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Abstract
Ksplice allows system administrators to apply patches to
their operating system kernels without rebooting. Unlike
previous hot update systems, Ksplice operates at the object
code layer, which allows Ksplice to transform many tradi-
tional source code patches into hot updates with little or no
programmer involvement. In the common case that a patch
does not change the semantics of persistent data structures,
Ksplice can create a hot update without a programmer writ-
ing any new code.

Security patches are one compelling application of hot
updates. An evaluation involving all significant x86-32
Linux security patches from May 2005 to May 2008 finds
that most security patches—56 of 64—require no new code
to be performed as a Ksplice update. In other words, Ksplice
can correct 88% of the Linux kernel vulnerabilities from this
interval without the need for rebooting and without writing
any new code.

If a programmer writes a small amount of new code to
assist with the remaining patches (about 17 lines per patch,
on average), then Ksplice can apply all 64 of the security
patches from this interval without rebooting.

Categories and Subject Descriptors D.4.6 [Operating Sys-
tems]: Security and Protection; D.2.7 [Software Engineer-
ing]: Distribution, Maintenance, and Enhancement

General Terms Design, Reliability, Security

Keywords hot updates, dynamic software updates

1. Introduction
Contemporary operating systems regularly release kernel
patches to repair security vulnerabilities. Applying these
patches typically requires rebooting the kernel, which re-
sults in downtime and loss of state (e.g., all network connec-
tions). Even when computer redundancy is available, reboot-
ing can lead to momentary interruption or cause unexpected
complications, which means that reboots are commonly spe-
cially scheduled and supervised. Since rebooting is disrup-
tive, many system administrators delay performing these up-
dates, despite the greatly increased security risk—more than
90% of attacks exploit known vulnerabilities [Wang 2004].
This paper describes and evaluates Ksplice, a system for us-

ing traditional source code patches to construct hot updates,
which change the running kernel.

The key novelty of Ksplice is that it prepares hot updates
at the object code level instead of the source code level,
which allows Ksplice to perform hot updates with minimal
programmer involvement. Existing hot update practices, de-
scribed in Section 7, rely on a programmer to write source
code files with certain properties (e.g., [Chen 2006, Makris
2007]) or require manual inspection of the running binary to
achieve safety guarantees and resolve ambiguous symbols
(e.g., [Altekar 2005]) . Significant programmer involvement
in creating a hot update increases both the cost and the risk of
the update, which discourages the adoption of hot updates.
Ksplice therefore performs hot updates for legacy binaries
(unmodified binaries created without foresight of the update
system) based entirely on existing information, such as a
source code patch.

Ksplice analyzes the original kernel and the traditional
source code patch by comparing compiled code (and its
metadata) rather than source code. Ksplice does so to avoid
implementation limitations, safety problems, and program-
mer involvement that go along with hot update systems that
compare and rewrite source code to update legacy bina-
ries. For example, determining how a patch changes a piece
of software by finding differences at the object code level
makes it possible to take into account all of the linguistic
features of the target programming languages (for the Linux
kernel, C and assembly) without creating special cases.

Constructing hot updates at the object code level, how-
ever, presents new design challenges related to a compiler’s
freedoms in compiling source code to object code. In partic-
ular, optimized object code can hide the intent of a source
code patch and include undesirable code changes. Address-
ing the challenges of operating at the object code level re-
quires carefully tracking compiler guarantees, which reveals
safety and practicality problems with existing source-level
hot update systems. Ksplice solves these challenges using
two novel object code level techniques. First, Ksplice uses
pre-post differencing to generate object code for the update.
Second, Ksplice resolves symbols correctly and provides
safety using run-pre matching.

We implemented Ksplice for Linux, but the Ksplice tech-
niques apply to other operating systems and to user space



applications. To evaluate Ksplice, we applied Ksplice to
64 Linux patches for kernel security vulnerabilities from
May 2005 to May 2008. The 64 include all documented
x86-32 Linux kernel vulnerabilities from this time interval
with greater consequences than denial of service. Of the
64 patches, 56 can be applied by Ksplice without writing
any new code, and the remaining patches can be applied by
Ksplice if a programmer writes a small amount of new code
(about 17 lines per patch, on average).

The contributions of this paper are a new approach for
constructing hot updates, two new techniques to realize this
approach, and an evaluation against Linux security patches.
To the best of our knowledge, Ksplice is the first hot update
system to work on the object code level and the Ksplice eval-
uation is the first evaluation of any hot update system against
a comprehensive list of the significant security vulnerabili-
ties within a commodity kernel over a period of time. This
evaluation demonstrates that hot update systems currently
have the potential to eliminate all kernel security reboots,
while requiring little additional work from any programmer.

The rest of this paper is organized as follows: The next
section provides a brief overview of Ksplice’s design. Sec-
tion 3 and Section 4 describe the two techniques and how
Ksplice uses them to construct hot updates at the object
code level. Section 5 discusses considerations specific to the
Ksplice implementation for Linux. Section 6 tests Ksplice
against security patches from May 2005 to May 2008. Sec-
tion 7 relates Ksplice to previous work. Section 8 summa-
rizes our conclusions and directions for future work.

