt�
w�t � wt � �w

f�
t

w�t � 0
.

� 	0�1� � �
t�1

T

w�tx�t � �w�
t�1

T

x�t � �k�
t�1

T

w�t � �w�k�
t�1

T

1

A B C D

E F G

Figure 2. Decisions in mice and rats reflect evidence presented throughout the trial. A, Schematics indicating possible shapes of psychophysical kernels and the strategies they reveal. B,
Psychophysical kernel based on pooled data from 29 mice (537,288 trials). C, D, Psychophysical kernels from example mice that typify early weighting and flat weighting. E, Psychophysical kernels
from two rats (26,890 trials). Gray traces, Individual subjects; black trace, average. Values were �0 throughout the trial for almost all subjects, demonstrating that stimuli presented throughout the
1000 ms duration influence the animal’s eventual choice. F, Scatter plot relating the weight of evidence early versus late in the trial. Error bars indicate SEM. Dashed line: x � y. G, Effect of previous
decision outcome (success/failure) on current choice.
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ln� pH

1 � pH
� � 	0�1� � �w��kT� � �

t�1

T

w�tx�t (5)

Generalized linear mixed model. To statistically test whether there was
a significant effect of photoinhibition of area AM on the population
group level, we used a generalized linear mixed-model (GLMM).
GLMMs are an extension of the generalized linear model, which can be
used to model both fixed and random effects in categorical data. In
psychophysics, GLMMs can be used to generalize results across multiple
subjects and experimental conditions (Knoblauch and Maloney, 2012;
Moscatelli et al., 2012; Erlich et al., 2015).

The GLMM model written in the Wilkinson notation:

r � 1 � evidence � opto � evidence : opto

� �evidence � subject/opto�. (6)

Each term of the equation has a coefficient, 	. The model specifies that
the subject’s response, r, is a function of the fixed effects: the evidence,
defined as the difference between flash rate and the category boundary
(its coefficient represents the slope of the psychometric function), the
photoinhibition indicator variable opto, and the interaction between the
evidence and opto. The interaction term evidence:opto evaluates whether
photoinhibition alters the subject’s sensitivity or the slope of the psycho-
metric function. The model allows the four fixed effects parameters to
vary for each individual subject (random effects). The model uses a pro-
bit linking function and was fit using a maximum likelihood procedure.
The GLMM analysis was performed using the R package “lme4” as de-
scribed by Erlich et al. (2015).

The effect of photoinhibition on the horizontal location of the psycho-
metric function was quantified by the choice bias. The choice bias was
defined as follows:

choice bias �
	opto

	evidence � 	opto:evidence
, (7)

where 	opto, 	evidence, 	evidence:opto are estimated coefficients from the
GLMM equation above. The choice bias reflects the equivalent change in
the stimulus that would recapitulate the observed effects of photoinhibi-
tion and is in units of flashes/second. Positive choice bias would indicate
that photoinhibition caused the subject to be biased toward high-rate
responses. Because the choice bias is computed from estimated parame-
ters of the GLMM model, we computed the errors (95% confidence
intervals) via error propagation.

Results
We trained mice to categorize a stochastic sequence of visual
flashes (Fig. 1), similar to earlier studies with rats (Raposo et al.,
2012; Brunton et al., 2013; Scott et al., 2015). Mice performed a
three-port choice task (Uchida and Mainen, 2003), in which they
judged whether the total number of full-field flashes presented
during a 1000 ms period exceeded an experimenter-defined cat-
egory boundary (12 flashes/s; Fig. 1A). Each flash in the sequence
was 20 ms long and followed by an inter-flash interval drawn
from a discrete exponential distribution.

Mice learned to categorize stochastic sequences of visual
flashes
Mice performed hundreds of trials per session (median 767 trials)
and reached high performance accuracy at the easiest level of the
task (Fig. 1B). Behavioral performance was quantified by fitting a
psychometric function (Eq. 1; Fig. 1C–E). Individual mice on
single sessions (Fig. 1C) and across multiple sessions (Fig. 1D)
made increasingly more high-rate choices as the flash rate in-
creased, achieving psychometric performance comparable to rats
trained on a similar task (Raposo et al., 2012).

