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Abstract
This article discusses some introductory ideas associated with complex numbers, their algebra and
geometry. This includes a look at their importance in solving polynomial equations, how complex
numbers add and multiply, and how they can be represented. Finally we look at the nth roots of
unity, that is, the solutions of the equations zn = 1.

1 The Need For Complex Numbers
The shortest path between two truths in the real domain passes through the complex domain

Jacques Hadamard (1865-1963)

All of you will know that the two roots of the equation ax2 + bx+ c = 0 are

x =
−b±

√
b2 − 4ac
2a

(1)

and solving quadratic equations is something that mathematicians have been able to do since the time
of the Babylonians. When b2 − 4ac > 0 then these two roots are real and distinct; graphically they are
where the curve y = ax2+ bx+ c cuts the x-axis. When b2− 4ac = 0 then we have one real root and the
curve just touches the x-axis here. But what happens when b2 − 4ac < 0? In this case there are no real
solutions to the equation, as no real number squares to give the negative b2 − 4ac. From the graphical
point of view, the curve y = ax2 + bx+ c lies entirely above or below the x-axis.
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It is only comparatively recently that mathematicians have been comfortable with these roots when
b2 − 4ac < 0. During the Renaissance the quadratic would have been considered unsolvable, or its roots
would have been called imaginary1 .

If we imagine
√
−1 to exist, and that it behaves much like other numbers, then the two roots of the

quadratic ax2 + bx+ c = 0 can be written in the form

x = A±B
√
−1 (2)

∗These pages are produced by Richard Earl, who is the Schools Liaison and Access Officer for mathematics, statistics
and computer science at Oxford University. Any comments, suggestions or requests for other material would be welcomed
at earl@maths.ox.ac.uk

1The term ‘imaginary’ was first used by the French Mathematician René Descartes (1596-1650). Whilst he is known more
as a philosopher, Descartes made many important contributions to mathematics and helped found co-ordinate geometry –
hence the naming of Cartesian co-ordinates.
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where A = −b/2a and B =
√
4ac− b2/2a are real numbers. But what meaning can such roots have?

It was this philosophical point which pre-occupied mathematicians until the start of the 19th century;
afterwards these ‘imaginary’ numbers started proving so useful (especially in the work of Cauchy and
Gauss) that these philosophical concerns were essentially forgotten.

Notation 1 We shall from now on write i for
√
−1 – this is standard notation amongst mathemati-

cians2 , though many books, particularly those written for engineers and physicists, use j instead.

Definition 2 A complex number 3 is a number of the form a + bi where a and b are real numbers. If
z = a + bi then a is known as the real part of z and b as the imaginary part. We write a = Re z and
b = Im z. Note that real numbers are complex – a real number is simply a complex number with zero
imaginary part.

Remark 3 Note that two complex numbers are equal precisely when their real and imaginary parts are
equal – that is a+bi = c+di if and only if a = c and b = d. This is called ‘comparing real and imaginary
parts’.

Notation 4 We write C for the set of all complex numbers.

One of the first major results concerning complex numbers, and which conclusively demonstrated their
usefulness, was proved by Gauss in 1799. From the quadratic formula (1) we know that all quadratic
equations can be solved using complex numbers, but what Gauss was the first to prove was the much
more general result:

Theorem 5 (FUNDAMENTAL THEOREM OF ALGEBRA) The roots of any polynomial equation

a0 + a1x+ a2x
2 + · · ·+ anx

n = 0,

with real (or complex) coefficients ai, are complex. That is there are n (not necessarily distinct) complex
numbers γ1, . . . , γn such that

a0 + a1x+ a2x
2 + · · ·+ anx

n = an (x− γ1) (x− γ2) · · · (x− γn) .

In particular, this shows that a degree n polynomial has, counting repetitions, exactly n roots in C.

The proof of this theorem is far beyond the scope of this document. Note that the theorem only guarantees
the existence of the roots of a polynomial somewhere in C unlike the quadratic formula, which plainly
gives us a formula for the roots. The theorem gives no hint as to where in C these roots are to be found.

Exercise 1 A. Which of the following quadratic equations require the use of complex numbers to solve
them?

3x2 + 2x− 1 = 0, 2x2 − 6x+ 9 = 0, − 4x2 + 7x− 9 = 0.