2. Design Overview
Many source code patches can be transformed into hot up-
dates without a programmer writing any new code. Specifi-
cally, a patch alone provides sufficient information for a hot
update when the patch does not make semantic changes to
the kernel’s persistent data structures—that is, changes that
would require existing instances of kernel data structures to
be transformed (e.g., a patch that adds a field to a data struc-
ture would require existing instances of that data structure to
change).

Ksplice requires a programmer to check whether the tar-
get patch makes any semantic changes to data structures.
Performing this check requires only seconds or a few min-
utes for most security patches. If a patch does make semantic
changes, then that update can still be applied using Ksplice,
but doing so will require a programmer to write some new
code.

If the target patch does not make semantic changes, then
no programming is necessary. Since kernel security patches
and other important bug corrections are usually designed
to change the software as little as possible, we can expect
many of these patches to make no semantic changes to data
structures. Our evaluation confirms this intuition for Linux
security patches.

Since Ksplice is designed to update legacy binaries, it
does not require any preparation before the system is origi-
nally booted. The running kernel does not need to have been
specially compiled, for example.

When applying an update using Ksplice, normal opera-
tion of the system is only interrupted for about 0.7 millisec-
onds, which is negligible for most systems—and far shorter
than any reboot. Even more importantly, the operating sys-
tem’s state is not disrupted when applying a Ksplice update,
so network connections and open applications are not lost.

Ksplice performs replacements on entire functions; if any
code within a function is modified by the patch, then Ksplice
will replace the entire function. Ksplice replaces a function
by linking a new version of the function, called the replace-
ment code, into the kernel and by placing a jump instruction
in the running kernel’s memory, at the start of the obsolete
function, to direct execution to the replacement code.

The performance impact of applying a Ksplice update is
minimal. A small amount of memory will be expended to
store the replacement code, and calls to the replaced func-
tions will take a few cycles longer because of the inserted
jump instructions.

Ksplice constructs updates at the object code layer, which
helps it solve three challenges faced by hot update systems:

• generating the replacement code
• resolving symbols in the replacement code
• verifying the safety of an update

By looking in detail at these three aspects of the Ksplice
design, we will clarify the advantages of focusing on the
object code layer.

During our design discussion, we make few assumptions
about the operating system. We assume kernel support for
dynamically-loadable kernel modules, and, in order to make
some examples more specific, we use terminology from the
Executable and Linkable object code format (ELF) [TIS
1993], which is widely used by Linux, BSD, and Solaris.
The ideas apply to any operating system or to user space
applications. The described solutions require access to the
source code of the to-be-updated application, so updates for
proprietary software would need to be generated by its ven-
dor or some other party with access to the software source
code.

3. Generating replacement code using
pre-post differencing

To generate replacement code, the hot update system must
identify what changed after applying a patch and generate
code for the differences. Ksplice addresses these tasks us-
ing a technique that we call pre-post differencing. Ksplice
identifies the code modified by applying a patch by compar-
ing the kernel’s binary code before applying a patch (pre)
with the kernel’s binary code after applying the patch (post).



This section explains Ksplice’s motivation for operating at
the object code layer, a challenge with that approach, and
how Ksplice addresses that challenge using pre-post differ-
encing.

3.1 Motivation and challenge
One advantage of operating at the object code layer is that
the code changes implied by a patch are readily apparent at
the object code layer. Consider a patch that changes a data
type in a function prototype in a C header file (e.g., from an
int to a long long). Because of implicit casting, this patch
implies changes to the executable code of any functions that
call the prototyped function. By operating at the object code
layer, Ksplice detects these changes without needing any
information about the semantics of implicit casting in C. In
contrast, if one operates at the source code layer, one would
find that the callers of the prototyped function have not had
their source code modified at all, even after C preprocessing.

Looking for object code differences does not require spe-
cial cases in order to deal with language-level nuances such
as implicit casting, function signatures, static local variables,
and whether code is written in C or assembly. The object
code differences, unlike the source code changes, already
express what we actually care about—how and where the
machine’s execution might be changed.

Unfortunately, it is not obvious how one should construct
replacement code corresponding to a source code patch
while operating entirely at the object code layer—in other
words, by looking at compiler output rather than the source-
level contents of the patch. Compiler output can obscure the
desired changes and how those changes can be separated
from the rest of the compilation unit or optimization unit1.

As an example, the GNU C compiler (gcc) will, by de-
fault, lay out an entire object file’s executable text within a
single section named .text, and the compiler will generate
much code within this section that performs relative jumps
to other addresses within this section. If a single function
is changed in length by the source code patch, then many
relative jump offsets throughout the entire object file might
change as a result of what was originally a simple change to
a single function. A hot update system that operates at the
object code layer will need to find a way to deal with this
complication.

3.2 Solution
In order to understand the effect of a source code patch on
the kernel, Ksplice performs two kernel builds and looks at
how the resulting object files differ (see Figure 1). First,
Ksplice builds the original kernel source to create object
files that we call the pre object files. Next, Ksplice applies
the source code patch and performs another build, which

1 For compilers such as gcc that never perform any optimizations across
compilation unit boundaries, optimization units are the same as compilation
units. For compilers that optimize an entire program at once, the entire
program is one optimization unit.

Figure 1: Generating replacement code based on a patch
(Part I of generating a Ksplice hot update)

will recompile any object files whose constituent source files
have been changed by the source code patch. We call the
object files produced from this build the post object files.
Ksplice compares the pre and post object code in order to
determine which functions were changed by the patch.