Mice decisions were influenced most by flashes early in
the sequence
To maximize accuracy, animals should count all the flashes pre-
sented during the fixed stimulus presentation period. Because all
flashes in the sequence are equally informative about the overall
count, subjects should apply an equal weight to all flashes (Fig.
2A, bottom). However, mice might instead make use of only a
portion of the stimulus. Greater weighting of flashes early in the
sequence is consistent with an impulsive strategy, which, in its
extreme, would amount to making up one’s mind right at the
beginning (Fig. 2A, top). Greater weighting of flashes later in the
sequence can indicate a forgetful/leaky strategy or, in its extreme,
“procrastination” in the sense that only stimuli at the very end
influence the decision (Fig. 2A, middle; Kiani et al., 2008).

To distinguish these strategies, we used the well established
logistic regression approach to estimate the psychophysical ker-
nel (Huk and Shadlen, 2005; Katz et al., 2016; Yates et al., 2017).
The logistic regression-based reverse correlation approach re-
veals the time course of how incoming stimuli, on average, influ-
ence the subject’s choice. Our use of stimuli that appear
stochastically over time and our large dataset together enabled a
continuous and precise characterization of this time course.
Across mice (Fig. 2B), the entire sequence of flashes was informa-
tive, as indicated by non-zero regression weights throughout the
trial. Interestingly, flashes presented earlier in the sequence in-
formed the choice more strongly than flashes presented later in
the sequence. This implies that mice tended to more heavily
weight stimuli presented early in the trial, consistent with an
impulsive integration strategy. Our inclusion of 29 mice also al-
lowed us to compare individuals and potentially identify differ-
ent strategies. The psychophysical kernel of many individual mice
reflected the average (Fig. 2C) although there were exceptional
animals for whom stimuli throughout the trial influenced deci-
sions more evenly (Fig. 2D). The strategy of these rare mice was
reminiscent of the behavior that has been observed previously in
rats (Brunton et al., 2013; Sheppard et al., 2013), a finding we
replicate here in a small cohort of rats (Fig. 2E).

Considering all animals together (Fig. 2F) clarifies that most
mice assign a greater weight to early evidence (Fig. 2F, most cir-
cles are below the line), whereas the tendency to weight early and
late evidence more evenly was rare in mice (Fig. 2F, yellow circle).
Note that few animals ignored late evidence altogether. This is
likely because we used a “go tone” at the end of the stimulus
period. As in previous studies (Sheppard et al., 2013), inclusion of
the go tone may eliminate the need for animals to estimate the
duration of the stimulus period, preventing a tendency to some-
times misestimate it and thus stop accumulating evidence too
soon.

Mice were influenced by performance on previous trial
Next, we used the same dataset to evaluate whether mice were
influenced by performance on previous trials. Several studies
have reported that human and animal subjects performing per-
ceptual tasks are influenced by previous choices (Busse et al.,
2011; Fründ et al., 2014; Scott et al., 2015; Abrahamyan et al.,
2016; Hwang et al., 2017; Urai et al., 2017), even when the trials
are independent. We used a quantitative model to assess whether
the event-based, visual accumulation decisions used here were
likewise influenced by choices made on previous trials.

This approach assessed whether success or failure on the most
recent trial influenced the performance on the current trial (Ma-
terials and Methods; Busse et al., 2011). Figure 2G shows a scatter
plot of the coefficients for previous success (	S) and previous
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failures (	F). Nearly all the 29 mice had positive 	S coefficients,
indicating that mice tended to repeat the same choice on the
current trial if they were rewarded on the previous trial. Many of
the mice also had positive 	F coefficients, meaning that they mice
tended to repeat their choice following a failure (Fig. 2G, Stay
quadrant), whereas others had negative 	F coefficients, indicat-
ing a tendency to switch choices following a failure (Fig. 2G,
Win-Stay, Lose Switch quadrant). The overall observed trial his-
tory patterns were similar to that observed in human subjects
performing a perceptual decision-making task (Abrahamyan et
al., 2016). To assess the necessity of including history parameters
in characterizing behavior, we compared a model with and with-
out the choice history parameters using a likelihood ratio test. We
quantified the magnitude of model improvement using BIC and
AIC and tested whether the improvement was significant above
and beyond the expected improvement in fit from adding new
parameters (� 2 test). The improvement was significant (p �
10	5) for all 29 mice and for the two rats.