Exercise 2 B. On separate axes, sketch the graphs of the following cubics, being sure to carefully label
any turning points. In each case state how many of the cubic’s roots are real.

y1 (x) = x3 − x2 − x+ 1;

y2 (x) = 3x3 + 5x2 + x+ 1;

y3 (x) = −2x3 + x2 − x+ 1.

2The i notation was first introduced by the Swiss mathematician Leonhard Euler (1707-1783). Much of our modern
notation is due to him including e and π. Euler was a giant in 18th century mathematics and the most prolific mathematician
ever. His most important contributions were in analysis (eg. on infinite series, calculus of variations). The study of topology
arguably dates back to his solution of the Königsberg Bridge Problem.

3The term ‘complex number’ is due to the German mathematician Carl Gauss (1777-1855). Gauss is considered by many
the greatest mathematician ever. He made major contributions to almost every area of mathematics from number theory
and non-Euclidean geometry, to astronomy and magnetism. His name precedes a multitude of theorems and definitions
throughout mathematics.
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Exercise 3 C. Let p and q be real numbers with p ≤ 0. Find the co-ordinates of the turning points of
the cubic y = x3 + px+ q. Show that the cubic equation x3 + px+ q = 0 has three real roots, with two or
more repeated, precisely when

4p3 + 27q2 = 0.

Under what conditions on p and q does x3+px+ q = 0 have (i) three distinct real roots, (ii) just one real
root? How many real roots does the equation x3 + px+ q = 0 have when p > 0?

Exercise 4 C. By making a substitution of the form X = x−α for a certain choice of α, transform the
equation X3+aX2+ bX+ c = 0 into one of the form x3+px+ q = 0. Hence find conditions under which
the equation

X3 + aX2 + bX + c = 0

has (i) three distinct real roots, (ii) three real roots involving repetitions, (iii) just one real root.

Exercise 5 C The cubic equation x3 + ax2 + bx+ c = 0 has roots α, β, γ so that

x3 + ax2 + bx+ c = (x− α) (x− β) (x− γ) .

By equating the coefficients of powers of x in the previous equation, find expressions for a, b and c in
terms of α, β and γ.
Given that α, β, γ are real, what can you deduce about their signs if (i) c < 0, (ii) b < 0 and c < 0,

(iii) b < 0 and c = 0.

Exercise 6 C. With a, b, c and α, β, γ as in the previous exercise, let Sn = αn+βn+γn. Find expressions
S0, S1 and S2 in terms of a, b and c. Show further that

Sn+3 + aSn+2 + bSn+1 + cSn = 0

for n ≥ 0 and hence find expressions for S3 and S4 in terms of a, b and c.

2 Basic Operations
We add, subtract, multiply and divide complex numbers much as we would expect. We add and subtract
complex numbers by adding their real and imaginary parts:-

(a+ bi) + (c+ di) = (a+ c) + (b+ d) i,

(a+ bi)− (c+ di) = (a− c) + (b− d) i.

We can multiply complex numbers by expanding the brackets in the usual fashion and using i2 = −1,

(a+ bi) (c+ di) = ac+ bci+ adi+ bdi2 = (ac− bd) + (ad+ bc) i.

To divide complex numbers, we note firstly that (c+ di) (c− di) = c2 + d2 is real. So

a+ bi

c+ di
=

a+ bi

c+ di
× c− di

c− di
=

µ
ac+ bd

c2 + d2

¶
+

µ
bc− ad

c2 + d2

¶
i.

The number c − di, which we just used, as relating to c + di, has a special name and some useful
properties – see Proposition 10.

Definition 6 Let z = a + bi. The conjugate of z is the number a − bi, and this is denoted as z̄ (or in
some books as z∗).

Note from equation (2) that when the real quadratic equation ax2 + bx+ c = 0 has complex roots, then
these roots are conjugates of each other. Generally, if the polynomial anzn + an−1z

n−1 + · · · + a0 = 0,
where the ai are real, has a root z0, then the conjugate z̄0 is also a root.
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Exercise 7 A. Put each of the following numbers into the form a+ bi.

(1 + 2i)(3− i),
1 + 2i

3− i
, (1 + i)4.

Exercise 8 A. Let z1 = 1 + i and let z2 = 2− 3i. Put each of the following into the form a+ bi.

z1 + z2, z1 − z2, z1z2, z1/z2, z̄1z̄2.