In order to be practical, this comparison needs to avoid
detecting extraneous differences between the pre and post
object files. Without taking any special measures, these ob-
ject files will contain many differences that are only tangen-
tially related to the source code patch. In order to identify
a smaller set of changes caused by the patch, Ksplice would
like to be able to generate object code that makes no assump-
tions in its executable text about where functions and data
structures are positioned in memory. Avoiding these layout
assumptions is also important for creating the replacement
code itself, since the replacement code needs to reference
existing functions and data structures in the running kernel.

To reduce location assumptions, Ksplice’s kernel builds
are performed with certain compiler options enabled to en-
sure that every C function and data structure within the ker-
nel receives its own section within the resulting object files.
These options are known as -ffunction-sections and



-fdata-sections; they are included in several C compil-
ers, including GNU’s C compiler and Intel’s C compiler, and
they could be added to any compiler that does not include
them. Enabling these options forces the compiler to generate
relocations for functions and data structures, which results
in more general code that does not make assumptions about
where functions and data structures are located in memory.
Instead, the resulting object code contains more general ma-
chine instructions along with relocation entries so that arbi-
trary addresses can be plugged-in later.

When compiling with these options, kernel functions that
have not been changed directly by the source code patch will
often have identical pre and post object code. For various
reasons, such as nonlocal compiler optimizations, some of
the resulting object code sections could differ in places not
directly caused by the source code patch, but extraneous
differences between the pre and the post object code are
harmless. Although Ksplice would like to replace as few
functions as possible, we can safely replace a function with
a different binary representation of the same source code,
even if doing so is unnecessary. In contrast, code differences
between the running kernel object code and the pre object
code could be harmful, but these differences are checked for
using run-pre matching, which is discussed in Section 4.

After Ksplice has completed the comparison between the
pre and post object code, it extracts the changed functions
from the post object code and, after some processing, puts
them into their own object file. Ksplice then creates a kernel
module, known as the primary module, whose purpose is to
load this processed post code into the kernel.

At this point, the replacement code in the primary module
is not ready for execution because the symbols referenced by
its relocations have not been resolved to memory addresses.

4. run-pre matching
This section introduces run-pre matching, which addresses
two problems: how to resolve symbols in the replacement
code and how to verify the safety of an update (if an update
would be unsafe, run-pre matching will abort the update).
We first discuss the challenges in addressing the two prob-
lems and then present run-pre matching.

4.1 Challenge of resolving symbols
Any hot update system needs to resolve symbols into ad-
dresses in order to fulfill relocations in the replacement code.

A simple way to resolve symbols is to use an available
symbol table, such as the Linux kernel’s kallsyms symbol
table. Unfortunately, attempting to resolve symbols based
on entries in a symbol table will commonly cause problems
when a symbol name appears more than once or does not
appear at all. For example, as in the patch for CVE-2007-
0958, the replacement code might reference a symbol by the
name “notesize”, and two or more local symbols with that
name might appear in the kernel. In this situation, the hot up-

date system needs a way of determining which “notesize”
address should be used to fulfill the relocation.

Given only the C source code of a running program
and its complete symbol table, it is impossible to deter-
mine which “notesize” address corresponds to a particular
“notesize” symbol in the source code. A source-level hot
update system therefore cannot handle these patches—or at
least cannot do so without laborious programmer interven-
tion. By working on the object code level and using run-pre
matching, Ksplice can handle this challenge.

4.2 Challenge of verifying safety
Hot update systems need to operate correctly even if the
compiler performs optimizations that sometimes result in
different object code being produced for the same source
code. Compilers are allowed to make a wide variety of op-
timization decisions within an optimization unit, such as
whether to inline a function at each of the locations that the
function is called.

Consider the situation in which we want to replace a func-
tion obsolete func with a new version of that function. We
cannot determine where obsolete func has been inlined in
the running kernel by looking at any piece of source code.
Since compilers commonly inline functions that do not have
the inline keyword, this concern is not limited to some
small subset of functions that say inline in the source.

Failing to replace obsolete func in some of the places
that it has been inlined could lead to serious problems such
as data corruption (if, for example, obsolete func’s inter-
nal locking changed). Therefore, source code comparisons
are not sufficient for a legacy binary hot update system to
guarantee safety when replacing part of an optimization unit.

The only way to determine where obsolete func has
been inlined in the running kernel is to take into account
the object code of the running kernel. Determining where
obsolete func has been inlined is still not straightforward
since this information does not appear explicitly in the exe-
cutable code, and compiler optimizations make it difficult to
deduce through disassembly.

In addition to protecting against the problems that can
arise from compiler optimizations, a hot update system
should also try to protect against other dangerous condi-
tions, such as a user providing “original” source code that
does not actually correspond to the running kernel.

4.3 Solution: run-pre matching
Ksplice uses a single technique, run-pre matching, to ad-
dress all of the above challenges.

We refer to the code in the running kernel as the run
code. The safety verification problem arises when a hot
update system makes unchecked assumptions about the run
code (about where a function is inlined, for example). Since
Ksplice already detects all differences between the pre code
and the the post code, the remaining dangerous assumption
is that the pre code is identical to the run code.



Figure 2: Determining symbol values via run-pre matching
(Part II of generating a Ksplice hot update)

Ksplice can check that the running kernel’s code meets
its expectations by adding a step to the hot update process
to check the run code against the pre code. Specifically, we
should be concerned if we can find a difference between the
run code and the pre code in the kernel optimization units
that are being modified by the hot update.