Decisions are influenced by cumulative brightness
To more deeply probe the animal’s strategy we conducted
additional experiments in smaller subsets of animals. Specifi-
cally, we wished to evaluate an alternate strategy to accumu-
lating sensory events: to base the decision on the overall
brightness experienced over the course of the stimulus. This is
a feasible strategy given that the flash event rate is directly
proportional to the total LED on-time and therefore the total
photons emitted in a sequence.

To test whether mice were influenced by brightness, we per-
formed two brightness manipulation experiments on a subset of
animals (Fig. 3). First, the intensity of all flashes in a given se-
quence was randomly increased or decreased on 5% of all trials

(Fig. 3A). If subjects are influenced by rate alone, their decisions
will be the same regardless of brightness (Fig. 3B, top row). By
contrast if subjects are influenced by brightness, they will report
more high-rate choices on brighter trials, and more low-rate
choices on dimmer trials (Fig. 3B, middle and bottom rows). This
is what we observed (Fig. 3C, left): brighter stimuli drove a high-
rate bias (shift of 1.0 � 0.5 flashes/s), while dimmer stimuli drove
a low-rate bias (shift of 0.8 � 0.5 flashes/s). When we tested rats
on the same manipulation, the changes were even larger (Fig. 3C,
right): we observed a high-rate bias of 4.8 � 0.9 flashes/s for
brighter stimuli and a low-rate bias of 3.1 � 0.8 flashes/s for
dimmer stimuli.

Second, we removed the correlation between brightness and
flash rate by adjusting the flash intensity in each sequence to the
flash rate on 5% of trials. As a result, the total brightness over time
was the same across all flash rates (Fig. 3D). If subjects are influ-
enced by rate alone, their decisions will be unaffected by bright-
ness (Fig. 3E, top row). By contrast if subjects are influenced by
brightness, they will have a low-rate bias on uncorrelated trials
because the brightness level used was that of the lowest rate stim-
ulus (Fig. 3E, middle and bottom rows). This is what we observed:
both mice and rats had a low-rate bias (shift of 3 � 8 flashes/s for
mice, 21 � 7 for rats; Fig. 3F). Importantly, the dependence of
decisions on stimulus rate was reduced but still present (Fig. 3F,
blue lines not completely flat). For example, the sensitivity pa-
rameter for mice was 0.053, indicating that the animals’ estimates
of rate were very noisy (e.g., the SD on their estimate was �19 Hz;
see Materials and Methods). However, this parameter was none-
theless highly significant (p � 4 � 10	10, likelihood ratio test,
corrected for parameter on boundary), indicating that rate did
have a significant impact on choice. Similarly, rats’ sensitivity was
0.077; small but highly significant (p � 6 � 10	15). Together,

A B C

D E F

Figure 3. Stimulus brightness influences rate decisions. A, Schematic of the uniform brightness manipulation experiment. The intensity of individual flashes was varied such that all flashes were
dimmer or brighter than normal on 5% of randomly selected trials. B, Left, Stimulus spaces and decision planes (gray lines). Right, Predicted psychometric functions. Each row reflects a candidate
way in which the stimulus in each condition would influence decisions given the strategy indicated in the label. Top, Stimulus rate. Middle, Stimulus brightness. Bottom, Hybrid strategy in which both
features are used. C, Measured psychometric functions. Left, Eight mice: 108,547 trials. Right, Two rats: 26,201 trials. Points, Subjects’ responses; solid line, four-parameter cumulative normal
psychometric function fit to the data. Error bars indicate Wilson binomial 95% confidence intervals. D, Schematic of uncorrelated brightness manipulation experiment. The intensity of individual
flashes was scaled inversely with the flash rate on 5% of randomly selected trials. All sequences have the same cumulative brightness, independent of flash rate. E, Same as B but for the manipulation
in D. F, Measured psychometric functions. Left, Two mice: 6326 trials. Right, Two rats: 9946 trials. Points, Subjects’ responses; solid line, four-parameter cumulative normal psychometric function
fit to the data. Error bars indicate Wilson binomial 95% confidence intervals.
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these findings argue in favor of a hybrid
strategy (Fig. 3E, bottom row). If animals
had used brightness alone, the psycho-
metric functions would have been flat.