We needed a special symbol i for
√
−1, but we see now that further symbols are needed to find

the square root of i. In fact we already knew this from the Fundamental Theorem, which implies that
z2 = i has two roots amongst the complex numbers. The quadratic formula (1), is also valid for complex
coefficients a, b, c, provided that proper sense is made of the square roots of the complex number b2−4ac.

Problem 7 Find all those z that satisfy z2 = i.

Suppose that z2 = i and z = a+ bi, where a and b are real. Then

i = (a+ bi)
2
=
¡
a2 − b2

¢
+ 2abi.

Comparing the real and imaginary parts (see Remark 3), we know that

a2 − b2 = 0 and 2ab = 1.

So b = 1/2a from the second equation, and substituting for b into the first equation gives a4 = 1/4, which
has real solutions a = 1/

√
2 or a = −1/

√
2.

So the two z which satisfy z2 = i, i.e. the two square roots of i, are

1 + i√
2

and
−1− i√

2
.

Problem 8 Use the quadratic formula to find the two solutions of

z2 − (3 + i) z + (2 + i) = 0.

We see that a = 1, b = −3− i, and c = 2 + i. So

b2 − 4ac = (−3− i)2 − 4× 1× (2 + i) = 9− 1 + 6i− 8− 4i = 2i.

Knowing
√
i = ± (1 + i) /

√
2, from the previous problem, we have

x =
−b±

√
b2 − 4ac
2a

=
(3 + i)±

√
2i

2

=
(3 + i)±

√
2
√
i

2

=
(3 + i)± (1 + i)

2

=
4 + 2i

2
or

2

2
= 2 + i or 1.

Exercise 9 A. Find the square roots of −5− 12i, and hence solve the quadratic equation

z2 − (4 + i) z + (5 + 5i) = 0.
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Exercise 10 B. Show that the complex number 1 + i is a root of the cubic equation

z3 + z2 + (5− 7i) z − (10 + 2i) = 0,

and hence find the other two roots.

Exercise 11 B. Show that the complex number 2 + 3i is a root of the quartic equation

z4 − 4z3 + 17z2 − 16z + 52 = 0,

and hence find the other three roots.

Exercise 12 B. Let n be a positive integer. Simplify the expression (1 + i)2n . Use the binomial theorem
to show thatµ

2n

0

¶
−
µ
2n

2

¶
+

µ
2n

4

¶
−
µ
2n

6

¶
+ · · ·+ (−1)n

µ
2n

2n

¶
=

½
(−1)n/2 2n if n is even;

0 if n is odd.

Show that the right-hand side is equal to 2n cos (nπ/2) . Similarly, find the value ofµ
2n

1

¶
−
µ
2n

3

¶
+

µ
2n

5

¶
−
µ
2n

7

¶
+ · · ·+ (−1)n−1

µ
2n

2n− 1

¶
.

3 The Argand Diagram
The real numbers are often represented on the real line which increase as we move from left to right.

-4 -2 0 2 4è !! !!2 π

The Real Line

The complex numbers, having two components, their real and imaginary parts, can be represented as a
plane; indeed, C is sometimes referred to as the complex plane, but more commonly, when we represent
C in this manner, we call it an Argand diagram4 .The point (a, b) represents the complex number a+ bi
so that the x-axis contains all the real numbers, and so is termed the real axis, and the y-axis contains
all those complex numbers which are purely imaginary (i.e. have no real part), and so is referred to as
the imaginary axis.

-4 -2 2 4

-3

-2

-1

1

2 3 +2 i

2− 3 i

−3+ i

The Argand Diagram
4After the Swiss mathematician Jean-Robert Argand (1768-1822).
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We can think of z0 = a+ bi as a point in an Argand diagram, but it can often be useful to think of
it as a vector as well. Adding z0 to another complex number translates that number by the vector

¡
a
b

¢
.

That is the map z 7→ z + z0 represents a translation a units to the right and b units up in the complex
plane. Note that the conjugate z̄ of a point z is its mirror image in the real axis. So, z 7→ z̄ represents
reflection in the real axis.

Exercise 13 B. Multiplication by i takes the point x+iy to the point −y+ix. What transformation of the
Argand diagram does this represent? What is the effect of multiplying a complex number by (1 + i) /

√
2?