During the process of comparing the run code against the
pre code, the hot update system can also gain the symbol in-
formation that it needs to solve the symbol resolution chal-
lenge. The run code contains all of the information needed
to complete the relocations for the pre code.

run-pre matching passes over every byte of the pre code,
making sure that the pre code corresponds to the run code.
When this process comes to a pre word of memory that is
unknown because of a pre relocation entry with an ambigu-
ous symbol name, Ksplice can compute the correct final pre
address based on the corresponding run bytes in memory.

For example, consider the situation depicted in Figure 2
in which the pre code contains a relocation to a symbol
called x. Assume that two or more local symbols called x
appear in the kernel. The pre code generated by the com-
piler will, as in all relocation situations, not contain a final

address for x at the to-be-relocated position. Instead, the pre
code’s metadata will know that a symbol name (x) and an
“addend”2 value are associated with that to-be-relocated po-
sition in the pre code. The to-be-relocated position’s final
value in memory will be computed from the addend (A), the
value (S) for the symbol x, and the final address (P) of the
to-be-relocated position. Specifically, this position will take
on the value A+S−P.

When run-pre matching gets to the to-be-relocated lo-
cation in the pre code, it will note that this relocation has
not yet been fulfilled, and it will examine the run code
in order to gain the information needed to fulfill it. The
run code contains the already-relocated value val, which is
val = A+S−Prun. The run-pre matching system also knows
the run address of that position in memory (Prun). The pre
code metadata contains the addend A, and so the symbol
value can be computed as S = val+Prun−A.

In the example in Figure 2, the already-relocated value
in the run code is 00111100, so val = 00111100. The run
address of that position in memory is f0000000+3, so
Prun = f0000003. The addend in the pre code metadata is
−4, so A = −4. The symbol value for x in sample func
can therefore be computed as x = 00111100+f0000003−
(−4) = f0111107.

Ksplice does not strictly require that the hot update be
prepared using exactly the same compiler version, assem-
bler version, and compiler options that were used to prepare
the original binary kernel, but doing so is advisable since the
run-pre check will, in order to be safe, abort the upgrade if
it detects unexpected object code differences. Obtaining ex-
actly the same complier version and assembler version that
were used to prepare the original binary kernel is straight-
forward, so we do not consider in detail exactly how often
run-pre matching will abort when a slightly different com-
piler version or assembler version is utilized.

Since -ffunction-sections puts each function into its
own section, small relative jump instructions can turn into
longer jump instructions when -function-sections is en-
abled. As a result, in order to operate correctly, the run-pre
matching system needs some architecture-specific pieces of
information. First, the matching system must be able to rec-
ognize no-op instruction sequences on that architecture. In
order to manipulate code alignment, assemblers will some-
times insert efficient sequences of machine instructions that
are equivalent to a no-op sequence. The run-pre matching
system needs to be able to recognize these sequences so that
they can be skipped during the run-pre matching process.

Second, run-pre matching must know basic information
about the instruction set, such as the lengths of all instruc-
tions and the list of instructions that take an offset that is rel-

2 The “addend” is an offset chosen by the compiler to affect the final to-
be-stored value. For x86 32-bit relative jumps, this value tends to be -4 to
account for the fact that the x86 relative jump instructions expect an offset
that is relative to the starting address of the next instruction.



ative to the program counter, such as jump instructions. This
information can be obtained from a disassembler for the ar-
chitecture. The matching system needs this information so
that it can verify that relative jumps in the run and the pre
code point to corresponding locations even though they use
different relative jump offsets.

5. Implementation
We implemented Ksplice for Linux 2.6 on the x86-32 and
x86-64 architectures. Although small parts of Ksplice, such
as the jump instruction assembly code, need to be imple-
mented separately for each architecture, most of the system
is architecture-independent.

Ksplice provides a command ksplice-create that
takes as input the original kernel source and a patch in
the standard patch format, the unified diff patch format.
ksplice-create writes an update file which can then be
applied to the kernel using ksplice-apply and reversed us-
ing ksplice-undo (reversing an update removes the jump
instructions so that the original function text is once again
executed). Here is an example of creating an update for
the prctl vulnerability, CVE-2006-2451, using a patch file
called prctl and a kernel source directory ~/src:

user:~$ ksplice-create --patch=prctl ~/src

Ksplice update tarball written to ksplice-8c4o6u.tar.gz

[user then becomes the superuser]

root:/home/user# ksplice-apply ./ksplice-8c4o6u.tar.gz

Done!

After executing these two commands, the running kernel
has been updated without a reboot.

5.1 Components
Ksplice’s implementation consists of four components:

• a Ksplice core kernel module, written in C, responsible
for performing run-pre matching, inserting the jump in-
structions, and other kernel space responsibilities

• user space software, written in C and Perl, that uses
the input to generate the processed pre and post ob-
ject files, with help from the GNU object code library,
BFD [Chamberlain 1991]

• a trivial kernel module for loading the pre code, called
the helper kernel module

• a trivial kernel module for loading the post code, called
the primary kernel module

The user space software links the processed pre and post
object files into the helper and primary kernel modules be-
fore those modules are loaded into the kernel. The helper and
primary kernel modules register themselves with the Ksplice
core kernel module when they are loaded. After an update
has been applied, its helper module can be unloaded in or-
der to save memory. Since the helper module must contain

the entire optimization unit corresponding to each patched
function, it can be much larger than the primary module.

run-pre matching is performed in kernel space, rather
than in user space, because some systems do not trust the
user space administrator user with the ability to modify the
kernel. On these systems, the kernel will only load modules
that have been cryptographically signed. run-pre matching
produces trusted symbol information, so it cannot be per-
formed in user space without trusting the user space admin-
istrator with the ability to modify the kernel.