Inactivation of secondary visual area
AM biases perceptual decisions
To test whether the evidence accumula-
tion paradigm engaged cortical circuitry,
we sought to reversibly silence secondary
visual area AM in mice during decision-
making. To target AM, we performed
wide-field retinotopic mapping in each
mouse (Fig. 4). Briefly, we imaged visually
evoked activity in awake transgenic mice
expressing GCaMP6 in excitatory neu-
rons (Ai93; CamkII�-tTA; Emx-cre) in
response to a vertical or horizontal bar
that periodically drifted across the screen
in the four cardinal directions (Kalatsky
and Stryker, 2003; Garrett et al., 2014;
Zhuang et al., 2017). This procedure en-
abled generation of phase maps for alti-
tude and azimuth visual space (Fig. 4A,B)
and subsequently visual field sign maps
(Fig. 4C), which were used to estimate the
borders between cortical visual areas and
reliably identify AM (Fig. 4D). The maps
we observed were similar to those previ-
ously reported using either calcium imag-
ing or intrinsic signal imaging (Garrett et
al., 2014; Zhuang et al., 2017). Note that
the location of area AM is very close to the
stereotaxic coordinates used to target PPC (Harvey et al., 2012;
Goard et al., 2016; Hwang et al., 2017). Future studies are needed
to establish whether AM is a separate cortical area from PPC or
whether there is overlap (partial or complete) between the two.

To reversibly silence AM, we used cruxhalorhodopsin JAWS
(Halo57), a red light-driven chloride ion pump capable of pow-
erful optogenetic inhibition (Chuong et al., 2014; Acker et al.,
2016). Optogenetic stimulation was randomly interleaved on
25% of trials within a session. The optogenetic stimulus pattern
consisted of a 1 s long square wave followed by a 0.25 s long linear
downward ramp to reduce the effect of rebound excitation that
may occur after strong inhibition (Fig. 5A, red line; Chuong et al.,
2014; Guo et al., 2014a).

A potential confound when using JAWS for optogenetic inhi-
bition is that the presence of red light alone may influence behav-
ior. While it was long assumed that rodents are unable to perceive
red light, a recent study showed that red-light delivery in the
brain can activate the retina and influence behavior (Danskin et
al., 2015). Having demonstrated here that decisions can be influ-
enced by brightness (Fig. 3), we feared that red-light stimulation
might induce a perceived increase in brightness and thus a behav-
ioral bias toward high-rate decisions on photoinhibition trials.
To test whether decisions were affected by the presence of red
light in the absence of JAWS, we implanted and trained mice
injected with a sham virus (AAV-GFP) in AM.

In vivo red light stimulation of sham-injected mice resulted in
a high-rate bias (Fig. 5B). This confirms the hypothesis that the
red light alone influences decisions. The bias is likely because the
red lights increased the perceived brightness of the stimulus, driv-
ing the animal to make more high-rate choices. Importantly,

choices were biased away from the site of the implant, arguing
against phosphenes that drew the animal’s attention toward the
stimulation side. To counter the red-light bias, we installed addi-
tional red lights in the behavior booth to adapt long-wavelength-
sensitive photoreceptors (Danskin et al., 2015). These external
“house lights” strongly reduced the effect of the laser stimulation
on behavior (Fig. 5C,D).

Although the house lights reduced the red-light bias in unin-
jected animals, the presence of a residual red-light bias in any
individual injected animal is difficult to ascertain. If the house
lights were incompletely effective in masking the red light, the
bias could diminish or possibly enhance the effects of direct neu-
ral manipulation, depending on how the red-light bias and neural
manipulation interact. To surmount this problem, we developed
an experimental design in which the stimulus–response contin-
gency was varied, whereas the stimulated hemisphere was held
constant. Specifically, we trained two groups of mice on opposing
behavioral contingencies: Group A was trained on the contin-
gency: High-Rate, go LEFT; Group B was trained on the reverse:
High-Rate, go RIGHT (Fig. 6A). Both groups were implanted on
the left.