[Hint: recall that this is square root of i.]

A complex number z in complex plane can be represented by Cartesian co-ordinates, its real and
imaginary parts, but equally useful is the representation of z by polar co-ordinates. If we let r be the
distance of z from the origin, and if, for z 6= 0, we define θ to be the angle that the line connecting the
origin to z makes with the positive real axis, then we can write

z = x+ iy = r cos θ + ir sin θ. (3)

The relations between z’s Cartesian and polar co-ordinates are simple – we see that

x = r cos θ and y = r sin θ,

r =
p
x2 + y2 and tan θ =

y

x
.

Definition 9 The number r is called the modulus of z and is written |z| .The number θ is called the
argument of z and is written arg z. If z = x+ iy then

|z| =
p
x2 + y2 and sin arg z =

yp
x2 + y2

, cos arg z =
xp

x2 + y2
.

Note that the argument of 0 is undefined.

Note that arg z is defined only up to multiples of 2π. For example, the argument of 1+ i could be π/4 or
9π/4 or −7π/4 etc.. For simplicity, in this article we shall give all arguments in the range 0 ≤ θ < 2π, so
that π/4 would be the preferred choice here.

0.5 1 1.5 2 2.5 3 3.5
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2 Imz

Rez

»z»

z

argHzL

A Complex Number’s Cartesian and Polar Co-ordinates

Exercise 14 A. Find the modulus and argument of each of the following numbers.

1 +
√
3i, (2 + i) (3− i) , (1 + i)

5
.

Exercise 15 B. Let α be a real number in the range 0 < α < π/2. Find the modulus and argument of
the following numbers.

cosα− i sinα, sinα− i cosα, 1 + i tanα, 1 + cosα+ i sinα.
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Exercise 16 B. On separate Argand diagrams sketch the following sets:

(i) |z| < 1; (ii) Re z = 3; (iii) |z − 1| = |z + i| ;
(iv) −π/4 < arg z < π/4; (v) Re (z + 1) = |z − 1| ; (vi) arg (z − i) = π/2;
(vii) |z − 3− 4i| = 5; (viii) Re ((1 + i) z) = 1. (ix) Im

¡
z3
¢
> 0.

We now prove some useful algebraic properties of the modulus, argument and conjugate functions.

Proposition 10 Let z, w ∈ C. Then

|zw| = |z| |w| ; |z/w| = |z| / |w| if w 6= 0;
zz̄ = |z|2 ; |z̄| = |z| ;
z + w = z̄ + w̄; z − w = z̄ − w̄;

zw = z̄ w̄; z/w = z̄/w̄ if w 6= 0;
|z + w| ≤ |z|+ |w| ; ||z|− |w|| ≤ |z − w| ;

• and up to multiples of 2π then the following equations also hold:

• arg (zw) = arg z + argw if z, w 6= 0,

• arg (z/w) = arg z − argw if z, w 6= 0,

• arg z̄ = − arg z if z 6= 0.

A selection of the above statements is proved here; the remaining ones are left as exercises.

Proof. |zw| = |z| |w| . Let z = a+ bi and w = c+ di. Then zw = (ac− bd) + (bc+ ad) i so that

|zw| =

q
(ac− bd)2 + (bc+ ad)2

=
p
a2c2 + b2d2 + b2c2 + a2d2

=
p
(a2 + b2) (c2 + d2)

=
p
a2 + b2

p
c2 + d2 = |z| |w| .

Proof. arg (zw) = arg z + argw. Let z = r (cos θ + i sin θ) and w = R (cosΘ+ i sinΘ) . Then

zw = rR (cos θ + i sin θ) (cosΘ+ i sinΘ)

= rR ((cos θ cosΘ− sin θ sinΘ) + i (sin θ cosΘ+ cos θ sinΘ))

= rR (cos (θ +Θ) + i sin (θ +Θ)) .

We can read off that |zw| = rR = |z| |w| which is a second proof of the previous part and also that

arg (zw) = θ +Θ = arg z + argw up to multiples of 2π.

Proof. zw = z̄ w̄. Let z = a+ bi and w = c+ di. Then

zw = (ac− bd) + (bc+ ad) i

= (ac− bd)− (bc+ ad) i

= (a− bi) (c− di) = z̄ w̄.
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Proof. (Triangle Inequality) |z + w| ≤ |z|+ |w|.