5.2 Capturing the CPUs to update safely
A safe time to update a function is when no thread’s in-
struction pointer falls within that function’s text in memory
and when no thread’s kernel stack contains a return address
within that function’s text in memory.

Ksplice uses Linux’s stop machine facility to achieve
an appropriate opportunity to check the above safety con-
dition for every function being replaced. When invoked,
stop machine simultaneously captures all of the CPUs on
the system and runs a desired function on a single CPU.

If the above safety condition is not initially satisfied, then
Ksplice tries again after a short delay. If multiple such at-
tempts are unsuccessful, then Ksplice abandons the upgrade
attempt and reports the failure.

Ksplice’s current implementation therefore cannot be
used to automatically upgrade non-quiescent kernel func-
tions. A function is considered non-quiescent if that func-
tion is always on the call stack of some thread within the
kernel. For example, the primary Linux scheduler function,
schedule, is non-quiescent since sleeping threads block in
the scheduler. This limitation does not prevent Ksplice from
handling any of the significant Linux security vulnerabilities
from May 2005 to May 2008.

Ksplice’s call to stop machine takes about 0.7 millisec-
onds to execute. During part of that time, other threads can-
not be scheduled on the system, but this scheduling delay is
acceptable for most systems.

5.3 Using custom code to assist an update
Ksplice allows a programmer to write custom code to be
called from within the kernel during the update process. This
custom code can modify data structures atomically at the
time that the jump instructions are inserted, as is required
by patches that make semantic changes to data structures.

The programmer can, by modifying the source code
patch, add custom code to any compilation unit(s) within
the kernel. The custom code can access any functions and
variables that are normally accessible to code in that scope.

For example, if the programmer wants to call a new func-
tion called myupdate at the time that the update is applied,
the programmer simply needs to modify the source code
patch so that it does the following:



• adds the function called myupdate to any compilation
unit in the kernel

• includes the special Ksplice header “ksplice-patch.h”
in that compilation unit

• adds the macro call “ksplice apply(myupdate);” to
that compilation unit

The ksplice apply macro writes a function pointer
to a special section in the resulting object file. This spe-
cial section instructs Ksplice to call the target function
when Ksplice has the machine stopped for inserting the
jump instructions. Ksplice also provides macros called
ksplice pre apply and ksplice post apply for per-
forming setup and cleanup that does not need to happen
while the machine is stopped. Three analogous macros are
provided for calling functions when an update is reversed.

Other than the macros described above, Ksplice does not
special-case this custom code in any way; its replacement
code is generated using the same Ksplice machinery as any
code that is added by a patch.

5.4 Patching a previously-patched kernel
When one wants to apply a new patch to a previously-
patched running kernel, Ksplice needs to be provided with
two inputs, which are similar to the standard Ksplice inputs:

• the source for the currently-running kernel, including any
patches that have been hot-applied (this source is called
the “previously-patched source”)

• the new source patch (which should be a difference be-
tween the previously-patched source and the desired new
source)

The update process is almost exactly the same as be-
fore. The pre object code is generated from the previously-
patched source code, and the post object code is generated
from the previously-patched source code with the new patch
applied. The run-pre matching system will compare pre ob-
ject code against the latest Ksplice replacement code already
in the kernel.

6. Evaluation
In this evaluation, we are interested in how many Linux
kernel security patches can be applied without writing any
new code and how many lines of code are needed to apply
the remaining patches. This section describes the security
patches, the method used for evaluating when a hot update
is successful, and Ksplice’s results.

6.1 Linux security patches
We compiled a list of significant Linux 2.6 kernel security
problems from May 2005 to May 2008 [Arnold 2008]. We
compiled this list of vulnerabilities and the corresponding
patches by starting from the complete Common Vulnerabil-
ities and Exposures (CVE) vulnerability list [MITRE 2008]

Figure 3: Number of patches by patch length
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and, using the CVE entry descriptions and other metadata,
matching all of the Linux kernel entries on that list against
the Git source control logs of the Linux kernel (specifically,
Linus Torvalds’ kernel tree [Torvalds 2008] and the unified
stable kernel trees [Kroah-Hartman 2008]). We included on
our Linux kernel vulnerability list only security problems
that could result in greater consequences than denial of ser-
vice; specifically, all of the vulnerabilities on the list involve
the potential for some kind of privilege escalation (about
two-thirds) or information disclosure (about one-third). We
excluded from the list any architecture-specific vulnerabili-
ties that do not affect the x86-32 architecture.

Figure 3 shows that most Linux kernel security vulnera-
bilities can be corrected by modifying relatively few lines of
source code. Of the 64 vulnerabilities from this time inter-
val, 53 vulnerabilities were corrected in 15 or fewer lines of
source code changes, and 35 vulnerabilities were corrected
in 5 or fewer lines of changes.