One scenario would be difficult to interpret: specifically,
JAWS suppression could bias the animal’s estimate of a sensory
parameter: rate or perceived brightness for example. If so, the
(e.g., high) rate bias from the neural manipulation and the high-
rate bias from the red light would be combined similarly in both
groups of animals, simply changing the magnitude of the effect in
both groups (Fig. 6B, left, solid and dashed lines are similar in
both top and bottom). Distinguishing the effect of the neural
manipulation from that of the red light would be difficult.

A B

C D

Figure 4. Retinotopic Mapping allows precise localization of visual areas for subsequent manipulation. A, Altitude and (B)
azimuth phase maps. C, Visual field sign map with labeled visual areas. D, Visual area borders overlaid on photograph of skull.
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Fortunately, in an alternate scenario, JAWS suppression could
drive a bias to the ipsilateral side that is independent of the rate
associated with that side. In this scenario, the effects will differ for
the two groups because the ipsilateral side is associated with high-
rate for Group A and low-rate for Group B (Fig. 6B, top right).
The difference across groups will be present even if a red-light
bias persists (Fig. 6B, solid and dashed lines differ in both top and
bottom). This because the red-light bias will increase high rate
choices and thus simply shift both curves leftward, leaving the
difference between them unchanged. For Group B animals, a
contralateral (high rate) bias from the red light, combined with
an ipsilateral (low rate) bias from the JAWS suppression may
potentially cancel each other out (Fig. 6B, bottom right), leading
to an interesting scenario in which the effect of JAWS suppression
is only apparent in one group. A comparison of the two groups is
therefore essential in interpreting the dual effects of the red-light
bias and the JAWS suppression.

A comparison of effects in Group A and Group B revealed a
striking difference. Specifically, Group A (High-Rate, go LEFT)
had a large, high-rate bias [Fig. 6C; choice bias � 10.09 flashes/s
CI: (2.84 18.72)] accompanied by a change in the slope of the
psychometric functions [	evidence:opto � 	0.045 CI: (	0.064
	0.026) p � 3.4e	06, GLMM Test]. This cohort also had a
low-rate bias on control trials (Fig. 6C, right, black points above
red points). Biases on control trials in the opposite direction as
the stimulation-induced bias have been reported previously (Sal-
zman et al., 1992; Carello and Krauzlis, 2004; Fetsch et al., 2014).
The bias on control trials suggests that animals cannot detect
stimulation on individual trials, but can detect the lower like-
lihood of reward on the biased side across all trials, and adap-

tively shift their subjective category boundary to maximize this
likelihood. If the animal only experienced stimulation trials (or
could detect stimulation on individual trials), one would expect a
complete compensatory shift, eventually leading to unbiased per-
formance even in the presence of stimulation. However, because
the animal only experiences stimulation on 25% of trials, the
expected effect on the likelihood is small, leading to a larger bias
on stimulation trials than control trials, as we observed.

By contrast, Group B (High-Rate, go RIGHT) showed no ef-
fect [Fig. 6D; 	evidence:opto � 0.008 CI: (	0.006 0.022), p � 0.27;
choice bias � 0.43 flashes/s CI: (	0.75 1.62)]. The group differ-
ence was present despite matched laser power, injection volume,
and percentage of disruption trials. These data most resemble
Figure 6B, bottom right, in which the two effects drive the psy-
chometric function in opposing directions: the red light drives a
high-rate bias, and the JAWS suppression drives an ipsilateral
bias, largely canceling each other out. In keeping with the hypoth-
esis that AM suppression mainly drives a change in bias, and only
a modest change in sensitivity, the psychophysical kernels were
quite similar in both groups of animals (Fig. 6E,F) although
some interesting subtle differences are apparent.