0.5 1 1.5 2 2.5 3

-2

-1.5

-1

-0.5

0.5

1

z+w

w

z w Has a vector L

A diagrammatic proof of the Triangle Inequality

Note that the shortest distance between 0 and z + w is the modulus of z + w. This is shorter in length
than the path which goes from 0 to z to z + w. The total length of this second path is |z| + |w| .

For an algebraic proof, note that for any complex number z+ z̄ = 2Re z and Re z ≤ |z| . So for z, w ∈ C,

zw̄ + z̄w

2
= Re (zw̄) ≤ |zw̄| = |z| |w̄| = |z| |w| .

Then

|z + w|2 = (z + w) (z + w)

= (z + w) (z̄ + w̄)

= zz̄ + zw̄ + z̄w + ww̄

≤ |z|2 + 2 |z| |w|+ |w|2 = (|z|+ |w|)2 ,

to give the required result.

Corollary 11 The complex roots of a real polynomial come in pairs. That is, if z0 satisfies the polynomial
equation akz

k + ak−1z
k−1 + · · ·+ a0 = 0, where each ai is real, then z0 is also a root.

Proof. Note from the algebraic properties of the conjugate function, proven in the previous proposition,
that

ak (z0)
k + ak−1 (z0)

k−1 + · · ·+ a1z0 + a0 = ak(z0)
k + ak−1(z0)

k−1 + · · ·+ a1z0 + a0

= ak(z0)
k
+ ak−1(z0)

k−1
+ · · ·+ a1z0 + a0 [the ai are real]

= ak (z0)
k
+ ak−1 (z0)

k−1
+ · · ·+ a0

= 0 [as z0 is a root]

= 0.

Exercise 17 A. Let z and w be two complex numbers such that zw = 0. Show either z = 0 or w = 0.

Exercise 18 A. Suppose that the complex number α is a square root of z, that is α2 = z. Show that the
only other square root of z is −α. Suppose now that the complex numbers z1 and z2 have square roots
±α1 and ±α2 respectively. Show that the square roots of z1z2 are ±α1α2

Exercise 19 B. Prove the remaining identities from Proposition 10.
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Exercise 20 B. Let t be a real number. Find expressions for

x = Re
1

2 + ti
, y = Im

1

2 + ti
.

Find an equation relating x and y by eliminating t. Deduce that the image of the line Re z = 2 under the
map z 7→ 1/z is contained in a circle. Is the image of the line all of the circle?

Exercise 21 B. Let z1 and z2 be two complex numbers. Show that

|z1 − z2|2 + |z1 + z2|2 = 2
³
|z1|2 + |z2|2

´
.

This fact is called the Parallelogram Law – how does this relate the lengths of the diagonals and sides of
the parallelogram? [Hint: consider the parallelogram in C with vertices 0, z1, z2, z1 + z2.]

Exercise 22 C. Consider a quadrilateral OABC in the complex plane whose vertices are at the complex
numbers 0, a, b, c. Show that the equation

|b|2 + |a− c|2 = |a|2 + |c|2 + |a− b|2 + |b− c|2

can be rearranged as
|b− a− c|2 = 0.

Hence show that the only quadrilaterals to satisfy the Parallelogram Law are parallelograms.

4 Roots Of Unity
Consider the complex number

z0 = cos θ + i sin θ,

where 0 ≤ θ < 2π. The modulus of z0 is 1, and the argument of z0 is θ.
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z0
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θ

θ
θ

Powers of z0

In Proposition 10 we proved for z,w 6= 0 that

|zw| = |z| |w| and arg (zw) = arg z + argw,

up to multiples of 2π. So for any integer n, and any z 6= 0, we have that

|zn| = |z|n and arg (zn) = n arg z.

So the modulus of (z0)
n is 1 and the argument of (z0)

n is nθ, or putting this another way
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Theorem 12 (DE MOIVRE’S5 THEOREM) For a real number θ and integer n we have that

cosnθ + i sinnθ = (cos θ + i sin θ)n .

Exercise 23 B. Use De Moivre’s Theorem to show that

cos 5θ = 16 cos5 θ − 20 cos3 θ + 5 cos θ,

and that
sin 5θ =

¡
16 cos4 θ − 12 cos2 θ + 1

¢
sin θ.