Reviewing the text of these patches reveals that most
Linux kernel vulnerabilities can be corrected without mak-
ing any semantic changes to persistent data structures.

6.2 Method
To evaluate Ksplice, we applied Ksplice to the 64 patches
described in Section 6.1. We are interested in how many
security patches from this interval can be applied success-
fully to running kernels. In this evaluation, success was
judged by three criteria. First, the update needed to apply
cleanly; more specifically, (a) run-pre matching needed to
observe no inconsistencies between the run and pre object
code, (b) all symbols in the replacement code needed to
be resolved, and (c) the stack check needed to pass. Sec-
ond, the kernel needed to continue functioning without any
observed problems while running a correctness-checking
POSIX stress test [Waterland 2007]. Third, for the vulnera-
bilities for which exploit code was available, we also tested
that the exploit code worked before the hot update and did
not work after the hot update.



Since no single Linux kernel version needs all 64 of
the security patches (many of the vulnerabilities were intro-
duced during the three year period of ongoing development),
we tested Ksplice with the 64 patches using six different
Linux kernels released by the Debian GNU/Linux distribu-
tion and eight different “vanilla” Linux kernels released by
kernel.org on behalf of Linus Torvalds. The list of kernels
used in the evaluation and the details of which patches were
tested on each kernel are available online [Arnold 2008].

The vanilla kernels were only introduced into the evalu-
ation in order to test patches that are not applicable to any
released Debian kernel. For most of the patches in this cat-
egory, the problems corrected by the patch were completely
absent from any released Debian kernel. Some vulnerabili-
ties are caught before they make it into released kernels seen
by users, and some vulnerabilities affect portions of the ker-
nel that are completely disabled by Linux distributors.

We obtained the original binary and source Debian kernel
packages from an archive of nearly all packages released
by Debian since mid-2005 [Ukai 2008]. For each kernel,
we began by fetching the compiler and assembler versions
originally used by Debian in order to compile that binary
kernel. We then used the Debian kernel source for that kernel
as input to Ksplice, along with an unmodified security patch
taken directly from the kernel trees described in Section 6.1.
In order to perform the hot update on a running machine, we
installed the corresponding binary Debian kernel package on
a machine and booted that kernel.

6.3 Results
We have used Ksplice to correct all 64 of the significant
32-bit x86 kernel vulnerabilities during the time interval.
56 of the 64 patches can be applied by Ksplice without
writing any new code. The remaining eight patches require a
programmer to write 17 new lines of code each, on average.

The eight patches that require new code are shown in Ta-
ble 1, along with the required number of new logical lines
(semicolon-terminated lines) of C code. The patches in this
table require new code because, by changing how a data
structure is initialized or by adding a field to a data struc-
ture, these patches change the semantics of persistent data
structures in the kernel. Some of the patches that change the
initial value of a data structure do so by explicitly changing
the C variable declaration, but most of them do so by modi-
fying a data structure initialization function.

The new code generally needs to perform a single task,
such as walking a linked list to update all existing instances
of a data structure. The full text of the new code is available
online [Arnold 2008].

For every recent x86 vulnerability for which we could
locate working exploit code, we confirmed that the exploit
stops working when the corresponding hot update is applied.
Specifically, we have performed this verification for CVE-
2006-2451 [Hernandez 2006], CVE-2006-3626 [R. 2006],

Table 1: Patches that cannot be applied without new code

CVE ID Patch ID Reason for failure New code
2008-0007 2f98735 changes data init 34 lines
2007-4571 ccec6e2 changes data init 10 lines
2007-3851 21f1628 changes data init 1 line
2006-5753 be6aab0 changes data init 1 line
2006-2071 b78b6af changes data init 14 lines
2006-1056 7466f9e changes data init 4 lines
2005-3179 c075814 changes data init 20 lines
2005-2709 330d57f adds field to struct 48 lines

CVE-2007-4573 [Elhage 2007], and CVE-2008-0600 [qaaz
2008].

Ksplice would be unable to safely achieve these results
without operating at the object code layer. First, because
Ksplice generates replacement code at the object code layer,
it supports two kinds of patches that have never been sup-
ported by an automatic source-level hot update system—
changes to function interfaces and changes to functions that
contain static local variables. In the evaluation, this capabil-
ity was needed for 8 of the 64 patches.

Second, as described in Section 3.1 and Section 4.2,
source-level hot update systems for legacy binaries do not
handle inline functions properly. Function inlining cannot
be ignored as uncommon; 20 of the 64 patches from the
evaluation modify a function that has been inlined in the run
code, despite the fact that only 4 of the 64 patches modify a
function that is explicitly declared inline.

Third, run-pre matching allows Ksplice to resolve am-
biguous symbol names in situations that would be impossi-
ble for a source-level hot update system for legacy binaries.
The Linux 2.6.27 code enabled in Debian’s default kernel
configuration contains 6,164 symbols that share their name
with other symbols in the kernel—that’s 7.9% of the total
number of symbols in the kernel. The symbols with ambigu-
ous names are spread throughout the kernel source; 21.1% of
the compilation units in the kernel contain at least one such
symbol. Five of the 64 patches from the evaluation modify a
function that contains a symbol with an ambiguous name.