Discussion
We describe a quantitative behavioral paradigm for studying vi-
sual evidence accumulation decisions in freely behaving mice.
Mice trained on our paradigm performed hundreds of trials per
session and maintained stable performance across sessions. A
dataset of over half a million trials allowed us to characterize the
time course of accumulation with precision. Mice were influ-
enced by visual evidence presented throughout the trial, but they

A B

C D

Figure 5. Long wavelength laser stimulation biases decisions in control animals. A, Experimental configuration. Mice were injected with AAV-GFP and implanted with a fiber in right hemisphere
area AM. B, Psychometric function without masking red light (2 mice; 2011 Laser-off trials, 610 Laser-on trials). Irradiance was 32 mW/mm 2. C, Psychometric performance with masking red light
(2 mice) with easiest flash rate conditions (2699 Laser-off trials, 823 Laser-on trials). D, Same as C but for sessions including multiple flash rates (2866 Laser-off trials, 903 Laser-on trials). Irradiance
was 64 mW/mm 2.
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assigned more weight on average to flashes presented earlier in
the sequence, similar to monkeys and unlike rats. Further, despite
overall high accuracy, decisions were nonetheless influenced by
additional information, such as stimulus brightness and previous
reward and choice history. Finally, we demonstrated that area
AM plays a causal role in visual decisions. Our experimental de-
sign was key in allowing this conclusion because control experi-
ments demonstrated that the red stimulation light biases mice
even in the absence of JAWS. Together, these results fill a gap in
our understanding of accumulation of evidence behavior in mice
and begin to define the causal circuit that supports this behavior.

Our observations of early weighting of information (Fig. 2)
are consistent with results from the evidence accumulation par-
adigm from Morcos and Harvey (2016) in head-fixed mice. Our
large cohort of animals, high trial count and use of stochastic
stimulus arrival times allowed us to more fully characterize this
function and extend it to a new paradigm. Interestingly, the

shapes of the psychophysical kernels we observed in the mice are
qualitatively similar to those observed in nonhuman primates
(Katz et al., 2016; Yates et al., 2017). The shape of the kernel
differed from that observed in rats trained on the same task (Fig.
2E) and previously reported by other evidence accumulation par-
adigms (Raposo et al., 2012; Brunton et al., 2013; Sheppard et al.,
2013; Scott et al., 2015). The difference across species is intriguing
because it suggests that although different species achieve com-
parable levels of performance, their internal behavioral strategies
may differ. This underscores the importance of using stochastic
stimuli, which make it possible to uncover the animal’s strategy
(Churchland and Kiani, 2016).

Our brightness manipulations revealed that decisions were
not based solely on rate. For both mice and rats, the cumulative
brightness of the flash sequence also influenced decisions (Fig.
3C,F). Incorporating brightness in decision-making reflects a
clever strategy because in almost all trials, brightness and rate

A B

C D

E F

Figure 6. JAWS Photoinhibition of visual area AM. A, Schematic of experimental configuration of AM photoinhibition experiment. Group A mice trained on the contingency: High-Rate, go LEFT
and Group B mice trained on the reverse contingency: High-Rate, go RIGHT. Both groups of mice were injected with JAWS virus and implanted with an optical fiber on the left hemisphere.
Photoinhibition occurred on 25% of trials during the stimulus period. B, Predicted behavioral outcomes of AM photoinhibition. Top, Predictions for neural manipulation alone. Left, If AM inhibition
drives a high-rate bias, the outcomes would be similar for the two groups. Right, If AM inhibition drives a bias toward the ipsilateral side, Groups A and B would show biases in opposite directions
because the high-rate side differs for Groups A and B. Bottom, Predictions for neural manipulation alongside a bias driven by the presence of visible light (as in Fig. 5). Left, If AM inhibition drives a
high-rate bias, both groups would again exhibit the same bias. Right, If AM inhibition drives an ipsilateral bias, Groups A and B would again show biases in opposite directions; potentially with a very
weak effect for Group B because the red light and neural manipulations are in opposition. C, Left, Decisions for Group A (left, 4 mice; n � 5722 Laser OFF trials and n � 1958 Laser ON trials) and at
laser power irradiance of 64 mW/mm 2. Circles represent the subject’s behavioral response during laser OFF (black) and laser ON (red) trials. Solid line represents the psychometric function fit to
cumulative normal. Error bars represent Wilson binomial (95%) confidence intervals. Right, Bias values for individual animals during baseline sessions (blue points) as well as inactivation sessions
which included stimulation (red) and control (black) trials. Black solid lines indicate unbiased performance; dashed lines indicate the mean bias across subjects for the corresponding color. D, Same
as C but for Group B (right, 3 mice; n � 4404 Laser OFF trials and n � 1381 Laser ON trials). E, Psychophysical kernels for Group A (37,025 Laser off trials; 12,952 Laser on trials). F, Psychophysical
kernels for Group B (32,936 Laser off trials; 12,423 Laser on trials). Shading indicates SEM.
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provide evidence in favor of the same decision. In fact, combining
these two sources of information is the optimal strategy (Fig.
3B,E, bottom row), in the same way that combining auditory and
visual information is the optimal strategy in multisensory exper-
iments (Raposo et al., 2012; Sheppard et al., 2013). It would be
surprising if animals elected to marginalize brightness when it is
such a useful source of information.