Exercise 24 B. Let z = cos θ + i sin θ and let n be an integer. Show that

2 cos θ = z +
1

z
and that 2i sin θ = z − 1

z
.

Find expressions for cosnθ and sinnθ in terms of z.

Exercise 25 B. Show that
cos5 θ =

1

16
(cos 5θ + 5 cos 3θ + 10 cos θ)

and hence find
R π/2
0

cos5 θ dθ.

We apply these ideas to the following problem.

Problem 13 Let n be a natural number. Find all those complex z such that zn = 1.

We know from the Fundamental Theorem of Algebra that there are (counting repetitions) n solutions:
these are known as the nth roots of unity.

Let’s first solve zn = 1 directly for n = 2, 3, 4.

• When n = 2 we have
0 = z2 − 1 = (z − 1) (z + 1)

and so the square roots of 1 are ±1.

• When n = 3 we can factorise as follows

0 = z3 − 1 = (z − 1)
¡
z2 + z + 1

¢
.

So 1 is a root and completing the square we see

0 = z2 + z + 1 =

µ
z +

1

2

¶2
+
3

4

which has roots

−1
2
±
√
3

2
i.

So the cube roots of 1 are 1, −1/2 +
√
3i/2, and −1/2−

√
3i/2.

• When n = 4 we can factorise as follows

0 = z4 − 1 =
¡
z2 − 1

¢ ¡
z2 + 1

¢
= (z − 1) (z + 1) (z − i) (z + i) ,

so that the fourth roots of 1 are 1,−1, i and −i.
5De Moivre (1667-1754), a French protestant who moved to England, is best remembered for this formula, but his major

contributions were in probability and appeared in his The Doctrine Of Chances (1718).
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Plotting these roots on Argand diagrams we can see a pattern developing

-2 -1.5 -1 -0.5 0.5 1 1.5 2

-1.5

-1

-0.5

0.5

1

1.5

Square Roots

-2 -1.5 -1 -0.5 0.5 1 1.5 2

-1.5

-1

-0.5

0.5

1

1.5

Cube Roots

-2 -1.5 -1 -0.5 0.5 1 1.5 2

-1.5

-1

-0.5

0.5

1

1.5
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Returning to the general case, suppose that z = r (cos θ + i sin θ) and satisfies zn = 1. Then by the
observations preceding De Moivre’s Theorem zn has modulus rn and has argument nθ. As 1 has modulus
1 and argument 0, we can compare their moduli to find rn = 1 giving r = 1. Comparing arguments, we
see nθ = 0 up to multiples of 2π. That is nθ = 2kπ for some integer k, giving θ = 2kπ/n. So the roots of
zn = 1 are

z = cos

µ
2kπ

n

¶
+ i sin

µ
2kπ

n

¶
where k is an integer.

At first glance there seem to be an infinite number of roots but note as cos and sin have period 2π then
these z repeat with period n. So the nth roots of unity are

z = cos

µ
2kπ

n

¶
+ i sin

µ
2kπ

n

¶
where k = 0, 1, 2, . . . , n− 1.

Plotted on an Argand diagram, the nth roots of unity form a regular n-gon inscribed within the unit
circle with a vertex at 1.

Problem 14 Find all the solutions of the cubic z3 = −2 + 2i.

If we write −2 + 2i in its polar form we have

−2 + 2i =
√
8

µ
cos

µ
3π

4

¶
+ i sin

µ
3π

4

¶¶
.

So if z3 = −2 + 2i, and z has modulus r and argument θ, then

r3 =
√
8 and 3θ =

3π

4
up to multiples of 2π,

which gives

r =
√
2 and θ =

π

4
+
2kπ

3
for some integer k.

As before, we need only consider k = 0, 1, 2 (as other k lead to repeats) and we see the three roots are

√
2
³
cos
³π
4

´
+ i sin

³π
4

´´
= 1 + i,

√
2

µ
cos

µ
11π

12

¶
+ i sin

µ
11π

12

¶¶
=

Ã
−1
2
−
√
3

2

!
+ i

Ã√
3

2
− 1
2

!
,

√
2

µ
cos

µ
19π

12

¶
+ i sin

µ
19π

12

¶¶
=

Ã
−1
2
+

√
3

2

!
+ i

Ã
−
√
3

2
− 1
2

!
.
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Exercise 26 A. Let ω be a cube root of unity (i.e. ω3 = 1) such that ω 6= 1. Show that

1 + ω + ω2 = 0.