As a specific example from the evaluation, consider cor-
recting the security vulnerability CVE-2005-4639 on Linux
kernel 2.6.16. The patch for this vulnerability changes the
function ca get slot info in the file dst ca.c. This
function accesses a variable called “debug”, which is a
global static variable in this file. Unfortunately, the file
dst.c also contains a static global variable called “debug”.
A source-level hot update system working from a symbol
table would not be able to determine which address in the
kernel corresponds to each “debug” symbol.

As a final example of the benefits of an object-level ap-
proach, consider the patch for CVE-2007-4573. This patch
modifies the x86-64 assembly file ia32entry.S in order to



zero-extend all registers in order to avoid an arbitrary exe-
cution vulnerability in the 32-bit kernel entry path. Ksplice
handles this patch using the same techniques and code that
handle patches to pure C functions. A source-level hot up-
date system for C would not be able to deal with the pure
assembly files in the kernel.

None of the original binary kernels used in the evalua-
tion had -ffunction-sections or -fdata-sections en-
abled, but run-pre matching always succeeded because these
options only result in the limited object code differences dis-
cussed at the end of Section 4.3.

7. Related Work
There are two streams of work related to Ksplice: academic
papers and black hat publications. We discuss the relation-
ship of Ksplice to these in turn.

7.1 Research literature
A key difference between Ksplice and previous systems
is that Ksplice operates at the object code layer. Hot up-
date systems that are designed to update legacy binaries—
specifically, LUCOS [Chen 2006], OPUS [Altekar 2005],
and DynAMOS [Makris 2007]—construct updates at the
source code layer, which results in the design limitations dis-
cussed in Section 3 and Section 4. Ksplice does not have
these limitations because it operates at the object code layer.

Because of the complexity of analyzing a patch and con-
structing the replacement code at the source code layer, LU-
COS and DynAMOS leave this process to a kernel program-
mer. In these systems, a programmer needs to construct re-
placement source code files with special properties, which
requires “tedious engineering effort” [Chen 2006] and, as
with any significant human involvement, is error-prone.

LUCOS is virtualization-based kernel hot update system
which requires a customized version of the Xen virtual ma-
chine monitor. LUCOS uses the virtual machine monitor in
order to gain a high degree of control over the kernel during
the update process. By controlling the kernel’s underlying
hardware, LUCOS can, for example, intervene when par-
ticular addresses in memory are accessed. Unlike LUCOS,
Ksplice does not require virtualization.

OPUS is a user space hot update utility for C programs
that targets security updates. OPUS requires the least pro-
grammer work of any of the previous hot update systems, but
OPUS cannot handle function signature changes, changes to
functions with static local variables, and changes to assem-
bly files. Also, a programmer using OPUS must perform a
manual check for inline functions in the to-be-updated bi-
nary in order to ensure patch safety (looking for the inline
keyword in the source code is not sufficient since compilers
routinely inline functions that lack the keyword). Ksplice’s
design avoids these problems by approaching hot updates
from the object code layer.

Even though Ksplice’s overall approach is different from
previous work, Ksplice shares specific techniques with
previous work. For example, Ksplice uses DynAMOS’s
“shadow data structures” method for adding a field to a data
structure [Makris 2007]. Like DynAMOS, Ksplice provides
functions for helping a programmer to utilize shadow data
structures. In the Ksplice evaluation, we used this capability
in order to apply one of the patches, CVE-2005-2709.

DynAMOS also describes a technique for a program-
mer to manually update a non-quiescent kernel function.
Ksplice’s hooks for running custom code during the update
process, described in Section 5.3, allow a programmer to
use the DynAMOS method for updating non-quiescent ker-
nel threads. Since safely performing this technique requires
programmer knowledge of the code in question, both Dy-
nAMOS and Ksplice leave this process to a programmer.

The Ksplice evaluation is the first evaluation of a legacy
binary hot update system against a comprehensive list of
patches over a time interval. Ksplice’s evaluation measures
Ksplice against all 64 of the significant Linux x86-32 secu-
rity vulnerabilities over a three year time interval. The Dy-
nAMOS and LUCOS evaluations each describe testing five
patches; the OPUS evaluation describes testing 26 patches
from a corpus of 883 user space vulnerabilities.

DynInst [Buck 2000], KernInst [Tamches 1999], and
Arachne [Douence 2005] are systems for instrumenting run-
ning legacy C binaries. Unlike the hot update systems de-
scribed above, these systems are not designed for updating
the source code of a running program; they do not address
the problem of converting a traditional piece of source code
into a change to a running program. Instead, DynInst and
Arachne each provide their own custom language for de-
scribing what operations should be inserted into the running
program. Even if one could write a source-to-source com-
piler to convert traditional C source code patches into these
custom languages, the resulting system would necessarily
have the aforementioned disadvantages of performing hot
updates on the source code layer.

In addition to the systems described above which can up-
date legacy binaries, many other research systems have been
created for modifying specially-designed running programs.
We now discuss some of these systems.

The K42 research operating system has implemented hot
update capabilities in K42 [Baumann 2007; 2005] by rely-
ing on particular abstractions provided by that operating sys-
tem’s highly object-oriented kernel. However, “few systems
include a uniform indirection layer” (or rely exclusively on
the factory abstraction targeted by the K42 hot update sys-
tem), which “would limit the applicability of [K42] dynamic
update” to other software systems [Baumann 2005]. Also,
since the K42 hot update system is structured around replac-
ing K42 object classes, it cannot handle changes to any code
outside of the object system, such as exception-handling
code or other low-level code. Additionally, like DynAMOS



and LUCOS, the K42 hot update system leaves a program-
mer responsible for constructing replacement source code
files based on a patch.