The influence of brightness that we observed here contrasts
findings from a recent study, which reported that rats performing
a visual evidence accumulation task counted individual flashes
rather than cumulative flash on-time (Scott et al., 2015). Two
experimental design features may explain the difference in re-
sults. First, the inter-flash interval in Scott et al. was more than an
order of magnitude longer than that used here (250 vs 20 ms)
which may discourage a cumulative brightness strategy. Al-
though the highest stimulus rates used here are below the flicker
fusion rate (Krishna et al., 2002; Shirato et al., 2008; Tanimoto et
al., 2015), it is possible that the rates were nonetheless sufficiently
high to make a brightness strategy more appealing than it would
be at lower rates. Second, Scott et al. (2015) did not manipulate
brightness on catch trials, as we did here, but instead conducted
separate experiments in which all trials contained jittered light
on-times. This raises the interesting possibility that in Scott et al.
(2015), the jittered on-times increased the uncertainty of cumu-
lative on-time information. The increased uncertainty would
change the optimal strategy, leading animals to weight cumula-
tive on-time less than they would in other experiments in which
brightness and event number are correlated.

To understand the neural mechanisms that enable perceptual
decision-making, we tested the causal role of secondary visual
area AM. Our results, an ipsilateral bias on inactivation trials,
suggest that AM normally drives contralateral choices. This is
consistent with anatomical projections of AM to motor areas
(Wang et al., 2012; Allen Brain Atlas, ) and the recently proposed
role for mouse parietal cortex in navigation (Krumin et al., 2017).
The results are also reminiscent of some perturbation studies of
rat PPC, which may have some overlap with area AM. When
neural activity in rat PPC was disrupted using an activating per-
turbation on a very similar task, an ipsilateral bias was observed in
some sessions. However, the bias was a less consistent effect than
a loss of sensitivity (Licata et al., 2017), which we observed in the
current study to a small extent (Fig. 6C). It is unclear whether
effects seen in bias versus sensitivity in mice versus rats reflect a
species difference, or rather that inactivation of this region, while
consistently demonstrating a role in visually guided behavior, has
variable effects (Raposo et al., 2014; Erlich et al., 2015; Licata et
al., 2017). This variability may arise partly from the fact that rat
PPC is identified via stereotaxic coordinates (Reep and Corwin,
2009), a method that cannot take into account individual differ-
ences in neuroanatomy. The ability to more precisely localize
areas using retinotopic mapping, as we have done here, is a
strength of conducting these studies in mice. Future studies that
target visual areas using this approach may define with more
precision the contribution of regions in this area to the sensory
processing and action-planning aspects of decision-making.

Nevertheless, additional studies are needed to more defini-
tively establish the role of AM in mouse visual decision-making.
Because we observed that red light alone biases choices (Fig. 5B),
we inferred that the red light and the optogenetic suppression
may, in some configurations, bias decisions in opposite direc-
tions and cancel each other out (Fig. 6C, right). The use of non-
optical suppression methods such as muscimol (Raposo et al.,

2014; Erlich et al., 2015) or the use of other wavelengths of light to
suppress activity (Lien and Scanziani, 2013) could provide addi-
tional evidence about the role of area AM in decision-making.
The latter is appealing in part because shorter wavelengths acti-
vate more restricted regions of cortex compared with the red light
used here, making it possible to target a region with more
precision.