Exercise 27 C. Let
ζ = cos

2π

5
+ i sin

2π

5
.

Show that ζ5 = 1, and deduce that
1 + ζ + ζ2 + ζ3 + ζ4 = 0.

Find the quadratic equation with roots ζ + ζ4 and ζ2 + ζ3. Hence show that

cos
2π

5
=

√
5− 1
4

.

Exercise 28 C. Determine the modulus and argument of the two complex numbers 1 + i and
√
3 + i.

Also write the number
1 + i√
3 + i

in the form x+ iy. Deduce that

cos
π

12
=

√
3 + 1

2
√
2

and sin
π

12
=

√
3− 1
2
√
2

.

Exercise 29 B. Let A = 1+ i and B = 1− i. Find the two numbers C and D such that ABC and ABD
are equilateral triangles in the Argand diagram. Show that if C < D then

A+ ωC + ω2B = 0 = A+ ωB + ω2D,

where ω =
¡
−1 +

√
3i
¢
/2 is a cube root of unity other than 1.

Exercise 30 B. By considering the seventh roots of −1 show that

cos
π

7
+ cos

3π

7
+ cos

5π

7
=
1

2
.

What is the value of

cos
2π

7
+ cos

4π

7
+ cos

6π

7
?

Exercise 31 B. Find all the roots of the equation x8 = −1. Hence, write x8 + 1 as the product of four
quadratic factors.

Exercise 32 C. Find all the roots of the following equations.

1. 1 + z2 + z4 + z6 = 0,

2. 1 + z3 + z6 = 0,

3. (1 + z)5 − z5 = 0,

4. (z + 1)9 + (z − 1)9 = 0.
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5 Further Exercises
Exercise 33 C. Given a non-zero complex number z = x+ iy, we can associate with z a matrix

Z =

µ
x y
−y x

¶
.

Show that if z and w are complex numbers with associated matrices Z and W, then the matrices associated
with z + w, zw and 1/z are Z +W,ZW and Z−1 respectively. Hence, for each of the following matrix
equations, find a matrix Z which is a solution.

Z2 =

µ
0 1
−1 0

¶
,

Z2 + 2Z =

µ
−5 0
0 −5

¶
,

Z2 +

µ
−3 1
1 −3

¶
Z =

µ
−2 −1
1 −2

¶
,

Z5 =

µ
1 1
−1 1

¶
.

Exercise 34 C. The sequence x0, x1, x2, x3, ... is defined recursively by

x0 = 0, x1 = 0.8, xn = 1.2xn−1 − xn−2 for n ≥ 2.

With the aid of a calculator list the values of xi for 0 ≤ i ≤ 10. Prove further, by induction, that

xn = Im {(0.6 + 0.8i)n}

for each n = 0, 1, 2, .... Deduce that |xn| ≤ 1 for all n. Show also that xn cannot have the same sign for
more than three consecutive n.

Exercise 35 C. Consider the cubic equation z3 +mz + n = 0 where m and n are real numbers. Let ∆
be a square root of (n/2)2 + (m/3)3. We then define t and u by

t = −n/2 +∆ and u = n/2 +∆,

and let T and U respectively be cube roots of t and u. Show that tu is real, and that if T and U are chosen
appropriately, then z = T − U is a solution of the original cubic equation.
Use this method to completely solve the equation z3 + 6z = 20. By making a substitution of the form

w = z − a for a suitable choice of a, find all three roots of the equation 8w3 + 12w2 + 54w = 135.

Exercise 36 C. Express tan 7θ in terms of tan θ and its powers. Hence solve the equation

x6 − 21x4 + 35x2 − 7 = 0.

Exercise 37 C. Show for any complex number z, and any positive integer n, that

z2n − 1 =
¡
z2 − 1

¢ n−1Y
k=1

½
z2 − 2z cos kπ

n
+ 1

¾
.

By setting z = cos θ + i sin θ show that

sinnθ

sin θ
= 2n−1

n−1Y
k=1

½
cos θ − cos kπ

n

¾
.
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