Ginseng [Neamtiu 2006] is a user space hot update util-
ity for C programs that has been used to upgrade three open
source server programs across several years’ worth of re-
leases. Unlike the hot update systems described above, Gin-
seng cannot be used to update legacy binaries because it re-
quires significant changes to programs at the source code
layer before they are originally compiled. In particular, Gin-
seng rewrites a program’s C source code to support upgrades
via function indirection and type wrapping, and Ginseng ex-
pects a programmer to annotate the to-be-updated software
to indicate one or more safe update points. Additionally,
a programmer may need to refactor some coding patterns.
Ksplice does not require any code changes before the to-
be-updated software is originally started and, in the com-
mon case, does not require programmer annotations or other
new code. Ginseng remains the most extensively evaluated
hot update system for upgrading realistic C programs across
many full releases. Evaluation of Ksplice or other legacy bi-
nary hot update systems in this domain is future work.

The DAS operating system [Goullon 1978] included hot
update primitives in the operating system, but these primi-
tives could not be used to upgrade the kernel.

Gupta [1993] built an early system for performing hot
updates on C user space programs that is a predecessor to
OPUS. Unlike OPUS, the system requires programs to be
linked against a special library, and, during an upgrade, it
loses program state stored in the kernel because of how it
creates a new process instead of modifying the old one.

Gupta [1996] proved that verifying whether or not a pro-
grammer has provided a correct transition function for ac-
complishing a source code upgrade is, in the general case,
undecidable. In other words, a hot update system cannot, in
the general case, prove that a patch, along with a state tran-
sition function, results in a valid state for the new program.

Lastly, researchers have looked at ways to upgrade a ma-
chine’s operating system if all of the important applications
on that machine support application-level migration between
machines. For example, incoming web server traffic can be
redirected from one machine to another to allow an operating
system upgrade to occur. Using virtualization techniques,
researchers have implemented this approach using multiple
virtual machines on one physical machine [Lowell 2004].
This approach works only for applications that support mi-
gration between machines at the application level.

7.2 Black hat techniques
The black hat community has been performing hot updates
on commodity operating system kernels for many years as
part of rootkits. Computer attackers benefit from modifying
the kernel so that they can hide their activities and exert a
high level of control over the system.

Publications on rootkits for the Linux, BSD, and Win-
dows operating systems [Cesare 1998, Hoglund 2005, Kong
2007, sd@sf.cz 2001] describe techniques that aid in the
construction of hot updates for these platforms. Black hats,
however, have different hot update goals than system admin-
istrators; a black hat only needs one manually-constructed
hot update in order to succeed, and, in general, a black hat is
more willing than a system administrator to tolerate a slight
chance that a hot update will destabilize the target machine.

Instead of pursuing a generalized approach for safely ac-
complishing arbitrary hot updates, these documents tend to
focus on simple approaches which usually work for accom-
plishing particular goals. For example, these publications
suggest using memory patterns called “keys”, which are a
few bytes long, in order to find particular parts of the kernel,
such as particular data structures, in memory. These multi-
byte keys can have several problems, such as appearing sev-
eral times in memory or not appearing at all on a different
machine. Various strategies exist for obtaining a “reason-
able guess at how useful a key is and if a key is not at all
stable” [Cesare 1998] (for example, a person can try a key
on multiple machines and insert a wildcard into the key if
necessary), but these strategies are laborious and do not pro-
vide much confidence about whether the update will work.
Ksplice’s approach for generating expectations for the con-
tents of kernel memory and systematically mapping symbol
names to values is significantly more general than the tech-
niques described in these rootkit publications.

Although Ksplice is safer and easier to use than exist-
ing hot update practices, Ksplice does not provide malware
authors with any troubling capabilities that they do not al-
ready possess. Black hats have known for many years how to
create rootkits that accomplish their goals using ad hoc ker-
nel inspection and modification techniques. For this reason,
once an attacker has unrestricted access to kernel memory, a
computer system must already be assumed to be completely
compromised. The best way to protect against attackers is
to promptly patch security vulnerabilities so that attackers
never gain unrestricted access to kernel memory. The goal
of Ksplice is to make this kernel patching process easier.

8. Conclusions and Future Work
We have presented a system, Ksplice, that takes as input a
source-level patch and then constructs and applies the cor-
responding updates to a running kernel without rebooting it.
Because Ksplice constructs hot updates at the object code
level, Ksplice can apply updates with little programming ef-
fort. Ksplice uses two new object code level techniques (pre-
post differencing and run-pre matching) to generate code,
resolve symbols, and provide safety for hot updates. Using
Ksplice’s implementation for Linux, a system administrator
can eliminate all reboots associated with Linux security up-
dates, which is a notable advance over the current state.



One could use Ksplice to create hot update packages
for common starting kernel configurations. People who sub-
scribe their systems to these updates would be able to trans-
parently receive kernel hot updates along with the user space
software updates to their system. This kind of distribution of
hot updates would, without any ongoing effort from users,
significantly reduce how frequently they need to reboot for
updates to take effect. Distribution of hot kernel updates can
reduce downtime, decrease windows of security vulnerabil-
ity, and improve the user experience.
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