Our results make clear the need to carefully control for light-
induced artifacts, both by adapting the animal and by experimen-
tal design that disentangles light-induced artifacts from true
behavioral changes. The artifact we observed is most likely caused
by red light propagating from the stimulation site through the
brain and directly activating the retina. Danskin et al. (2015)
measured retinal activation during in vivo red-light stimulation
and found the largest activation ipsilateral to the implanted stim-
ulation fiber. By contrast, the bias that we observed here was
contralateral to the implanted stimulation fiber. Notably, in this
cohort, the contralateral side was associated with high-rate
choices (Fig. 5A). A likely explanation is that light from the fiber
increased overall brightness; as we demonstrated in separate ex-
periments (Fig. 3), increased brightness can be interpreted as
evidence for high rate choices. Additional experiments that sys-
tematically vary the stimulus response contingency in sham-
injected animals could confirm this hypothesis.

The proposed ipsilateral bias caused by AM photoinhibition is
consistent with spatial hemineglect observed in visual parietal
lesions. Spatial hemineglect, also referred to as contralateral ne-
glect, is a phenomenon that occurs when subjects ignore the con-
tralateral hemifield as a result of lesion to the parietal cortex.
Although hemineglect has been reported in humans (Stone et al.,
1991; Kerkhoff, 2001) and rats (Crowne et al., 1986; Reep and
Corwin, 2009), we could not find a report on mice. The presence
of hemispatial neglect would suggest that the mice are neglecting
the tendency to go toward the affected (contralateral) visual
hemifield. A related interpretation of the ipsilateral bias due to
suppression of AM activity is that neurons in AM are active in
advance of contralateral choices. In this scenario, the two hemi-
spheres of AM would represent competing movement intentions
(Andersen and Buneo, 2002), such that inactivation of one hemi-
sphere leads to movement in the opposing direction. This predic-
tion could be verified in future studies in by temporally
restricting the inactivation to different epochs within the trial.

This behavior is suitable for the freely moving mice, a setup
that can be preferable to head restraint because it more closely
approximates the animal’s natural state (Juavinett et al., 2018).
Options for measuring neural activity in freely moving animals
are proliferating, and include electrophysiology (Raposo et al.,
2014; Nikbakht et al., 2018), fiber photometry (Adelsberger et al.,
2005; Gunaydin et al., 2014), or an imaging miniscope (Jung et
al., 2004; Cai et al., 2016). Further, characterizing the behavior in
freely moving mice, as we have done here, provides a baseline to
which head-fixed studies (using standard two-photon imaging or
wide-field imaging) can be compared.

Together, these observations begin to address two major gaps
in our understanding of accumulation of evidence behavior: we
have precisely characterized the time course of evidence accumu-
lation, and have uncovered that rate, brightness, and trial history
jointly shape decisions. Finally, our observations provide reassur-
ance that mice are free from sensory and cognitive limitations
that would preclude their ability to accumulate visual evidence to
guide decisions.

Odoemene et al. • Visual Evidence Accumulation in Unrestrained Mice J. Neurosci., November 21, 2018 • 38(47):10143–10155 • 10153



References
Abrahamyan A, Silva LL, Dakin SC, Carandini M, Gardner JL (2016) Adapt-

able history biases in human perceptual decisions. Proc Natl Acad Sci
U S A 113:E3548 –E3557. CrossRef Medline

Acker L, Pino EN, Boyden ES, Desimone R (2016) FEF inactivation with
improved optogenetic methods. Proc Natl Acad Sci U S A 113:E7297–
E7306. CrossRef Medline

Adelsberger H, Garaschuk O, Konnerth A (2005) Cortical calcium waves in
resting newborn mice. Nat Neurosci 8:988 –990. CrossRef Medline

Andermann ML, Kerlin AM, Reid RC (2010) Chronic cellular imaging of
mouse visual cortex during operant behavior and passive viewing. Front
Cell Neurosci 4:3. CrossRef Medline

Andersen RA, Buneo CA (2002) Intentional maps in posterior parietal cor-
tex. Annu Rev Neurosci 25:189 –220. CrossRef Medline

Brunton BW, Botvinick MM, Brody CD (2013) Rats and humans can opti-
mally accumulate evidence for decision-making. Science 340:95–98.
CrossRef Medline

Burgess CP, Lak A, Steinmetz NA, Zatka-Haas P, Bai Reddy C, Jacobs EAK,
Linden JF, Paton JJ, Ranson A, Schröder S, Soares S, Wells MJ, Wool LE,
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