Easy IMMUNO-ATMPs’ Post

View organization page for Easy IMMUNO-ATMPs, graphic

4,959 followers

#Bcells #immunecheckpoint #solidtumors B cells and the coordination of immune checkpoint inhibitor response in patients with solid tumors Immunotherapy profoundly changed the landscape of cancer therapy by providing long-lasting responses in subsets of patients and is now the standard of care in several solid tumor types. Most studies have focused on T cell engagement and response, but there is a growing evidence that B cells may be key players in the establishment of an organized immune response, notably through tertiary lymphoid structures. Mechanisms of B cell response include antibody-dependent cellular cytotoxicity and phagocytosis, promotion of CD4+ and CD8+ T cell activation, maintenance of antitumor immune memory. In several solid tumor types, higher levels of B cells, specific B cell subpopulations, or the presence of tertiary lymphoid structures have been associated with improved outcomes on immune checkpoint inhibitors. The fate of B cell subpopulations may be widely influenced by the cytokine milieu, with versatile roles for B-specific cytokines B cell activating factor and B cell attracting chemokine-1/CXCL13, and a master regulatory role for IL-10. Roles of B cell-specific immune checkpoints such as TIM-1 are emerging and could represent potential therapeutic targets. Image:  BCR in solid tumors.  A) Coordination of the antitumor immune response by B cells. Antigen recognition by the B-cell receptor triggers a T cell-dependent or T cell-independent B cell response. The T cell-dependent response involves B and T-cell crosstalks within secondary or tertiary lymphoid structures. Interactions between B-cells and TFh through the CD40/CD40L axis allows for TFh activation, as well as initiation of a B cell germinal center reaction. Activation of TFh cells promotes T CD8+ activation and expansion in the T cell zone, ultimately prompting efficient T cell-mediated cytotoxicity. The germinal center reaction involves a positive selection of high-affinity, class-switched B cells that will differentiate into long-lived switched (IgG+) memory B cells or IgG+plasma cells. The humoral response exert antitumor effects through antibody-dependent cytotoxicity and phagocytosis. B) Modulation of the immune response by B cells. Tumor infiltration by regulatory B cells secreting immunosuppressive cytokines such as IL-10 allows for an immunosuppressive microenvironment. Immune complexes involving immunoglobulins and tumor antigens may promote activation of myeloid-derived suppressor cells. Complement activation by immunoglobulins may also promote MDSC activation and angiogenesis, inducing a protumoral microenvironment. Source:https://lnkd.in/e6bX6aM8

  • No alternative text description for this image

Thank you for displaying a very excellent information or article.

To view or add a comment, sign in

Explore topics